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Due to the high morbidity and mortality of cardiovascular diseases, there is an urgent 
need for research on antithrombotic strategies. In view of the short half-life, insufficient 
drug penetration, poor targeting capabilities, and hemorrhagic side-effects of traditional 
thrombus treatment methods, the combination of thrombolytic therapy and nanocarriers 
brought by the development of nanotechnology in recent years may provide effective 
solutions for these undesirable side-effects caused by insufficient targeting. Polymeric 
nanocarriers, based on macromolecules and various functional groups, can connect 
specific targeting molecules together through chemical modification to achieve the 
protection and targeted delivery of thrombolytic drugs. However, simple chemical molecular 
modifications may be easily affected by the physiological environment encountered in the 
circulatory system. Therefore, the modification of nanocarriers with cell membranes can 
provide camouflage to these platforms and help to extend their circulation time while also 
imparting them with the biological functions of cell membranes, thus providing them with 
precise targeting capabilities, among which the most important is the biological modification 
of platelet membranes. In addition, some nanoparticles with their own therapeutic functions 
have also been developed, such as polypyrrole, which can exhibit a photothermal effect 
to induce thrombolysis. Herein, combined with the mechanism of thrombosis and 
thrombolysis, we  outline the recent advances achieved with thrombus-targeting 
nanocarriers with regard to thrombosis treatment. On this basis, the design considerations, 
advantages, and challenges of these thrombolytic therapies in clinical transformation 
are discussed.

Keywords: thrombosis, polymeric nanocarriers, targeted delivery, biomimetic technology, antithrombotic 
strategies

INTRODUCTION

At present, cardiovascular disease is still one of the most threatening diseases to human health 
and life in the world. Cardiovascular diseases have a high morbidity and mortality rate. 
According to statistics, approximately 179 million people die from cardiovascular diseases each 
year, accounting for about 31% of the world’s death toll, and this number is anticipated to 
reach over 236 million by 2030 (Benjamin et  al., 2020; Zenych et  al., 2020). There are three 
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main types of cardiovascular diseases, including myocardial 
infarction, cerebral stroke, and deep vein thrombosis. These 
three cardiovascular diseases are primarily caused by thrombosis, 
which is a blood clot blockage of blood vessels (Fuster et  al., 
1992; Gao et  al., 2021; Rodriguez and Harrington, 2021; Xue 
et  al., 2021). Therefore, the prevention and treatment of 
thrombosis are an urgent issue, and it is also of great 
research significance.

Currently, the most important remedy for thrombosis and 
related cardiovascular diseases is prevention, but in cases 
involving long-term thrombosis, the main treatment options 
include balloon catheterization, surgical embolectomy, 
thrombolytic therapy, and other relevant surgeries (Powers 
et al., 2018). Taking into account the cost of surgical treatment 
and the damage it causes to the body, the application of 
thrombolytic drugs has increasingly become an important 
strategy. Thrombolytic agents include tissue plasminogen 
activators (tPA), recombinant tissue plasminogen activators 
(rtPA), urokinase (UK), streptokinase (SK), and other 
plasminogen activators (PAs; Marder, 2013; Cheng et  al., 2018; 
Zamanlu et al., 2018; Ma et al., 2019; Hassanpour et al., 2020). 
The diverse antigenicity, half-life, lytic potential, fibrin specificity, 
and hemorrhagic risks associated with these agents lead to 
their differing effectiveness (Marshall, 2015). In addition, 
anticoagulants and antiplatelet drugs are often used to prevent 
clotting (Bala et  al., 2018; Al Rawahi et  al., 2019). These drugs 
often have only limited effectiveness when they are used alone, 
for example, their penetration into clots tends to be  trivial 
and requires larger doses. Making matters worse, they may 
also cause hemorrhagic transformation leading to fatal 
intracerebral hemorrhage, as well as some other undesirable 
side-effects (Pfefferkorn and Rosenberg, 2003; Mao et al., 2017; 
Powers et  al., 2018; Xu et  al., 2021).

With the rapid development of nanotechnology and 
biotechnology (Jiang et  al., 2020; Cornel et  al., 2021), the 
combination of thrombolytic therapy and nanocarriers may 
provide a novel solution to key issues, such as the short half-
life, low targeting ability, and unexpected bleeding complications 
of the existing therapeutic drugs (Zamanlu et  al., 2018; Ma 
et  al., 2019; Hassanpour et  al., 2020). Polymeric nanocarriers 
based on macromolecules can provide the protection and 
targeted delivery of thrombolytic drugs through the unique 
physicochemical property brought by the nanoscale and the 
facile design of polymer chains. In addition, biologically inspired 
cell membrane modification strategies can transfer the specific 
functions and biological characteristics of cell membranes to 
the nanocarriers, thus improving the biocompatibility and 
precise targeting ability, and greatly enhancing the effect of 
thrombolytic therapy (Figure  1).

MECHANISM OF THROMBOSIS AND 
THROMBOLYSIS

Thrombosis is primarily triggered by collagen, tissue factor, 
thrombin, and other factors, which induce local platelet activation 
and fibronectin complex formation (Zenych et al., 2020). These 

key components jointly participate in the construction of the 
intravascular microenvironment that can lead to thrombosis 
and promote cancer. Fibrinogen is an important reaction 
substrate for thrombosis and is the key step involved in 
thrombosis (Undas and Ariens, 2011). When the endogenous 
coagulation system is abnormally activated, fibrinogen will form 
fibrin monomers under the action of thrombin, activated factor 
XIII, Ca2+, and other coagulation factors, subsequently covalently 
binding with each other to form a fibrin polymer. This stable 
fibrin network finally captures red blood cells, platelets, 
α2-antiplasmin, and other components to form a stable thrombus 
structure (Chernysh et  al., 2011; Alkarithi et  al., 2021).

A thrombus has a complex structure and composition, and 
notably, it bears numerous targetable receptors for nanocarriers 
that can themselves carry various ligands. By modifying the 
surfaces of nanocarriers with targeting moieties (such as 
antibodies, aptamers, peptides, and cell membrane proteins; 
Li et  al., 2020), they can selectively target various biomarkers 
(P-selectin, Integrin GPIIb/IIIa, Factor XIII, and fibrin) at the 
thrombus site, thus achieving specific thrombus-targeting 
capabilities and enhancing the therapeutic effect due to the 
accumulation of thrombolytic drug at the surface of a clot 
(Karagkiozaki et  al., 2015; Zenych et  al., 2020). As far as the 
modification of the platelet membrane is concerned, the targeting 
mechanism may proceed via the upregulation of GP-Ib-V-IX 
glycoprotein complex and integrin GPIIb/IIIa residing on the 
surface of platelet membrane which in turn promotes the 
adhesion of fibrin and collagen, thus enabling the nanocarrier 
to target thrombi (Doshi et  al., 2012; Chang et  al., 2015).

In addition, the proportion of platelets is higher in the 
case of arterial thrombosis, while venous thrombosis contains 
more red blood cells and a denser fibrin network (Mackman, 
2008; Martinelli et  al., 2010). Consequently, existing strategies 
for thrombus treatment are primarily aimed at platelets and 
fibrin networks. For example, when the nanocarriers are targeted 
to reach the thrombus site, the plasminogen activator that 

FIGURE 1 | Schematic diagram of the two main modification methods in 
thrombus-targeting nanoparticles and their effects in thrombolytic therapy.
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they release can activate the plasminogen near the thrombus 
to become plasmin (Altaf et  al., 2021), and then dissolve the 
cross-linked bonds between fibrin, destroy its network structure, 
and thus dissolve the blood clot (Figure  2; Collen and Lijnen, 
2005; Hassanpour et  al., 2020).

TARGETED CHEMICAL MODIFICATION 
OF NANOCARRIERS AND 
APPLICATIONS

The development of antithrombotic therapy has been a high 
priority for many years (Zhao et  al., 2020a). Owing to the 
rapid progression of nanotechnology, new antithrombotic 
nanotherapeutics have sprung up in recent years. The nanoscale 
characteristics of nanocarriers can introduce unique physical 
and chemical properties, and extend the circulation time of 
drugs in the bloodstream (Wang et  al., 2018a; Zhang et  al., 

2018). Moreover, the long-chain structure of polymer 
macromolecules also facilitates the modification of these platforms 
for targeting capability and enables researchers to design 
nanocarriers and impart them with specific functions in order 
to meet a given requirement (Guo et  al., 2018; Wang et  al., 
2018b; Shakiba et al., 2021). Therefore, the design, modification, 
and application of polymeric nanocarriers for thrombolytic 
therapy have become a significant research focus in recent 
years (He et  al., 2021).

The upregulation of integrin GPIIb/IIIa on the surfaces of 
activated platelets is considered to be  an important sign of 
thrombosis (Bai et  al., 2020). The ligand corresponding to this 
integrin is known to be  cyclic arginine-glycine-aspartic acid 
(cRGD; Barre, 2007; Ye et  al., 2020). Therefore, Huang et  al. 
reported an activated-platelet-sensitive nanocarrier capable of 
inducing selective thrombolysis through targeted delivery and 
controlled release of tPA to blood clot (Huang et  al., 2019). 
The nanothrombolytic system loaded with tPA was based on 

FIGURE 2 | Illustration of the principles of thrombolysis in a fibrin surface and circulating blood environment (Hassanpour et al., 2020). This figure describes the 
catalytic principle of the conversion of plasminogen to plasmin according to the binding method of the plasminogen activator [e.g., tissue-type plasminogen activator 
(tPA), urokinase (UK), and streptokinase (SK)]) Plasminogen specifically binds to the surface of the fibrin blood clot. In direct activation, tPA preferentially attaches to 
plasminogen, resulting in the formation of a ternary complex. On the other hand, in indirect activation, SK cannot directly bind to the plasminogen but induce 
conformational changes of the plasminogen to form a streptokinase-plasminogen complex. Subsequently, these complexes form plasmin through cleavage of the 
fibrin-associated plasminogen. Plasmin formed by direct/indirect activation breaks down fibrin into fibrin degradation products, which eventually dissolves blood 
clots. The thrombolytic process in circulating blood is triggered by non-fibrin-specific or less fibrin-specific plasminogen activators. Plasminogen activators, such as 
the UK and SK, induce plasmin production by cleavage of circulating plasminogen. Subsequently, plasmin degrades fibrinogen factor VIII instead of fibrinogen. 
Plasmin activator inhibitor-1 acts on plasminogen, blocking cleavage into plasmin, and causing blood clot formation. α2-antiplasmin acts only on circulating blood 
and can inhibit thrombolysis by interfering with plasmin binding sites with fibrinogen factor VIII.
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PEGylated liposome, which can provide better in vivo stability. 
The incorporation of cRGD on the surface of liposome is the 
source of activated platelet sensitivity, it has been reported 
that cRGD peptide has high specificity and affinity for integrin 
GPIIb/IIIa on activated platelets (Ye et  al., 2020).

Several studies have demonstrated that cRGD-modified 
nanosystems can effectively induce the selective lysis of fibrin 
and blood clots, thus suggesting that they are promising 
candidates for targeted thrombolytic therapy (Li et  al., 2019; 
Zhang et  al., 2019; Zhong et  al., 2020). However, it is worth 
noting that studies have shown that platelet activation primarily 
occurs during the early stage of thrombosis, and the influence 
of integrin GPIIb/IIIa on platelet aggregation and thrombosis 
also decreases with the progression from the early to the late 
stage of the thrombosis process (Yan et  al., 2000; Zhou et  al., 
2011; Gambino et  al., 2021). In other words, the treatment 
brought by cRGD-modified GPIIb/IIIa-targeting nanocarriers 
primarily targets the early stages of thrombosis. So in practical 
applications, attention should thus be  paid to the specific 
development stage of thrombosis and suit the right medicine 
to the case. In addition to the above systems, an organic 
semiconducting nanoparticle has also been chemically modified 
with cRGD peptides for use as a photoacoustic (PA) contrast 
agent for selectively reducing of early thrombosis (Cui et  al., 
2017), and the addition of the PA signal enhancing molecules 
can achieve specific imaging and lysis of blood clots (Wang 
et  al., 2021).

Injection of rtPA is the standard drug treatment for 
thrombolysis (Hassanpour et  al., 2020). However, due to the 
short half-life of rtPA, it only exhibits limited therapeutic 
efficiency even at high doses, and it brings a higher risk of 
bleeding, resulting in a 6% intracranial hemorrhage rate and 
a 50% chance of subsequent mortality (Yaghi et  al., 2014). 
Therefore, polysaccharide-poly(isobutylcyanoacrylate) 
nanoparticles functionalized with fucoidan and loaded with 
rtPA were designed to accumulate on the surface of a thrombus 
(Juenet et  al., 2018). Low-molecular weight fucoidan has a 
nanomolar affinity for P-selectin, which is expressed by activated 
platelets in thrombus (Bachelet et  al., 2009; Zenych et  al., 
2021). Positively charged aminated dextran was incorporated 
into the polysaccharide shell to promote electrostatic interactions 
(Mukwaya et  al., 2019), thereby mimicking the natural fibrin 
binding sites. The experimental results emphasized the relevance 
of targeting P-selectin for the treatment of thrombosis with 
rtPA for the first time, which is of great significance for the 
subsequent development of nanoparticles with P-selectin as 
the target of thrombosis treatment. But in the actual treatment 
process, it is best to use it in combination with other targets, 
because P-selectin can also be  used as a target in tumor 
treatment (Farokhzad, 2015).

By taking into account of the biological characteristics of 
thrombosis, including the upregulation of H2O2 and the 
abundance of fibrin (Dayal et al., 2013; Andreadou et al., 2021), 
Zhao et al. (2020b) have developed a H2O2-responsive nanocarrier 
for the thrombus-targeting delivery of the antithrombotic agent 
tirofiban (Zhao et  al., 2020b). This nanocarrier was composed 
of a dextran nanocore and a red blood cell (RBC) membrane 

shell, and tirofiban was conjugated to dextran through a H2O2-
cleavable phenylboronic ester linkage. In contrast with the 
previous study on the nanosystem modified by fusion protein 
CREKA and H2O2-scavenging boronate group (Kang et  al., 
2017), the coating of the RBC membrane can enhance the 
circulation ability in vivo, and the functionalized peptide CREKA 
on RBC membrane can provide the desired thrombus-specific 
targeting capability. The ingenuity of the structural design in 
this study is that it can not only use the H2O2 to cleave the 
phenylboronic ester linkage to release thrombolytic drugs, but 
also effectively scavenges H2O2 and protects cells against H2O2-
induced cytotoxicity. It is noteworthy that the platelet membrane 
may be  more suitable for thrombus-targeting than the RBC 
membrane due to its unique thrombus-homing property, but 
tirofiban is likely to compromise the receptor on platelet 
membrane and thus may weaken the targeting capability (Chang 
et  al., 2015). This work can also consider strengthening the 
research on the use of erythrocyte membrane to overcome 
barriers in biological microenvironments (Castro et  al., 2021).

In addition, some nanoparticles with their own therapeutic 
functions have also been developed to utilize the photothermal 
effect as a means to achieve thrombolysis (Burnouf et al., 2019; 
Huang et  al., 2020; Yuan et  al., 2021). In order to avoid side-
effects, such as hemorrhagic risk, that are generally associated 
with thrombolytic drugs, near-infrared light-mediated 
photothermal thrombolysis has been developed as a new treatment 
for thrombus (Ghosh and Pal, 2007; Singh et al., 2016). Following 
the initial work by Singh et  al. (2016) and Chuang et  al. (Mi 
et al., 2017; Satapathy et al., 2018), a new thrombolytic therapy 
utilizing photothermal decomposition of fibrin clots was explored 
by using dual-targeting glycol chitosan/heparin-modified 
polypyrrole nanoparticles to enhance targeted delivery and 
thrombolytic effect (Lu et  al., 2021). Among them, glycol 
chitosan showed specific self-adaptive targeting capabilities in 
the acidic microenvironment of pathologically inflamed tissues 
at the thrombus (Lee et  al., 2014), and heparin had potential 
biological affinity toward P-selectin that is highly expressed at 
the thrombus (Ludwig et  al., 2004; Schwarz et  al., 2020) and 
finally achieved high-efficiency thrombolysis by leveraging the 
photothermal effect exhibited by polypyrrole. In contrast with 
traditional thrombolytic therapy, this novel approach used 
external near-infrared light to cooperate with the nanoparticles 
delivered into the body to achieve thrombotic therapy and has 
promising prospects in the field of thrombolytic therapy.

TARGETED NATURAL CELL MEMBRANE 
MODIFICATION OF NANOCARRIERS 
AND APPLICATIONS

Although great progress has been made with chemically modified 
polymeric nanocarriers with regard to targeted thrombolytic 
therapy, simple chemical molecular modification may be  easily 
affected by the physiological environment that is encountered 
during the blood circulation process, thus resulting in inactivation 
of targeting molecules, agglomeration and adhesion of nanocarriers, 
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and other issues. To address these issues, biologically inspired 
polymeric nanocarriers which were modified by cell membrane 
have been developed. This modification strategy serves to 
camouflage the nanocarriers and provides an extended circulation 
time, while also imparting the nanocarriers with the biological 
functions of natural cell membranes, so as to achieve more 
precise targeting capabilities (Xuan et al., 2019; Guan et al., 2021).

Inspired by the innate roles of platelets in hemostasis and 
pathological thrombus (Falati et  al., 2002; Lippi et  al., 2011), 
platelet membrane-camouflaged polymeric nanoparticles 
(nanoplatelets) have been developed to enable the targeted 
delivery of thrombolytic drug to local thrombus sites (Hu et al., 
2015). In a recent study, Xu et  al. (2020) bound a platelet 
membrane to the surface of poly(lactic-co-glycolic acid; PLGA) 
polymeric inner cores, and rtPA was then chemically conjugated 
to the activated sulfhydryl groups residing on the external 
surface of the platelet membrane to form PNP-PA (Xu et  al., 
2020). It was found that PNP-PA possesses the major membrane 
adhesion-associated proteins, which can be  used to achieve 
targeted thrombolysis. In addition, researchers also determined 
the two most effective receptors on activated platelets for PNP-PA 
recruitment, namely, GPIIb/IIIa and P-selectin mentioned above. 
Furthermore, the analysis of in vivo coagulation indicators in 
different thrombosis models suggested that the nanoplatelets 
exhibit a low risk of bleeding complications. Therefore, this 
nanoplatelet strategy offers an integrated solution to address 
the drawbacks of clinically used thrombolytic drugs and has 
great potential to refine the current state of thrombosis treatment.

Using a conceptually similar strategy, Wang et  al. (2020) 
developed platelet membrane-coated PLGA cores loading 
lumbrokinase as nanoplatelets (PNPs/LBK) to achieve effective 
thrombolysis with reduced hemorrhagic risk (Wang et al., 2020). 
Through platelet membrane coating, the circulation time of 
PNPs is as long as that of RBC membrane-coated nanoparticles. 
After the PNPs were anchored into the thrombus site through 
heteromultivalent ligand-mediated binding to active platelet 
integrin GPIIb/IIIa and P-selectin, the thrombolytic payload 
was released due to vesicle destabilization triggered by clot-
relevant enzyme phospholipase-A2 (Pawlowski et  al., 2017). 
Importantly, hemorrhagic tests reveal that the administration 
of free LBK leads to a significant prolongation of tail bleeding 
time, while administration of PNPs/LBK has little effect on 
the bleeding time. In addition, it is also a good choice to 
increase the function of responsive drug release on nanoplatelets, 
such as the use of hydrogen peroxide-responsive platelet 
membrane-coated nanoparticles for thrombus therapy (Zhao 
et  al., 2021). These studies indicated that the nanoplatelets 
provide a promising thrombotherapeutic agent, which can 
effectively target the thrombus site, prolong the internal 
circulation time, and greatly reduce the hemorrhagic side-effects.

For traditional plasminogen activators, in addition to the 
hemorrhagic side-effects, there is also the risk of damaging the 
blood–brain barrier (BBB) and causing neurotoxic effects during 
ischemic stroke treatment (Su et  al., 2008; Niego et  al., 2012). 
In order to obtain the synergistic therapeutic effects provided 
by thrombolytics and neuroprotectants, a more complex dual-
modified nanoplatelet (tP-NP-rtPA/ZL006e) has been developed, 

which was composed of a neuroprotectant-loaded dextran derivative 
core and a platelet membrane shell that was conjugated with 
thrombin-cleavable Tat-peptide-coupled rtPA (Xu et  al., 2019). 
This dual-modified nanoplatelet can be used to sequentially deliver 
rtPA and the neuroprotectant (ZL006e) in a site-specific manner. 
After reaching the thrombus site through platelet membrane 
targeting, the release of rtPA was triggered by the upregulated 
thrombin, and the Tat peptide exposed in situ enhanced the 
penetration of nanoplatelet across the BBB into the ischemic 
brain for the site-specific delivery of ZL006e. In vitro and in vivo 
evaluation showed that tP-NP-rtPA/ZL006e could significantly 
improve the anti-ischemic stroke efficacy in rat models, enhance 
the neuroprotective effect. It would be  better if this study could 
be  combined with reducing hemorrhagic function.

In the future, the above-mentioned modification method of 
nanoplatelets can be used for reference, by pre-processing platelet 
cells to over-express certain proteins on the platelet membrane, 
and then transfer the platelet membrane to the surface of 
polymeric nanoparticle to obtain more functionalized nanosystems.

CONCLUSION

With the further study of thrombosis mechanisms and the 
continuous development of bio-nanotechnology, strategies for 
thrombus treatment have been constantly improved. Polymeric 
nanocarrier-based delivery systems have been developed to 
address a series of challenges that are still encountered in 
thrombolytic drug therapy, and the application of novel 
biomimetic cell membrane-modified nanocarriers in thrombolytic 
therapy has also become the focus of current research.

Many factors should be considered with regard to the design 
of nanocarrier-based drug delivery systems, such as the 
collocation and encapsulation between thrombolytic drugs and 
polymeric nanocarriers, the specific targeting function and 
responsive release function of the nanosystem, as well as the 
biocompatibility and biosafety. Utilizing the modifiability of 
polymer nanoparticles, a variety of targeting molecules (cRGD 
and heparin, etc.) can be  modified simultaneously on polymer 
nanoparticles, while targeting integrin, P-selectin, and fibrin 
to improve the targeting accuracy of thrombolytic drugs. 
Moreover, the drug utilization and therapeutic effect can 
be  improved by various responsive drug release modifications, 
such as shear-stress response modification on the surface of 
polymer nanoparticles. In addition, some corresponding imaging 
diagnosis and other functions can also be  considered.

Unlike most tumors, thrombus sites are located in the 
bloodstream, so the thrombolytic agent can more easily reach 
the pathological target via the circulatory system without crossing 
layers of barriers. Consequently, it is more necessary for the 
antithrombotic nanosystems to have stronger targeting and 
adhesion characteristics, be  able to target and bind into the 
thrombus site in the bloodstream, and achieve deep penetration.

In addition, there are still many areas that can be  improved 
in order to advance nanocarrier-based thrombus treatment 
technology from the laboratory to clinical practice. Since thrombosis 
occurs at different locations and at varying development levels 

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Guan and Dou Thrombus-Targeting Nanocarriers and Thrombolytic Therapy

Frontiers in Physiology | www.frontiersin.org 6 November 2021 | Volume 12 | Article 763085

among different patients, it is possible to explore the utilization 
of fluorescent imaging, photoacoustic imaging and other diagnostic 
methods to determine the thrombosis development stage, and 
carry out corresponding personalized treatment, realize the 
integration of diagnosis, and treatment in the same nanosystem. 
If a platelet membrane-modified nanocarrier system is used, the 
patient’s own platelets can be  used as the membrane source to 
achieve individualized treatment. Moreover, leveraging the facile 
design of biomimetic polymer nanosystems to strengthen the 
synergetic treatment of multiple therapies will help to combine 
the advantages of various thrombolytic strategies, enhance their 
active targeting capabilities, and reduce the undesirable side-effects, 
such as hemorrhagic risk and neurotoxicity of thrombolytic therapy.

In conclusion, although extensive research has been conducted 
in recent decades, the translation of thrombolytic therapy from 
the experimental research stage to clinical applications still 
faces many challenges. With the continuous optimization of 
nanomaterials and the rapid advancement of nanotechnology, 
more innovative and efficient biomimetic polymeric nanocarrier-
based systems can be  anticipated, which will provide versatile 
platforms and opportunities for significant advances in 
antithrombotic therapy.
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