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Abstract

Background

BET proteins (BRD2, BRD3, BRDT and BRD4) belong to the family of bromodomain con-

taining proteins, which form a class of transcriptional co-regulators. BET proteins bind to

acetylated lysine residues in the histones of nucleosomal chromatin and function either as

co-activators or co-repressors of gene expression. An imbalance between HAT and HDAC

activities resulting in hyperacetylation of histones has been identified in COPD. We hypothe-

sized that pan-BET inhibitor (JQ1) treatment of BET protein interactions with hyperacety-

lated sites in the chromatin will regulate excessive activation of pro-inflammatory genes in

key inflammatory drivers of alveolar macrophages (AM) in COPD.

Methods and findings

Transcriptome analysis of AM from COPD patients indicated up-regulation of macrophage

M1 type genes upon LPS stimulation. Pan-BET inhibitor JQ1 treatment attenuated expres-

sion of multiple genes, including pro-inflammatory cytokines and regulators of innate and

adaptive immune cells. We demonstrated for the first time that JQ1 differentially modulated

LPS-induced cytokine release from AM or peripheral blood mononuclear cells (PBMC) of

COPD patients compared to PBMC of healthy controls. Using the BET regulated gene sig-

nature, we identified a subset of COPD patients, which we propose to benefit from BET

inhibition.

Conclusions

This work demonstrates that the effects of pan-BET inhibition through JQ1 treatment of

inflammatory cells differs between COPD patients and healthy controls, and the expression

of BET protein regulated genes is altered in COPD. These findings provide evidence of his-

tone hyperacetylation as a mechanism driving chronic inflammatory changes in COPD.

PLOS ONE | DOI:10.1371/journal.pone.0173115 March 1, 2017 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Malhotra R, Kurian N, Zhou X-H, Jiang F,

Monkley S, DeMicco A, et al. (2017) Altered

regulation and expression of genes by BET family

of proteins in COPD patients. PLoS ONE 12(3):

e0173115. doi:10.1371/journal.pone.0173115

Editor: Chunhua Song, Pennsylvania State

University, UNITED STATES

Received: August 31, 2016

Accepted: February 15, 2017

Published: March 1, 2017

Copyright: © 2017 Malhotra et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper, its Supporting Information files

and in addition, the primary NGS data files are

available from NCBI’s Gene Expression Omnibus,

GEO Series accession number GSE92532 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE92532).

Funding: All of the authors with the exception of
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Introduction

COPD is a complex multifactorial disease largely associated with chronic inflammatory

responses to environmental triggers such as cigarette smoke or biomass fuel particles. These

irritants can drive epigenetic changes in the chromatin of immune cells, which then contribute

to the dysregulation of the inflammatory responses in the human lung [1–3]. Such post-trans-

lational modifications to histone ends define the accessibility of the chromatin and with that

recruitment of different coactivators or corepressors. Histone acetylation is regulated by the

levels and activities of histone acetyl transferases and histone deacetylases (HDAC), and sim-

plistically, chromatin is transcriptionally active when lysine residues on histones H3 and H4

are acetylated. Increased acetylation of histones is reported in lung biopsies obtained from

COPD patients concomitant with reduced HDAC activity as measured in the peripheral

lung tissue, alveolar macrophages and in bronchial biopsy specimens [4]. In agreement with

reduced HDAC expression and activity, it has been shown that the acetylation of histones

H2A, H2B, H3 and H4 is increased in the lungs and alveolar macrophages of COPD patients

[5]. Accordingly, in a subpopulation of COPD patients, an imbalance between HAT and

HDAC activities results in hyperacetylation of histones and activation of transcriptional factors

that could lead to chronic inflammation associated with COPD [4].

The covalent modifications of chromatin and DNA are recognized by structurally diverse

proteins that contain one or more effector modules and are termed as readers. A family of evo-

lutionarily conserved protein containing interaction modules that recognize acetylation sites

on chromatin was identified in the early 1990s in the brahma gene from Drosophila melanoga-
ster [6]. The acetylation binding module is termed bromodomain and to date the human pro-

teome encodes>200 proteins containing bromodomains. The BET (bromodomain and extra-

terminal) proteins (BRD2, BRD3, BRDT and BRD4) belong to this family of bromodomain

containing proteins (with BRDT protein expression being restricted to testis). BET proteins

bind to acetylated lysine residues in the histones of nucleosomal chromatin and function either

as co-activators or co-repressors of gene expression.

Yang et al. [7] reported that chronic cigarette smoke (CS) induces epigenetic/chromatin

modifications resulting in the abnormal and sustained lung inflammatory response that occurs

in smokers and in patients with COPD. In a murine model they showed that levels of KC,

MCP-1, IL-6, and GM-CSF were significantly increased in mouse lung homogenate at both 3

days and 8 weeks of CS exposure. Furthermore, they demonstrated using ChIP sequencing in

CS exposed mouse lung that pro-inflammatory gene expression was associated with increased

phosphorylation/acetylation of specific histone H3 (lys9/ser10) and histone H4 (lys12) on pro-

inflammatory gene promoters. Nicodeme et al. [8] reported the anti-inflammatory potential of

the synthetic compound I-BET, an inhibitor of bromodomain-containing BET proteins to

acetylated histones, which disrupts the formation of the chromatin complexes essential for the

LPS-induced expression of inflammatory cytokines in a temporal manner (early middle and

late response). These findings were further supported by Chen et al. [5]. They reported that

cigarette smoke induced down-modulation of HDAC1 expression and increased H3K9 acety-

lation. These modifications were associated with altered expression of pro-inflammatory medi-

ators in CS-induced rat lungs and in macrophages.

These reported observations in preclinical models and increase in histone acetylation in

alveolar macrophages from COPD patients suggest a role for epigenetic pathways in chronic

lung inflammation in COPD patients. To understand a role for BET family of proteins in

regulation of macrophage function, we analyzed the effect of the pan-BET inhibitor JQ1, on

LPS-induced gene expression in alveolar macrophages from COPD patients. We propose that

JQ1 treatment modulates the interactions of BET proteins with hyperacetylated sites in the

BET expression in COPD
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chromatin, which leads to down-regulation of the excessive activation of pro-inflammatory

genes in a subset of COPD patients who show increased expression of BET regulated genes.

Materials and methods

Isolation and analysis of human alveolar macrophages and peripheral

blood mononuclear cells

Written informed consent was obtained from an exploratory study in patients undergoing

lung transplantation or resection surgery in Sahlgrenska University Hospital, Gothenburg

according to protocols approved by the local ethics committee in Gothenburg (Dnr: 657–12).

None of the transplant donors were from a vulnerable population and all donors or next of kin

provided written informed consent that was freely given. Human alveolar macrophages were

derived from these tissue lung resection or transplant tissue by flushing tissue with sterile Ca2

+ Mg2+ -free PBS (Life Technologies) using a 19 gauge needle (BD). For functional assays,

cells were seeded at a density of 200,000 cells per well in a 96-well tissue-culture grade flat bot-

tom plate (Costar). Following plating, non-adherent cells were removed by copious washing

with serum-free RPMI (Life Technologies) after an hour’s rest. After the final wash, the cells

were incubated overnight in XVivo10 media (Lonza) supplemented with 4mM L-glutamine

(Sigma) and 1% penicillin-streptomycin (Sigma).

PBMC from COPD patients or normal control subjects were isolated by density gradient

separation using Lymphoprep (StemCell Technologies) using standard methodology. Isolated

PBMC were seeded at a density of 200,000 cells per well in a 96-well tissue-culture grade U bot-

tom plate (Costar) in XVivo10 media (Lonza) supplemented with 4mM L-glutamine (Sigma)

and 1% penicillin-streptomycin (Sigma). The alveolar macrophages for these cytokine secretion

assays were derived from lung resection from 10 patients with cancer and/or COPD patients.

AM or PBMC were incubated with a range of concentrations of the pan-BET inhibitor JQ1 for

1h at 37˚C and subsequently challenged with 100ng/ml or 10ng/ml respectively of LPS from E.

coli (serotype 026:B6, Sigma) for 6h or 24 h at 37˚C in CO2 incubator. DMSO-treated cells were

used as a vehicle control. Cytokine release was analyzed by standard ELISA techniques (MSD).

The viability of the AM in the presence of JQ1 was tested with WST-1 reagent (Roche). The

WST-1 reagent was diluted inXVivo10 media according to the manufacturer’s instructions.

The cell plate was then incubated at 37C in a 5% CO2 incubator and absorbance read after 60-

90min No reduction in viability was seen with JQ1 treatment (data shown in S1 Appendix:

Effect of JQ1 on viability of AM isolated from COPD patients).

Total RNA preparation

Alveolar macrophages isolated from transplant tissue were challenged with LPS in the presence

or absence of with JQ1 (10μM) as described above was used to prepare total RNA using

RNeasy Mini Kit (Qiagen) according to manufacturer’s protocol. RNA integrity and concen-

tration was assessed on the Bioanalyzer using the RNA 6000 Nano Kit (Agilent technologies).

mRNA expression analysis–Quantitative RT-PCR

RNA was isolated from alveolar macrophages using RNeasy kits (Qiagen) according to manu-

facturer’s instructions. cDNA was generated using the High Capacity RNA to cDNA kit

(Applied Biosystems) according to manufacturer instructions. Taqman qRT-PCR analysis

was carried out using Taqman Fast Advanced mastermix (Applied Biosystems) and Taqman

probes specific to cDNAs of interest. Analysis was performed using the QuantStudio 7 Flex

system. Relative expression is calculated as 2^-(Ctexperimental−CTSDHA). Differential expression

BET expression in COPD
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is calculated using the DMSO +LPS and DMSO unstimulated controls to define maximum

and minimum values.

mRNA expression analysis—Next generation sequencing

Next generation sequencing (NGS) was performed on alveolar macrophages obtained from

lung transplantation in COPD patients with no signs of cancer. The AM poly-mRNA fraction

was purified from total RNA using the TruSeq Stranded mRNA Sample Preparation kit (Illu-

mina). Magnetic beads with attached poly-T oligonucleotides and library preparation was per-

formed by fragmenting mRNA molecules before copied into first strand cDNA using reverse

transcriptase and random primers. Products were purified and enriched by PCR to create the

final library. Quality controls (QC) were carried out at different library preparation steps using

Qubit 3.0 (Invitrogen) in order to validate library quality and to determine input RNA for

sequencing (15nM). Resulting library fragments were analyzed using BioAnalyzer DNA 1000

(Agilent Technologies). To facilitate cluster generation, the libraries were barcoded using

adaptamers provided in the kit, according to provided protocol.

The prepared barcoded mRNA libraries were sequenced using the Illumina NextSeq 500

platform (75 bp single reads), at a sequencing depth of 10M reads in order to obtain an accu-

rate, high-resolution view of the transcriptome.

Bcbio version 0.8.9 [9] was used for quantifying the data. STAR [10] was used within bcbio

to align the data against the human hg19 assembly, yielding between 8M and 13M alignments.

Gene counts were quantified using the feature Counts [11] within bcbio. CuffLinks [12] 2.2.1

was used in bcbio to quantify gene level FPKM levels. Variables with no FPKM counts in

any sample were omitted from the dataset. The remaining data underwent upper quartile

normalisation.

AM transcription data analysis

DESeq2 [13] was used to identify differentially expressed genes. Six AM group comparisons

were made: (i) Untreated cells vs. LPS treated for 6 hours; (ii) Untreated cells vs. LPS treated

for 24 hours; (iii) LPS treated vs. LPS and JQ1 treated for 6 hours; (iv) LPS treated vs. LPS and

JQ1 treated for 24 hours; (v) Untreated cells vs. JQ1 treated for 6 hours; and (vi) Untreated

cells vs. JQ1 treated for 24 hours. Only protein coding genes with base mean of greater than 5

were considered. All comparisons were paired based on donor identity. Genes were classified

as upregulated by LPS if they exhibited log2 fold change greater than 2 for untreated vs. LPS

treated (at 6 or 24 hours). Genes were classified as JQ1 suppressed in the presence of LPS if

they exhibited log2 fold change less than -2 for LPS treated vs. LPS and JQ1 treated but were

excluded if they also exhibited log2 fold change less than -2 for untreated vs. JQ1 treated (at

either 6 or 24 hours). In all cases the false discovery rate (FDR) adjusted p-value was� 0.05.

COPD expression data

To address the expression of the JQ1 modulated genes in a wider COPD population, we inves-

tigated the published gene expression data available from whole blood and sputum samples

from the ECLIPSE clinical study [14]. CEL files were downloaded from Gene Expression

Omnibus (GSE71220; whole blood and GSE22148, sputum) and analysed using ArrayStudio

version 9 (OmicSoft,Cary, NC). The data was processed with RMA: Robust Multiarray Aver-

age [15] using a cfd-file from BrainArray [16] version 21 (hugene11st_Hs_ENSG.cdf for

GSE71220 and HGU133Plus2_Hs_ENSG.cdf for GSE22148).

SVA [17] was used to identify 2 surrogate variables using the presence of statins as a vari-

able of interest for the full model and including sex and age as adjustment variables in the null

BET expression in COPD
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model. One significant surrogate variable was removed using the Remove Batch Effect-func-

tion in ArrayStudio. One sample was identified as an outlier (GSM1830407_S600) and was

removed from further analysis.

To enable a split of responders vs non-responders, K-means clustering [18,19] was used to

separate with whole blood COPD and Control subjects (only non-statin users) into two clus-

ters. Thereafter hierarchical clustering (using correlation as the distance metrics) was used to

identify a group of genes that could separate the two identified clusters. Data was normalised

using robust centre scale (the row median is subtracted from each individual value and then

scaled by dividing by the row median absolute deviation) for heat map generation.

GSVA: Gene set variant analysis [20] was used to test the enrichment of the gene sets within

the COPD or control groups in the whole blood and sputum datasets. GSVA enrichment

scores (ES) were generated using maximum difference option for both the 10 gene signature

and the 83 of the 87 Group2 genes that mapped to the probes in the ECLIPSE whole blood

dataset. The ES for the Control and COPD groups were compared using t-test to generate p-

values for the different gene sets.

Results

Inflammatory genes regulated in alveolar macrophages following

treatment with the pan-BET inhibitor JQ1

We performed a whole transcriptome analysis of LPS stimulated alveolar macrophages from

six COPD patients using RNA-Seq to analyze the differential gene expression in response to

treatment with the pan-BET inhibitor JQ1.

Differentially expressed genes were identified for four AM group comparisons made: (i)

Untreated cells vs. LPS treated for 6 hours; (ii) Untreated cells vs. LPS treated for 24 hours; (iii)

LPS treated vs. LPS and JQ1 treated for 6 hours; and (iv) LPS treated vs. LPS and JQ1 treated

for 24 hours (Fig 1A). Three key groups of genes were identified (Fig 1A and 1B); Group 1

Fig 1. Categorisation of genes. (A) Venn diagram showing the four comparisons and the overlaps. Group 1 (red) represents the 212 genes induced by

LPS at 6 hours. Group 2 (green) represents the 87 genes induced by LPS at 6 hours and inhibited following pan-BET inhibitor JQ1 treatment at 6 hours.

Group 3 (blue) represents the 23 genes induced by LPS at both 6 and 24 hours and inhibited following JQ1 treatment at only 24 hours. (B) A table

showing the identity (Gene Symbols) of genes in the three groups 1, 2 and 3.

doi:10.1371/journal.pone.0173115.g001

BET expression in COPD
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contains 212 genes induced by LPS at 6 hours; Group 2 contains 87 genes induced by LPS at 6

hours and inhibited following JQ1 treatment at 6 hours (i.e. early inhibition); and Group 3

consists of 23 genes sustainably induced by LPS (i.e. at both 6 hours and 24 hours) and inhib-

ited following JQ1 treatment at only 24 hours (i.e. late inhibition) Log2 fold changes� 2 or�

-2, FDR p-value� 0.05) was applied. See the supporting information for the complete list of

differentially expressed genes on LPS and JQ1 treatment described in Fig 1A (S2 Appendix

iBET_AM_gene_lists) and the combined list of all differentially expressed genes on treatment

with LPS and JQ1 (S3 Appendix: iBET2_combined_DEG_all). The data discussed in this pub-

lication have been deposited in NCBI’s Gene Expression Omnibus [21] and are accessible

through GEO Series accession number GSE92532 (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE92532).

We measured the RNA expression level of BET genes (BRD2, BRD3, BRD4, and the known

testes specific gene BRDT) in alveolar macrophages from six COPD patients and in whole

blood from the ECLIPSE COPD patients (S4 Appendix: Expression of BET genes in COPD

donors from the ECLIPSE studies). We included the testes specific BRDT gene for complete-

ness. We observed no significant changes in expression (being Log2 FC>2 at pval� 0.05) for

any BET protein in either study. Additionally we see no significant expression of the testes spe-

cific BRDT gene. However BRD2 was the prominent gene expressed in alveolar macrophages

and is likely to be the main driver of the LPS induced gene expression in alveolar macrophages.

We did not observed reduced cell viability in the presence of 10 μM JQ1 (S1 Appendix: Effect

of JQ1 on viability of AM isolated from COPD patients).

We observed that LPS treatment of alveolar macrophages induced up-regulation of detected

M1 phenotype related genes (ACOD1, APOL3, IL15RA, CCL4, CCL5, CCL20, CD80, CFB,

CXCL1, CXCL10, CXCL11, GBP1, GBP2, GBP4, GBP5, ICAM1, IL1B, IL6, IL12B, IL18, IL23,

IL32, IRF1, IRF7, PDE4B, SOCS3,TNF, TNFAIP6, TNFSF10) over detected M2 phenotype

related genes (IL10, IL1RN, CCL17, CCL22, CCL23, CCL24) across both 6 and 24 hours (Fig 2)

Fig 2. M1/M2 polarisation of LPS stimulated genes. Volcano plot of M1 (red) and M2 (blue) genes at 6 hours (A) and 24 hours (B) after LPS

induction. Differential expression of unstimulated vs. LPS stimulated cells was tested using DESeq2 and the Log2 fold change (x-axis) is plotted

against the–Log10 adjusted p-values (y-axis). Genes with LFC > 1.5 are labelled by name. The vertical grey lines denotes no LPS induced

expression change. The horizontal grey lines shows the 0.05 adjusted p-value cut-off.

doi:10.1371/journal.pone.0173115.g002

BET expression in COPD
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based on previously reported M1 and M2 polarization patterns in human alveolar macrophages

[22]. We compared the genes upregulated in our assays to those reported by Reynier et al, 2012

[23] in LPS induced human AMs, and found them to highly correlate. We observed a strong

correlation between Reynier et al. and our study with respect to both the general pattern of

genes induced by LPS treatment (84%), and specific genes associated with the M1 phenotype

(92%).

Fig 3A shows a heat map of gene expression across all six donors with technical replicates

for the group (2) of 87 genes related to early response to LPS and inhibition following pan-

BET inhibitor JQ1 treatment. Fig 3B shows a plot of Log2 fold changes upon LPS induction at

6 hours against the JQ1 treatment suppression of LPS induction at 6 hours. These early respon-

sive genes are predominantly associated with lymphocyte activation, differentiation and prolif-

eration: for example CD80, EBI3, IL12-beta, IL-27, GM-CSF (CSF2), and OX40 (TNFRSF4)

[24–25]. This figure demonstrates that JQ1 treatment correlates well with LPS induction for

this gene set.

Some genes (group 3) were not significantly down-regulated by the pan-BET inhibitor JQ1

at 6h, but their expression levels were reduced to the background level at 24h in the presence

of JQ1 (Fig 4), and include genes involved in the inflammatory response and chemotaxis;

exemplified here by chemokine genes CCL20, CCL3L3, CCL4L2, CXCL1, CXCL8, interleukin

genes IL1B, IL6, IL7R.

Fig 3. Expression of Group 2 genes at 6 hours. A: Heat map of the 87 Group 2 genes induced by LPS and suppressed following JQ1 treatment at 6

hours for each of the 6 donors. Data (TPM) was scaled and centered to a mean of 0 and standard deviation of 1 for each donor. Red color is high

expression; blue color is low expression. Arrows and boxes denote the 10 genes identified as a gene signature in the ECLIPSE WB samples (discussed

later). B: Plot of Log2 fold changes upon LPS induction (y-axis) and JQ1 treatment suppression of LPS induction (x-axis) at 6 hours. Blank (white)

column (donor 1, JQ1+LPS); no sample.

doi:10.1371/journal.pone.0173115.g003

BET expression in COPD
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Inhibition of IL-6 secretion following JQ1 treatment in alveolar

macrophages from COPD patients

As shown above, the up-regulation of GM-CSF (CSF2) and IL6 gene expressions were inhib-

ited following JQ1 treatment at 6 and 24 hours, respectively. Thus, we decided to use GM-CSF

and IL-6 as the read-outs when comparing the effect of JQ1 treatment on LPS stimulated

peripheral blood mononuclear cells and alveolar macrophages derived from COPD patients

and normal controls. First, we found enhanced GM-CSF and IL-6 secretion as response to LPS

in PBMCs from COPD patients when compared to normal controls (Fig 5A and 5B). JQ1 is a

potent pan-BET inhibitor with a cellular potency EC50 value of 150nM. We observed differen-

tial inhibition potencies between GM-CSF and IL-6 protein production following JQ1 treat-

ment (Fig 5C and 5D). We demonstrated effective inhibition of GM-CSF response following

JQ1 treatment in PBMCs from both patients and normal controls as well as in AM from

COPD patients with an EC50 value for the inhibition of 150nM, which indicates that GM-CSF

secretion is regulated by BET proteins. However, the IL-6 response was effectively inhibited

Fig 4. Expression profile boxplot of the 23 late inhibition genes (Group 3). Expression levels are shown in the form of transcripts per million

(TPM). Each donor is represented as a different color in duplicate. Treatment groups are represented at the bottom of the plots with t = time (6;

6hours, 24; 24 hours. LPS and JQ1 indicates if these are present (+) or absent (-). Gene symbols are shown at the top of each plot.

doi:10.1371/journal.pone.0173115.g004

BET expression in COPD
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following JQ1 treatment only in AM and PBMCs from COPD patients with approximately

50% inhibition and 25% inhibition at 1μM in alveolar macrophages and PBMC from COPD

patients, respectively, whereas no inhibition was seen in PMBC from normal controls (Fig

5D). Thus, BET mediated regulation of IL-6 response was only evident in COPD samples sug-

gesting a difference in the histone acetylation between COPD derived lung and peripheral

inflammatory cells vs peripheral blood inflammatory cells from healthy individuals. To our

knowledge, this is the first demonstration that treatment with the pan-BET inhibitor JQ1 dif-

ferentially regulates LPS-induced cytokine release from AM or peripheral blood mononuclear

cells (PBMC) of COPD patients compared to healthy controls. Belinka et al. [26] reported JQ1

treatment mediated modulation of gene expression in mouse bone marrow derived macro-

phages. Belinka and co-workers reported the role of individual BET proteins and pan-BET

JQ1 treatment in LPS mediated cytokine release in rodent models and rodent cell lines, but in

human PBMC or alveolar macrophages we observed a different profile.

Analysis of BET regulated genes in COPD patients

To address the expression of pan-BET inhibitor JQ1 modulated genes in a wider COPD popu-

lation, we investigated the published gene expression data available from whole blood and spu-

tum samples from the ECLIPSE clinical study [14]. ECLIPSE is a longitudinal study conducted

by GSK in COPD subjects and a small number of smoking control subjects that were followed

Fig 5. Effect of pan-BET inhibitor JQ1 treatment on COPD patient derived lung resident alveolar macrophages and Peripheral Blood

Mononuclear Cells (PBMC). LPS-induced secretion of IL-6 (A) and GM-CSF (B) from from COPD patients and normal controls. PBMC from COPD

patients were more sensitive to LPS stimulation producing higher levels of cytokines. JQ1 (AZ13632807) treatment lead to a more potent inhibition of

LPS-induced IL-6 secretion in alveolar macrophages from COPD patients than observed in PBMC (D), whereas inhibition of GM-CSF was identical in

the three cellular systems (C).

doi:10.1371/journal.pone.0173115.g005

BET expression in COPD
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regularly for 3 years, including 3 chest CT scans and expression of approximately 12000 genes

in sputum and PBMC is reported in the databases.

We investigated a subset from this study consisting of 405 COPD patients and 44 normal

control patients. We saw no significant expression of BRDT or BTD3, and no significant

change in expression of BRD2 and BRD4 in the ECLIPSE samples (S4 Appendix: Expression

of BET genes in COPD donors from the ECLIPSE studies).

We applied the K-means clustering approach [18, 19] to investigate whether the early (6h)

JQ1 treatment set of 87 genes contained a subset of genes that are highly variable across the

COPD population. We discovered 83 of the 87 early JQ1 treatment genes are present in the

ECLIPSE study. Fig 6 shows gene expression heat maps revealing two distinct clustered groups

in both COPD and control populations (cluster 1 and 2). A 10 gene subset of the 83 genes

show a strong association with cluster 2 of the ECLIPSE COPD samples (Fig 6A). This ap-

proach was then applied to the normal control group of 44 samples, and the same set of 10

genes showed a strong association with a smaller cluster in the ECLIPSE controls (Fig 6B).

Hereafter this subset of 10 genes (CMPK2, EPSTI1, IFI44, IFI44L, IFIT1, IFIT3, MX1, OAS2,

RSAD2 and XAF1) will be described as the “signature genes”.

To further validate the genes modulated following JQ1 treatment in alveolar macrophages,

we analyzed their gene expression by TAQMAN in alveolar macrophages from three COPD

patients. In these experiments AM derived from COPD patients were stimulated with LPS in

the presence or absence of JQ1 for 6hrs as described above and change in expression of 8 out

of 10 signature genes (XAF1 and OAS2 were not analyzed for technical reasons) and 4 cyto-

kines was analyzed by RT-PCR (Fig 7). Expression of all the 12 genes was increased with LPS

treatment, and the expression of signature genes were effectively decreased to untreated levels

in the presence of JQ1, whereas expression of pro-inflammatory genes remained unchanged

or only modestly reduced with JQ1 treatment. These results confirms the specific effect of JQ1

treatment on the inhibition of signature genes.

To further validate and better understand the significance of the 10 gene signature we per-

formed gene set variation analysis (GSVA) in the ECLIPSE WB COPD patients. Fig 8A shows

plots of gene set enrichment scores generated using either the complete set of early response

Fig 6. ECLIPSE COPD and normal controls K-means clustering using the early JQ1 treatment gene set. Gene expression heat maps of (A):

ECLIPSE COPD samples and (B): ECLIPSE normal control samples following k-means clustering. Membership of samples to one of the two clusters is

shown below each heat map (purple; cluster 1, orange; cluster 2). Data in each figure are normalized by subtracting the row median then scaling by the row

median absolute deviation. Red color denotes high expression; blue color denotes low expression. 83 of the 87 early JQ1 treatment genes are present in the

ECLIPSE study. The box highlights the 10 gene “signature” that shows strong association with cluster 2 of the ECLIPSE COPD samples and these are

listed to the right. This same set of genes are also highlighted (box) on the ECLIPSE control heat map.

doi:10.1371/journal.pone.0173115.g006
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genes (group 2 in Fig 1) or the 10 gene signature (defined in Fig 6). This demonstrates a signif-

icant enrichment (p = 0.0024) in COPD WB only for the signature genes. Fig 8 also shows the

distribution of the 10 gene signature across samples split into 2 groups based on enrichment

score for either the COPD samples (Fig 8B) or Control samples (Fig 8C). The clustering reveals

a distinct separation of the signature in disease over normal populations, with 48% of COPD

patients being enriched for the signature, compared with 18% control patients.

We also observed that COPD patients from ECLIPSE show a similar enrichment for the 10

gene signature in sputum samples (Fig 9). The study includes no sputum samples from healthy

controls and the analysis platforms for sputum and whole blood are different, so a comparison

to healthy controls cannot be made. However, the differential expression level of BET protein

regulated genes (following JQ1 treatment) in blood and sputum could define a segment of

COPD patients with aberrant regulation of the gene set associated with histone hyperacetyla-

tion, which could be used as a signature for the patient stratification in intervention studies

targeting BET proteins.

Discussion

To increase our understanding of the genes regulated by the pan-BET inhibitor JQ1 and thus

associated with histone hyperacetylation in COPD lung derived inflammatory cells, we

Fig 7. Quantitative PCR validation of selected genes identified by NGS. Effect of JQ1 treatment on LPS induced expression of signature genes

and cytokine control genes in AM from COPD patients. JQ1 treatment lead to inhibited expression of 8 signature genes (CMPK2, EPSTI1, IFI44,

IFI44L, IFIT1, IFIT3, MX1 and RSAD2) but had a partial effect on cytokines (IL1a, IL1b, IL6 and IL8) not inhibited at 6h in NGS studies.

doi:10.1371/journal.pone.0173115.g007
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performed a global gene expression approach on LPS stimulated alveolar macrophages from

six COPD donors, and looked at the impact on gene expression of JQ1 treatment. Our findings

are in agreement with earlier studies reporting global gene expression following LPS stimula-

tion of human macrophages [23, 27]. In a comparable human alveolar macrophage study [23]

we see a strong correlation with respect to both the general pattern of genes induced by LPS

treatment (84%), and specific genes associated with the M1 phenotype (92%).

In the analysis of LPS-induced genes inhibited following JQ1 treatment, we identified two sets

of genes, early and late response genes, The major enriched group of genes in the early response

genes group, i.e. genes inhibited at 6h, are known to be involved in cell activation, differentia-

tion and proliferation: for example CD80, EBI3, IL12-beta, IL27A, GM-CSF(CSF2), and OX40

(TNFRSF4). IL-27 consists of EBI3, an IL-12p40-related protein, and p28, an IL-12p35-related

polypeptide. IL-27 is an early product of activated antigen-presenting cells and regulates T cell

development and proliferation. It also synergizes with IL-12 to trigger IFN-gamma production

[23]. TNFRSF4 (OX40) and CD80 regulate the T cell activation and antigen presentation.

Chan et al. [24] found that I-BET151 selectively suppresses expression of a subset of IFN-β-

induced interferon signaling genes, among these IFIT1 and IFIT2. We identify IFIT1 and

other interferon signaling genes to form a group of early JQ1 treatment genes represented by

genes IFIT1, IFIT3, OAS2, IFI44, MX1 and MX2, which may play a role in inducing pro-

inflammatory cytokines as part of an innate immune response.

Fig 8. Subgroups of ECLIPSE WB COPD patients characterised by the 10 gene signature. A: Plots of gene set enrichment scores

generated using either the entire set of early response genes (left) or the 10 gene signature (right) with p-values (t-test, COPD vs control).

B Heat maps showing the distribution of the 10 gene signature across samples split into 2 groups based on enrichment score for either the

COPD samples (B) or Control samples (C). Numbers and percentage of samples in each group are below the heat maps. Blue bar; negative

enrichment score, orange bar; positive enrichment score.

doi:10.1371/journal.pone.0173115.g008
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The second group of genes (late response) inhibited at 24 h are genes associated with in-

flammatory response, e.g. IL1B, IL6, IL7R and chemotaxis chemokines, e.g. CCL20, CCL3L3,

CCL4L2, CXCL1, CXCL8. Interestingly, all these are involved with inflammatory pathology of

the COPD and are common to the inflammatory pathology of several inflammatory diseases

other than COPD. It is very likely that the early response genes regulate the expression of some

of these genes. To demonstrate the effect of the BET inhibition on the inflammatory response

at the protein level, we measured GM-CSF and IL-6 secreted by LPS stimulated alveolar mac-

rophages or PBMC from COPD patients and PBMC from normal controls. Treatment with

the pan-BET inhibitor JQ1 lead to potent inhibition of LPS-induced GM-CSF release from

alveolar macrophages and PBMC from COPD patients. These results indicate that inhibition

of GM-CSF following JQ1 treatment was complete and independent of the cell type, i.e. the

potency of JQ1 for inhibition of GM-CSF was similar in alveolar macrophages and PBMC.

However, IL-6 was only partially inhibited and the EC50 value for IL-6 was 10x less than for

inhibition of GM-CSF in alveolar macrophages. Furthermore, the potency of JQ1 treatment

inhibition of IL-6 in PBMC from COPD patients was almost 100x less than inhibition of

GM-CSF. At the concentration of 1μM, no inhibition of IL-6 following JQ1 treatment was

observed in PBMC from normal controls. To our knowledge, the effect of JQ1 treatment on

human PBMC or alveolar macrophages has not been previously reported. On the other hand,

the effect of JQ1 treatment is reported to have a potent effect on inhibition of IL-6 and TNF-

alpha in both mouse primary bone marrow derived macrophages and human cancerous cell

lines where epigenetics is likely to play a role in modulating the cellular function [26, 28]. Fur-

thermore we observed that a significant proportion (>30%) of LPS-induced genes inhibited

following JQ1 treatment are misregulated in a GM-CSF KO mouse [29]. Altogether, these

Fig 9. Signature distribution in ECLIPSE sputum samples. Heat map of the ECLIPSE sputum data for the 10 signature genes. Samples are

ordered according to the enrichment scores generated by GSVA with the 10 gene signature. The value distribution is shown in the top panel. Data was

normalized by subtracting the row median then scaling by the row median absolute deviation. Red color denotes high expression; blue color denotes low

expression. Bar below indicates GSVA enrichment score for these samples as either negative (blue) or positive (orange).

doi:10.1371/journal.pone.0173115.g009
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results suggest that IL-6 inhibition may be only sensitive to JQ1 treatment mediated inhibition

in the cells in which the epigenetic changes are present, such as in alveolar macrophages from

COPD patients. The gene expression data support the protein data, where we observed a par-

tial inhibition of IL-6 protein secretion. We propose that alveolar macrophages from COPD

have an excessive histone acetylation, which results in an overexpression of genes controlled

by BET proteins.

As expression of the early response genes is directly regulated by the BET family of proteins

and is independent of cell type, we hypothesised that these genes could be valuable in patient

stratification to define a subpopulation of COPD patients more likely to respond to BET inhi-

bition. To further understand the relevance of this signature in COPD patients we analysed

gene expression data from the ECLIPSE study [14] made public by GlaxoSmithKline. Analysis

of the expression of 10 genes—CMPK2, EPSTI1, IFI44, IFI44L, IFIT1, IFIT3, MX1, OAS2,

RSAD2 and XAF1—in the COPD samples compared to samples from normal controls showed

a statistically significant difference in the expression level distribution between COPD patients

and normal controls. According to our analysis, a subset of COPD patients with increased

expression of these signature genes at a specified interval of signature expression are likely to

show maximum response to BET inhibition. A future controlled study with matched numbers

of COPD and normal control samples should be made to confirm this observation. A major

limitation to the study is lack of healthy smoking controls, but it is difficult to obtain sufficient

amount tissue samples from the healthy patients thus limiting the scope of the study. Another

potential limitation of the study is the very high concentration of pan-BET inhibitor JQ1 used

in the transcriptome analysis. We chose this as we were primarily interested in identifying

maximally regulated genes following pan-BET inhibition and genes regulated by JQ1 were

effectively inhibited to the pre-LPS treatment basal level. Importantly we did not observe cell

toxicity with 10μM JQ1 (S1 Appendix: Effect of JQ1 on viability of AM isolated from COPD

patients). Furthermore in the incidences where we performed JQ1 treatments at lower doses

(Fig 5 and Fig 7) we see approximately equivalent results to the higher dose i.e. GMCSF was

inhibited in the PBMC cytokine secretion assay at EC50 value of approximately 150nM (Fig 5)

and AMs treated with 100nM JQ1 still displayed potent inhibition of the signature genes at

6h. Finally it is important to consider that whilst the gene expression changes observed follow-

ing treatment with JQ1 was regulated by BET proteins, the experimental design meant it was

not possible to determine which specific BET protein or combination of BET proteins is tar-

geted by JQ1. However we looked at the RNA expression level of BET genes (BRD2, BRD3

and BRD4) in alveolar macrophages from six COPD patients and in whole blood from the

ECLIPSE COPD patients (S4 Appendix: Expression of BET genes in COPD donors from the

ECLIPSE studies). Whilst we observed no significant changes in expression (being Log2 FC>2

at pval� 0.05) for any BET protein in either study, we note that BRD2 was the prominent

gene expressed in alveolar macrophages and is likely to be the main driver of the LPS induced

gene expression in alveolar macrophages.

It should be emphasised that the effect of pan-BET inhibitor, such as JQ1, is a net-effect of

the inhibition of different BET proteins, which can affect distinct transcriptional pathways by

activation or repression of different genes, as demonstrated earlier in T-cells by Banerjee et al.

[30] and in insulin secreting beta-cell line, reported by Deeney et al. [31]. The need to develop

selective inhibitors to each BET proteins to avoid treatment adverse effects in the clinics has

also been highlighted by Andrieu et al. [32]. In summary, we identified an early phase gene set

modulated through JQ1 mediated pan-BET inhibition in alveolar macrophages from COPD

patients. We show that the BET family of proteins regulate the expression of genes involved in

T cell regulation and innate pathways. The gene pool identified to be regulated by BET pro-

teins was differentially expressed in inflammatory cells from COPD patients and healthy

BET expression in COPD
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controls, and could thus be used for the identification of the patients who benefit from BET

inhibition as a therapy. Altogether, these findings support the role of histone hyperacetylation

as an epigenetic factor contributing to the pathology of COPD.

Further research is, however, needed to understand the diverse functions of BET proteins

and to develop better and more selective drug candidates.

Supporting information

S1 Appendix. Effect of JQ1 on viability of AM isolated from COPD patients. To rule out

potential cytotoxic effect of JQ1 at high concentration of JQ1, we performed cell viability assay

in AM from multiple COPD donors. In our assays, LPS-induced increased viability of alveolar

macrophages and this increase was reduced to background (cell viability in the absence of

LPS) in the presence of 10 μM JQ1. At this concentration JQ1 is reported to completely block

the BRD/Histone interaction and is selective for other bromodomain containing proteins,

kinases and 7TM targets [17].

(TIF)

S2 Appendix. iBET_AM_gene_lists. A table containing a complete list of significantly differ-

entially expressed genes on LPS and JQ1 treatment described in Fig 1B.

(XLSX)

S3 Appendix. iBET2_combined_DEG_all. A table containing a combined NGS values for all

differentially expressed genes on treatment with LPS and JQ1.

(XLSX)

S4 Appendix. Expression of BET genes in COPD donors from the ECLIPSE studies. S4

Appendix A: Expression of BET proteins BRD2, BRD3, BRD4 across the 6 COPD alveolar

macrophage donors. Each donor is represented as a different color. There are no significant

changes in expression (significance defined by a Log2 Fold Change(FC) >2 at a p val< 0.05)

for any BET protein. BRDT was not expressed in alveolar macrophages. S4 Appendix B: BRD2

and BRD4 expression in the ECLIPSE whole blood samples. Blue box are the control samples

and the COPD samples are in the pink box. BRD3 and BRDT data not were not available.

(TIF)
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Writing – original draft: IGC NK X-HZ GE MA MC RM GB SM LÖ.
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