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Abstract: Changes in and around anatomical structures such as blood vessels, optic disc, fovea,
and macula can lead to ophthalmological diseases such as diabetic retinopathy, glaucoma, age-
related macular degeneration (AMD), myopia, hypertension, and cataracts. If these diseases are not
diagnosed early, they may cause partial or complete loss of vision in patients. Fundus imaging is the
primary method used to diagnose ophthalmologic diseases. In this study, a powerful R-CNN+LSTM-
based approach is proposed that automatically detects eight different ophthalmologic diseases from
fundus images. Deep features were extracted from fundus images with the proposed R-CNN+LSTM
structure. Among the deep features extracted, those with high representative power were selected
with an approach called NCAR, which is a multilevel feature selection algorithm. In the classification
phase, the SVM algorithm, which is a powerful classifier, was used. The proposed approach is
evaluated on the eight-class ODIR dataset. The accuracy (main metric), sensitivity, specificity, and
precision metrics were used for the performance evaluation of the proposed approach. Besides,
the performance of the proposed approach was compared with the existing approaches using the
ODIR dataset.

Keywords: ophthalmological disease; fundus images; R-CNN+LSTM; NCAR feature selection

1. Introduction

The retina is the network layer that contains light-sensitive cells and nerve fibers
and carries out vision. Lesions on the retina indicate different ophthalmological diseases
such as diabetic retinopathy, AMD, cataracts, myopia, glaucoma, and hypertension. If
these lesions are not examined in the early period and the related disease is not treated,
partial or complete loss of vision may occur in some cases [1–3]. Therefore, the examination
of retinal tissue is very important for a person’s eye health. Ophthalmoscope, Fundus
Camera, Scanning Laser Ophthalmoscope (SLO), and Optical Coherence Tomography
(OCT) devices are used for retinal imaging. Different scanning methods such as Fundus
imaging, Fundus Fluorescein Angiography (FFA), and Indocyanine Green Angiography
(ICG) utilize these devices. Among these methods, fundus imaging is frequently utilized
since it is a noninvasive and low-cost technique [4]. Fundus imaging provides a color
display of the optic nerve, macula, retina, blood vessel, and the structures of the bottom of
the eye such as the vitreous. Specialists and physicians determine the ophthalmological
diseases with patient anamnesis and tests based on extensive observation using fundus
images. Physicians who do not have sufficient clinical experience may make incorrect
decisions during the diagnosis process when their excessive workload is taken into account.
Computer-aided systems can automatically detect ophthalmological diseases and make a
significant contribution to the decision-making process of physicians. Especially, studies
based on deep learning, which is a subfield of machine learning, have achieved high
performance in classification tasks of medical images.

J. Pers. Med. 2021, 11, 1276. https://doi.org/10.3390/jpm11121276 https://www.mdpi.com/journal/jpm

https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0002-4490-0946
https://doi.org/10.3390/jpm11121276
https://doi.org/10.3390/jpm11121276
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jpm11121276
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm11121276?type=check_update&version=1


J. Pers. Med. 2021, 11, 1276 2 of 18

In this study, a robust and effective approach based on the R-CNN+LSTM was pre-
sented for automated ophthalmological disease detection from fundus images. The pro-
posed approach was evaluated on the ODIR dataset and outperformed other existing
approaches using the same dataset in several metrics. The contributions and limitation of
the proposed approach can be expressed as follows.

Contributions:

• With the proposed R-CNN+LSTM, R-CNN and LSTM structures were trained together.
Thus, the residual layer information of the R-CNN model and the LSTM model’s ability
to keep important data in memory was utilized.

• The residual strategy and LSTM structure of the proposed R-CNN+LSTM boosted the
classification achievement.

• The NCAR feature selection algorithm based on the calculation of feature importance
and weights improved the classification performance. Besides, the NCAR algorithm,
which benefited from the NCA and ReliefF algorithms, outperformed both algorithms
that were popular in the selection based on feature importance and weights.

Limitation:

• The proposed R-CNN+LSTM model contains too many learnable parameters. There-
fore, powerful hardware is required for fast prediction results.

2. Related Works

Several approaches based on classical machine learning and deep learning techniques
have been conducted for detecting ophthalmologic disease. Almazroa et al. [5] applied a
segmentation methodology to find disc and cup boundaries in glaucoma. In the classifi-
cation stage, Support Vector Machine (SVM), (K-Nearest Neighbors) KNN, and Bayesian
algorithms were then executed to determine 15 normal and 21 glaucomatous images. For
normal and abnormal images, success rates were 100.0% and 95.23% in the SVM, 93.3%
and 80.9% in the KNN, and 86.6% and 95.23% in the Bayesian, respectively. Reza and
Eswaran [6] automatically detected two-class fundus images, normal and abnormal, using
a rule-based classifier. In the proposed system, fundus images were preprocessed using
morphological and thresholding-based techniques to remove abnormal signs such as hard
exudates and cotton wool spots. In this study, DR samples were detected with an average
accuracy of 97.0%. Ashraf et al. [7] used Local Binary Patterns (LBP) for the detection of
hemorrhages and microaneurysms (HMAs) in the feature extraction process. The SVM
with ROIs was utilized to see if samples contained HMAs. The proposed method reached
85.99% specificity, 87.48% sensitivity, 0.87 AUC, and 86.15% average accuracy for a binary
classification task. Deep learning approaches have been popular in the research commu-
nity and have mostly provided high performance for medical image classification tasks
after the CNN model proposed by Krizhevsky et al. [8] was presented at the ImageNet
Challenge in 2012 [9–15]. Orfao and Haar [16] operated different pretrained models such as
InceptionV3, Alexnet, VGGNet, and ResNet for detecting Glaucoma, Diabetic Retinopathy,
and Cataracts from fundus images. The best performance was achieved by the InceptionV3
model with an accuracy of 99.30% and an F1-Score of 99.39%. Yaroub Elloumi [17] con-
stituted a high-performance cataract grading method with a low computational cost for
smartphones. Firstly, deep features were extracted through the MobileNet-V2 model using
transfer learning. Cataract grades were detected with a random forest classifier that used
deep features. The best performances for specificity, sensitivity, precision, and accuracy
metrics were 89.58%, 91.43%, 92.75%, and 90.68%, respectively. Khan et al. [18] utilized
the average values of the predictions achieved from pretrained CNN models containing
ResNet50, InceptionResNetV2, EfficientNetB0, and EfficientNetB2 in the transfer learning
pipeline to improve the classification performance. In the study, an enhancement and
adaptive histogram equalization technique based on morphological operations was used
instead of raw images. For binary classification, the proposed ensemble-based approach
outperformed the pretrained CNN models. The accuracy scores of the ResNet50, Efficient-
NetB0, EfficientNetB2, InceptionResNetV2, and ensemble models were 82.57%, 80.63%,
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81.67%, 84.22%, and 86.08%, respectively. Khan et al. [19] opted for a structure based
on the VGG19 model to detect cataracts automatically from color fundus images; 97.47%
accuracy and 97.47% prediction were achieved with this model. Sun and Oruc [20] tried to
diagnose ophthalmological diseases containing cataract, glaucoma, pathological myopia,
hypertensive retinopathy, AMD degeneration, and diabetic retinopathy classes using trans-
fer learning with the ResNet50. The accuracy results for cataract, glaucoma, pathological
myopia, hypertensive retinopathy, AMD degeneration, and diabetic retinopathy classes
were 94.9%, 89.7%, 87.0%, 93.8%, 90.8%, and 78.9%, respectively. Li et al. [21] obtained a
sensitivity of 98.6% in the classification of AMD and DME using the VGG16 model on a
dataset containing 207,130 images taken through OCT. Raghavendra et al. [22] developed
an eighteen-layer convolutional neural network for the diagnosis of glaucoma from fundus
images. With this developed model, an accuracy rate of 98.13% was achieved. Singh
et al. [23] designed a lightweight CNN model for the detection of the DR disease and the
classification of DR disease stages (5 classes). The successes of the study were 71% for two
classes and 56% for five classes. Chai et al. [24] proposed a multibranch neural network
model containing faster R-CNN, fully convolutional network (FCN), and custom CNN
models for the detection of glaucoma. By testing the proposed model on the dataset, a
success of 91.51% was achieved.

3. Methodology, Material, and Techniques
3.1. Proposed Methodology

The framework of the proposed approach is given in Figure 1. In this study, a novel
approach was proposed for automated ophthalmological disease detection from fundus
images. The proposed approach was composed of four steps. In the first step, the pro-
posed R-CNN+LSTM was trained on the dataset. The residual strategy and the LSTM
model containing 100 LSTM units were used for boosting classification performance. The
representation of the R-CNN+LSTM model consisting of six residual blocks is shown in
Figure 2.
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Figure 2. Representation of the proposed R-CNN+LSTM.

Each residual block was constituted of two convolutional units, two BN layers, and
a ReLU layer. The filter weights and activations of the R-CNN were conveyed to the
unfolding layer for the learning process together with the LSTM model. Since important
information was stored in the LSTM structure, it was used with the R-CNN structure
and the classification performance was increased. However, it cannot be said that the
softmax classifier used in deep-learning-based approaches with an end-to-end learning
strategy will give the best performance for every classification task. Therefore, in the
second step, for boosting classifier performance, other robust classifier algorithms such as
SVM, K-NN, and Decision Tree instead of the softmax classifier were evaluated with the
trained activation values of the R-CNN+LSTM. Therefore, deep features were extracted
from the first fully connected layer output of the R-CNN+LSTM model, which included
an end-to-end learning process. In the third step, distinctive features were selected using
the NCAR algorithm that had a multilevel selection strategy with the NCA and ReliefF
algorithms. With this algorithm, the classification achievement was improved and the
computational cost of the classifier was reduced. In the fourth step, the selected features
were transmitted to the SVM classifier. The SVM classifier was evaluated on the dataset
with 10-fold cross-validation.

3.2. Dataset

The ODIR dataset consisted of color fundus images collected from the left and right
eyes of volunteer patients [25]. Fundus images were constituted by various cameras in the
market such as Canon, Zeiss, and Kowa and were then saved in different sizes and dpi
values in JPG format. The dataset included 3098 Normal, 1406 Diabetes, 224 Glaucoma,
265 Cataract, 293 AMD, 107 hypertension, 242 Pathological Myopia (PM), and 791 other
diseases/abnormalities in total; the 8 classes comprised 6426 samples. All classification
processes in the dataset were performed by expert ophthalmologists. Fundus images were
rerecorded in JPG format and standard sizes (125 × 125) with 96 dpi. In the ODIR dataset,
some examples for each class are given in Figure 3.
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3.3. Deep Learning Techniques

The purpose of the convolution layer in CNN is to extract distinctive information
by processing input samples with convolution filters. Convolution is a mathematical
operation of two functions. In the CNN concept, the convolution operation simply shifts a
kernel function, also called a filter, over the master data by performing the element-wise
multiplication of each element. For each window in the shift operation, the sum of the
multiplication with element information gives the result for that window. By scrolling
windows across the entire image, the output of the convolution operation called the feature
map is produced. During the network design, there are three hyperparameters to be
selected for the convolution layer. These are the dimensions of the convolution filter, the
step size of the convolution filter while hovering over the input image, and whether any
padding will be applied to the input image [8,26].

Batch normalization (BN) is a method used to make the convolutional neural network
more regular. Besides a regulatory effect, it also gives resistance to the extinction gradient of
the convolutional neural network during training. In short, BN is a method that increases
the speed, performance, and continuity of deep neural networks [27,28].

µb =
1
n

n

∑
i=1

xi (1)

σb =
1
n

n

∑
i=1

(xi − µb)
2 (2)

x̂i =
xi − µb√

σ2
b + ε

(3)

yi = αx̂i + β (4)
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LSTM is a special type of RNN with the ability to learn long-term dependencies. This
model, which was first proposed in the mid-90s, is widely used today [29]. Although it
is aimed to store and transfer the state information of the artificial neural network while
processing the sequences in RNNs, it is not possible to transfer the state information
without spoiling the long-term dependencies as a result of the continuous processing
of the state information. In other words, while short-term addictions in the series are
transferred quite successfully, there is a problem in transferring long-term addictions. The
basic principle behind this network architecture is that the network reliably transmits
important information into the future in multiple iterations [30]. The LSTM memory cell
is given in Figure 4. There are 3 doors in LSTM. These are the entrance, forget, and exit
doors. These gates in LSTM are sigmoid activation functions. In Equations (5)–(10), where
W denotes the weight matrices, Ct is the cell state, b is the input bias vector, i represents the
input gate, f stands for the forget gate, and ot symbolizes the output gate. The extracellular
activation function is tanh. The output layer is the last layer in the network used to
estimate the sensitivity. The basic LSTM architecture consists of input (Equation (6)),
output (Equation (9)), forget gates (Equation (5)), and memory cells (Equation (3)).

ft = σ(W f · [ht−1, xt] + bt) (5)

it = σ(Wi · [ht−1, xt] + bi) (6)

C̃t = tanh(Wc · [ht−1, xt] + bc) (7)

Ct = ft ∗ Ct−1 + it ∗ C̃t (8)

ot = σ(Wo · [ht−1, xt] + bo) (9)

ht = ot ∗ tanh(Ct) (10)
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The ReLU layer is the layer that applies an activation function f (x) = max(0, x) to each
element in its input. ReLU, which is a nonlinear activation function, sets its less-than and
equal inputs to zero while leaving its greater than zero inputs as they are. In CNN models,
the ReLU layer is used after the convolution layers. The ReLU layer is applied one by one
for each element of the input and sets values less than 0 to 0 while leaving values greater
than 0 as they are. The use of the ReLU function is preferred because it is several times
faster than other activation functions such as sigmoid or hyperbolic tangent, although it
does not make a significant difference in generalization accuracy. This difference provides
great ease of application in deep artificial neural networks where the computational load
is quite high [31,32]. As can be seen in Equations (11) and (12), the fact that its derivative
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is simpler than the sigmoid function provides great convenience and speed when using
algorithms such as backpropagation.

f (x)= max(0, x)= f ′(x) =
{

x > 0→ 1
x ≤ 0→ 0

(11)

σ(z) =
1

1 + e−z σ′
(z)

= σ(z)(1− σ(z)) (12)

The flattening layer is the conversion of a two-dimensional feature matrix into a
one-dimensional vector to feed the next layer [33].

The softmax function is often used in the output of deep learning models. The softmax
function sets the class scores generated in the fully connected layer to probability-based
values between 0 and 1. The softmax function s(aj)takes an N-dimensional input vector, as
seen in Equations (13) and (14), and produces a second N-dimensional vector with each
element having values between 0 and 1. Although the softmax function is generally used
in the output layer of deep learning models, a classifier such as the support vector machine
(SVM) can also be used. Since it is an exponential function, the softmax function makes the
difference between classes even more pronounced.

S
(
aj
)

:

 a1
. . . .
an

→
 s1

. . . .
sn

 (13)

S
(
aj
)
=

eaj

∑n
k=1 eak

(14)

The dropout layer is used to forget some neurons to avoid overfitting during training.
There is a risk of overlearning in cases where the network structure is large, when training
is done for too long, or when the number of data is too small [34].

3.4. Multilevel Feature Selection

Feature selection methods aim to improve execution velocity without reducing ap-
proach achievement. In community research, many feature selection algorithms have been
used for the machine learning approach. Especially, feature selection techniques reduce
execution time in deep learning applications having many features. To determine which
feature selection algorithm will provide good performance on which feature set, the data
in the feature set should be analyzed well. However, it is quite burdensome to apply this
analysis process, especially in deep-learning-based approaches. For example, LDA and
PCA algorithms perform well on a linear feature set only, while the mRMR algorithm
performs well on a nonparametric feature set. In recent studies, feature-importance-based
selection algorithms have been started to select for classification problems [35–37]. The
most popular feature-importance-based selections algorithms are the NCA and ReliefF
since they provide various classification algorithms. Besides, the execution time of feature
selector for these algorithms are lesser than algorithms such as PCA and mRMR.

In this study, a multilevel feature selection method named NCAR, containing the NCA
and ReliefF algorithms, was used for the proposed approach for boosting classification
performance. For computing feature importance weights, the ReliefF algorithm utilizes
distance and a nearest-neighbor-based technique while the NCA algorithm utilizes distance
with kernel and a probability-based technique. Thus, the representation powers of the two
algorithms were benefited in the feature selection process. The pseudocode of the NCAR is
expressed in the Algorithm 1.
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Algorithm 1. Pseudocode of the NCAR algorithm

Input: feature vector from CovEncoNet model (fea), size of feature vector (N)
average of fea(avg), standard deviation of fea (std), threshold (thr)
Output: reduced feture vector (fea_out)
1:. feature_reducion(fea,std,avg,thr)
2:. begin
2:. fea_out = fea
3:. for i = 1 to N do
4:. decision1 = std/fea_out[i]
5:. decision2 = avg/fea_out[i]
6:. if decision1 > thr and decision2 > thr
7:. fea_out[i] = []
8:. end if
9:. end for i
10:. end

Neighborhood Component Analysis (NCA) is a dimension reduction, feature selection
technique. The measurement of features is very important in machine learning applications.
One of the most successful learning algorithms, NCA, is widely used in classification stud-
ies [33]. Neighborhood component analysis performs classification operations by learning
the projection of the vectors that optimize the criteria concerned with the classification
accuracy of the nearest neighbor classifier. In other words, the NCA chooses a linear
projection that optimizes the performance of the nearest neighbor classifier in the projected
area. NCA uses training data consisting of associated class labels when choosing the pro-
jection that will be effective in separating classes in the prescribed area. NCA makes weak
assumptions about the distribution in each class when optimizing its classifiers. This gives
a closer match to the use of Gaussian mixtures in modeling distributions in classes [34].
The regularized objective function [38] given in Equation (15) is used. Thus, in the NCA
method, the aim is to maximize the objective function F(w) for w.

F(w) =
1
n

n

∑
i=1

Pi − λ
p

∑
r=1

w2
r (15)

here, λ is the regularization parameter, p is its dimensionality, wr is the feature weight, n is
the total number of samples, and Pi represents the probability score of ith sample. When
the λ parameter is chosen randomly, all feature weights can take values very close to zero.
The fact that the weights are close to zero in this method indicates that the relevant features
are unimportant. Therefore, the parameter λ needs to be adjusted.

ReliefF algorithm is an algorithm that can make effective feature predictions. These
feature estimates are made by using the feature weights. The feature weights are deter-
mined by solving the convex optimization problem [39]. Firstly, the weights of all features
are set to 0. Then, at each step, it randomly selects data from the data set and finds the
closest k (k value is one less than the number of classes) data belonging to the same class
with this data, and then the closest data belonging to each different class are found. Then,
the weights of each feature are updated using this data. At the last stage, the features that
do not meet the specified condition are removed from the data set, and a new data set is
created. The ReliefF algorithm was formulated as follows.

W(xa) = W(xa)−
∑k

j=1 di f f (A, Ri, Hj)

mxk
+ ∑

c 6=class(Ri)

 P(C)
1− P(class(Ri)

x
k

∑
j=1

di f f
(

A, Ri,Mj

)
mxk

 (16)

here, xa represents the ath feature, A is the feature set, Ri and Hj stand for instances in the
feature set, and m and k symbolize the user-selected parameter.
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4. Experimental Studies

The algorithm related to the proposed approach was operated using MATLAB soft-
ware installed on the Windows 10 operating system and hardware containing an i7 Intel
Core ™ processor, 8 GB RAM, and 2 GB graphic card. The mini-batch size, initial learning
rate, and max epochs adjusted as training option parameters of the proposed R-CNN-LSTM
model were set to 128, 0.001, and 150, respectively. The SGDM was used as optimization
solver since CNN models mostly provided good performance. Besides, the cross-entropy
was selected as the loss function of the R-CNN+LSTM model.

In Figure 5, the accuracy and loss graphs of the proposed R-CNN+LSTM model are
given during the training process. At the end of 2000 iterations, the accuracy and loss scores
of training were 100.0% and 0.0250, respectively. A total 350 features were extracted using
the activation values of the first fully connected layer in the trained R-CNN+LSTM model.
Then, distinctive features (38 features) were selected by the NCAR algorithm. In the first
level of the NCAR algorithm, the feature weights shown in Figure 6 were computed with
the NCA algorithm. A total 292 features, which were less than the selected threshold value
(0.0005) for features weight value, were removed from the feature set. In the second level
of the NCAR algorithm, the feature importance weights were calculated with the ReliefF
algorithm and the number of nearest neighbors was selected as 10. As seen in Figure 7, by
using the threshold with a feature importance weight of 0.01, 30 features were selected
from 58 features.
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According to all classes and the levels of the NCAR feature selection algorithm, 3D
representations of features sets are given for a sample in Figure 8. In Figure 8, the first,
second, and third columns show the features without feature selection operation, the
features selected with the first level of the NCAR algorithm, and the features selected with
the second level of the NCAR algorithm, respectively. As seen in Figure 8, the features in
the feature set obtained by the NCAR algorithm are morphologically better differentiated
from the raw deep features (350 features).

In Table 1, the accuracy results containing three different feature selection cases (NCA,
ReliefF, and NCAR) are given for Decision Tree (DT), Linear Discriminant (LD), Naïve
Bayes (NB), K-Nearest Neighbors (KNN), and SVM classifiers. For all feature selection
algorithms, the number of the selected features was adjusted as 30. As seen in Table 1, the
best accuracy was 89.54% with the SVM classifier and the NCAR algorithm while the worst
accuracy was obtained as 75.85% with the NB classifier and the NCA algorithm. Among
all classifiers, the best performances for all feature selection algorithms were achieved
with the SVM classifier. The best performance of classifiers in order was SVM, KNN, DT,
LD, and NB. Among feature selection algorithms, the best performance for all classifiers
was achieved with the NCAR feature selection algorithm. The best performance order of
feature selection algorithms was NCAR, ReliefF, and NCA.

Table 1. The classifier performance results according to feature selection algorithms.

Classifier
Accuracy (%)

NCA ReliefF NCAR

DT 80.15 81.28 81.95
LD 78.76 79.87 80.35
NB 75.85 76.34 76.94

SVM 89.28 89.35 89.54
KNN 88.56 88.94 89.34
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In Figures 9 and 10, the confusion matrices and the ROC curves with AUC values
are given for six different cases, respectively. In the first case, the CNN structure in the
proposed approach was used without residual blocks. In the second case, the CNN+LSTM
structure in the proposed approach was used without residual blocks. In the third case,
the R-CNN structure in the proposed approach was used without the LSTM model. In
the fourth case, the proposed CNN+LSTM structure was used. In the fifth case, the R-
CNN+LSTM+SVM structure in the proposed approach was used without the NCAR feature
selection algorithm. In the sixth case, the R-CNN+LSTM+SVM structure in the proposed
approach was used with residual blocks. As seen in Figure 9, the classification accuracy
with adding the LSTM model and the residual blocks to the CNN structure was improved
by 0.92% and 4.28%, respectively. Instead of the fully connected + softmax classifier in the
proposed R-CNN+LSTM, using the SVM classifier increased the accuracy score by 1.66%
(the fifth case). With the NCAR feature selection algorithm (sixth case), the classification
performance of the proposed approach was improved by 0.28% compared with the fifth
case without feature selection. As seen in Figure 10, the worst and best AUC values were
obtained as 0.85 and 0.97 with the CNN structure (the first case) and the proposed approach
(the sixth case), respectively.
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In Table 2, the sensitivity, specificity, precision, and F-score results are given for all
classes of the proposed approach. The best sensitivity was obtained as 0.9777 with the
Normal class and the worst sensitivity was obtained as 0.8020 with the AMD class. The
best specificity was achieved as 1.0 with the Glaucoma class and the worst specificity was
achieved as 0.8275 with the Normal class. The best precision was obtained as 1.0 with the
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Glaucoma class and the worst precision was obtained as 0.8421 with the Normal class. The
best F-score was 0.9341 with the Hypertension class and the worst specificity was 0.8764
with the Other class.

Table 2. The other performance results of the proposed approach.

Class Sensitivity Specificity Precision F-Score

AMD 0.8020 0.9996 0.9916 0.8868
Cataract 0.8264 0.9991 0.9777 0.8957
Diabetes 0.8285 0.9846 0.9417 0.8815
Glaucoma 0.7946 1.0000 1.0000 0.8856
Hypertension 0.9239 0.9991 0.9444 0.9341
Normal 0.9777 0.8275 0.8421 0.9049
Other Disease 0.7977 0.9965 0.9723 0.8764
PM 0.8802 0.9996 0.9907 0.9322

The SVM accuracy performances of features extracted with the proposed R+CNN+LSTM
and the other CNN backbones are given in Table 3. As seen in Table 3, the NCAR feature
selection strategy improved the classification achievement of all CNN backbones.

Table 3. The other performance results of the proposed approach.

Class No Feature Selection NCAR Feature Selection

CNN 0.8171 0.8225
CNN+LSTM 0.8263 0.8375
R-CNN 0.8599 0.8725
R-CNN+LSTM 0.8760 0.8890
R-CNN+LSTM+SVM 0.8926 0.8954

5. Discussion

Many deep-learning-based studies have been conducted in the research community
using fundus images. Since these studies are carried out on different data sets and different
training parameters are used in the proposed approaches, one method cannot be said to be
completely superior to the others. Besides, when these studies are examined in general, it
is more difficult to achieve performance in multiclass classification tasks than in two-class
classification tasks. Therefore, the proposed approach was evaluated on the ODIR dataset
containing eight classes.

For the ODIR dataset, the AUC and F-score results of the proposed approach and the
existing approaches are given in Table 4. Islam et al. [40] proposed a lightweight CNN
model trained from scratch for automated ophthalmological disease from fundus images.
This approach reached an AUC of 80.50% and an F-score of 85.00%. Jordi et al. [41] and
Li et al. [42] presented transfer learning approaches. Jordi et al. [41] achieved 88.71% AUC
and 81.76% F-score with the VGG16 model and Li et al. [42] obtained 93.00% AUC and
91.30% F-score with the ResNet101 model. He et al. [43], utilized the pretrained CNN
models containing ResNet18, ResNet34, ResNet50, and ResNet101 for the classification
task., With the ResNet101 model, the best F1 Score and AUC results were obtained as 90.70%
and 92.70%, respectively. Wang et al. [44] presented a novel model named EfficientB3
consisting of two models. The EfficientNet model and the processed images with gray
histogram equalization were utilized in the first model while The EfficientNet model and
the processed images with color histogram equalization were utilized in the second model.
The prediction results of these models were combined with the majority vote technique for
boosting the classification performance. The EfficientNetB3 model provided an accuracy of
89.00%, an AUC of 73.00%, and an F1 score of 89.00%. Gour and Khanna [45] utilized four
pretrained CNN models containing ResNet, InceptionV3, MobileNet, and VGG16. The
best AUC and F-score results were 84.93 and 85.57, respectively. The proposed approach
provided the best AUC score with 97.00%. However, the best F-score value was achieved
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with the approach proposed by Li et al. [42]. The second-highest F-score was obtained by
the proposed approach. However, the CNN models in [41–45] are pretrained models. Since
the weights of these models are shared, no training is required for deep feature extraction.
Further, in the CNN model proposed in [40], fewer layers were used compared with the
proposed R-CNN+LSTM. Therefore, the computation speed of the proposed method is
lower than the existing methods in hardware with the same capacity.

Table 4. The AUC and F-score results of the proposed approach and the existing approaches.

Author Method AUC (%) F-Score (%)

Islam et al. [40] CNN 80.50 85.00

Jordi et al. [41] VGG16 88.71 81.76

Li et al. [42] ResNet101 93.00 91.30

Wang et al. [44] EffifinetB3 73.00 89.00

He et al. [43] ResNet models 92.70 90.70

Gour and Khanna [45] Two I/P VGG16 84.93 85.57

Proposed Approach (R-CNN+LSTM)+NCAR+SVM 97.00 89.97

Among the existing approaches, only the approach proposed by Gour and Khanna [45]
yielded the results of sensitivity, specificity, and accuracy metrics. In Table 5, according to
the performance metrics of accuracy, AUC, and F-score, the proposed approach is compared
with the pretrained CNN models (the ResNet, InceptionV3, MobileNet, EfficientB3, and
VGG16 models) used by Gour and Khanna [45]. As seen in Table 5, for all metrics, the best
performance was obtained with the proposed approach while the worst performance was
obtained with the ResNet model in [45].

Table 5. The other performance results of the proposed approach.

Model Accuracy (%) AUC (%) F-Score (%)

ResNet [45] 85.52 71.96 84.15

InceptionV3 [45] 83.98 77.16 85.47

MobileNet [45] 85.81 71.42 85.50

EfficentB3 [44] 89.00 73.00 89.00

VGG16 [45] 89.06 84.93 85.57

Proposed Approach 89.54 97.00 89.97

For all classes, the sensitivity and specificity results of the proposed method and the
VGG16 model (the pretrained model having the best performance in [45]) are given in
Table 6. As seen in Table 6, the results of the proposed approach for both sensitivity and
specificity are more balanced when examined in general. For the sensitivity metric, the
proposed approach provided better performance in the Glaucoma, Hypertension, Normal,
and Other Disease classes. Especially, the performance for the Normal class was improved
at a high rate (0.3177). For all remaining classes, the VGG16 model outperformed the
proposed approach. In the specificity metric, for the Cataract class, the VGG16 model
in [45] outperformed the proposed approach by a little margin (0.01). The sensitivity scores
were improved for all remaining classes except the Hypertension class. Especially, the
performances for the Normal and Other classes were improved at high rates (0.61 and
0.67).
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Table 6. Comparison with the model proposed in [45] of the sensitivity and specificity results.

Class↓/Metrics→
Sensitivity Specificity

Gour and Khanna [45] Proposed Approach Gour and Khanna [45] Proposed Approach

AMD 0.94 0.8020 0.93 0.99
Cataract 0.96 0.8264 1.00 0.99
Diabetes 0.93 0.8285 0.94 0.98
Glaucoma 0.67 0.7946 0.60 1.00
Hypertension 0.95 0.9239 0.99 0.99
Normal 0.66 0.9777 0.21 0.82
Other Disease 0.73 0.7977 0.32 0.99
Myopia 0.94 0.8802 0.94 0.99

6. Conclusions

In this study, a novel and robust approach was proposed for automated ophthalmolog-
ical disease detection from fundus images. The proposed approach was evaluated on the
eight-class ODIR dataset. In the proposed approach, the R-CNN+LSTM architecture was
used to extract deep features. Using residual strategy and adding the LSTM model in the R-
CNN+LSTM model, the classification accuracy improved by 4.28% and 1.61%, respectively.
For obtaining the highest accuracy and reducing the classifier execution time, a multilevel
feature selection algorithm named NCAR was applied to 350 deep features. Using the
DT, NB, LD, SVM, and KNN classifiers, the performance of the NCAR was compared
with the NCA and ReliefF algorithms. The best accuracy was achieved with the NCAR
feature selection algorithm and the SVM classifier. For the proposed approach, the best
accuracy was obtained as 89.54% and the classification accuracy was improved by 0.28%.
Besides, the proposed approach was compared with the existing approaches using the
ODIR dataset. With the proposed approach, the AUC and accuracy values were improved
by 4% and 0.48%, respectively. The proposed approach for the F-score metric reached the
third-best value with 0.8994 (the best value was 0.9134 and the second-best value was
0.9070). Moreover, according to accuracy, AUC, and F-score metrics, the proposed approach
was compared with pretrained CNN models in [45] and the EfficientB3 model in [44]. The
proposed approach outperformed these pretrained CNN models. Moreover, for each class
according to sensitivity and specificity metrics, the proposed approach was compared with
the pretrained CNN model (VGG16) providing the best performance in [45]. In four classes
for sensitivity and six classes for specificity, the proposed approach outperformed the
VGG16-model-based approach. However, robust hardware is required for the proposed
approach based on the deep learning strategy. With more powerful hardware in the future,
it is considered that the performance evaluation should be repeated by adding attention
structures to the proposed approach.
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