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Abstract 

Background and purpose: Synthesis and investigation of pharmacological activity of novel compounds are 

time and money-consuming. However, computational techniques, docking, and in silico studies have 

facilitated drug discovery research to design pharmacologically effective compounds. 

Experimental approach: In this study, a series of quinazoline derivatives were applied to quantitative 

structure-activity relationship (QSAR) analysis. A collection of chemometric methods were conducted to 

provide relations between structural features and cytotoxic activity of a variety of quinazoline derivatives 

against breast cancer cell line. An in silico-screening was accomplished and new impressive lead compounds 

were designed to target the epidermal growth factor receptor (EGFR)-active site based on a new structural 

pattern. Molecular docking was performed to delve into the interactions, free binding energy, and molecular 

binding mode of the compounds against the EGFR target. 

Findings/Results: A comparison between different methods significantly indicated that genetic algorithm-

partial least-squares were selected as the best model for quinazoline derivatives. In the current study, 

constitutional, functional, chemical, resource description framework, 2D autocorrelation, and charge 

descriptors were considered as significant parameters for the prediction of anticancer activity of quinazoline 

derivatives. In silico screening was employed to discover new compounds with good potential as anticancer 

agents and suggested to be synthesized. Also, the binding energy of docking simulation showed desired 

correlation with QSAR and experimental data. 

Conclusion and implications: The results showed good accordance between binding energy and QSAR 

results. Compounds Q1-Q30 are desired to be synthesized and applied to in vitro evaluation. 

Keywords: Cytotoxic; Molecular docking; QSAR; Quinazoline. 

INTRODUCTION 

Among the nitrogen-containing compounds, 

the quinazoline ring was a very privileged                    

and effective scaffold in pharmaceutical                        

and medicinal chemistry; they have a                 

broad spectrum of biological activities                           

such as anticancer, diuretic, anti-                 

inflammatory, anticonvulsant, antimicrobial, 

antiviral, antiplasmodial, and antihypertensive 

effects (1). Also, among the different 

quinazoline scaffolds, 2-substituted-4(3H)-

quinazolinone has been used as an 

attractive pharmacophore for drug design 

purposes (2,3). Quinazoline which is 

substituted at C4, C6, and C7 has been applied as 

one of the most significant classes 

of quinazoline-based epidermal growth   

factor receptor (EGFR) inhibitors (4). 

The quinazoline skeleton is also a

substructure of natural purine bases,     

plant alkaloids, and several FDA-approved 

drugs such as prazosin, alfuzosin, erlotinib, 

gefitinib (Fig. 1) (5,6). 
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Fig 1. Previously reported epidermal growth factor 

receptor inhibitors bearing quinazoline scaffold. 

Synthesis and investigation of 

pharmacological activity of novel compounds, 

usually take large amounts of expenditures and 

time. The use of computational techniques, 

docking, and in silico studies for designing 

pharmacologically effective compounds has 

opened a new approach to drug discovery 

research. Quantitative structure-activity 

relationships (QSAR) studies, as one of the 

important subjects in chemometrics, provide 

the ability to biological activities prediction for 

the novel or even non-synthesized compounds 

by medicinal chemists (7-11).  

Linear QSAR models are mathematical 

equations that deliver good information for 

better explaining the mechanisms of action of 

the compounds, and proving the relationship 

between chemical structures and 

pharmacological activities.  

The most important phase in constructing 

QSAR models is the suitable description of the 

structural and physicochemical properties of 

chemical structures (12-15). These properties 

called molecular descriptors have a high impact 

on the pharmacological properties of a 

compound (16-19). Molecular descriptors have 

been classified into different groups including 

physiochemical, constitutional, geometrical, 

topological, and quantum chemical descriptors. 

Dragon and Hyperchem as two famous 

computational packages are able to calculate 

more than 7000 of these parameters (20,21). 

An important approach for the researchers is 

establishing a complete SAR of quinazoline 

derivatives of cytotoxic agents to modify 

the quinazoline moiety (22,23). In this paper, 

we investigated QSAR studies of some 

quinazoline derivatives which have been 

recently reported to exhibit cytotoxic activity 

against the MCF-7 cell line. Different QSAR 

models including multiple linear regressions 

were used to establish the relationship between 

descriptors and anti-breast cancer activity of 

compounds (16,24-26). Our QSAR models 

would be established mathematical equations 

between pharmacological activities and 

calculable parameters such as topological, 

quantum, physicochemical, stereochemical, or 

electronic parameters. In addition, molecular 

docking simulation was also done to reach     

the most favorable conformation and 

binding modes of all compounds as well as 

newly designed compounds towards 

EGFR as possible targets for their anticancer 

effect. 

The molecular docking simulation help us to 

understand the possible interactions between 

the ligands and enzyme’s active sites in detail 

and also helps to design novel potent inhibitors. 

In 2017, Tu et al. reported docking studies of 

new synthesized quinazoline bearing aryl semi 

carbazole (Fig. 1, structure I) and showed that 

tetrahydrofuran substituent was necessary for 

the anti-cancer activity of these compounds 

(27). The in vitro cytotoxic activities of new 

quinazoline compounds were determined 

against three human cancer cell lines 

(A549, MCF-7, and PC-3), and showing that 

the introduction of quinazoline derivatives 

bearing 2,3 dihydro-indole or 1,2,3,4-

tetrahydroquinoline moiety (Fig. 1, structure II] 

could act appropriately to interact with the 

active site of the EGFR target (Fig. 1) (28). 

MATERIAL AND METHODS 

Data set and descriptor generation 

In this study, the experimental biological 

activities of anticancer activity against MCF-7 

cell line were used (in terms of -log IC50), of a 

set of 81 quinazoline derivatives (29-33). The 

structural feature and antiproliferative values of 

these compounds were shown in Table 1. 
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Table 1. Chemical structure of quinazoline derivatives used in this study and their docking binding energy. 

Order R pIC50 
Binding energy 

(kcal/mol) 

1 NH2 1.6 -7.2 

2 NHCOCH3 1.66 -8 

3 

4 2.26 -8.8 

5 H 1.87 -8.1 

6 Cl 2.08 -8.7 

7 F 2.16 -8.2 

8 OCH3 1.7 -8 

9 H 1.81 -8.9 

10 Cl 1.54 -8.7 

11 F 1.36 -8.5 

12 OCH3 2.20 -8.8 

13 H 1.79 -7.7 

14 Cl 1.76 -8.5 

15 1.61 -7.9 

16 2.06 -8 

17 2.18 -8.2 

18 1.94 -8.9 

19 2.11 -8.3 

20 2.04 -8.4 
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Table 1. (Continued) 

Order R pIC50 
Binding energy 

(kcal/mol) 

21 - 1.76 -8.3 

22 H 1.42 -8.7 

23 Br 1.64 -8.5 

24 F 1.54 -8.8 

25 - 1.66 -8 

26 - 1.99 -7.6 

27 - 2.08 -8.4 

Order R1 R2 R3 R4 R5 pIC50 
Binding energy 

(Kcal/mol) 

28 H CH3-CH2- H H H 4.31 -9.6 

29 H H H3C-H2C-O- H H 4.29 -8.7 

30 H H3C-O- H H3C-O- H 4.64 -9.3 

31 H H3C-O- H3C-O- H3C-O- H 4.50 -8.7 

32 CH3 H H H NO2 4.33 -9.1 

33 Cl Cl Cl H H 4.31 -9.9 

34 Cl H Cl Cl H 4.28 -9.9 

35 Cl H Cl Cl H 4.58 -9.5 

36 H H Br H H 4.31 -9.6 

37 Br H Br H H 4.37 -9.6 

Order R A pIC50 
Binding energy 

(Kcal/mol) 

38 - - 4.44 -10.3 

39 - - 4.36 -9.9 

40 O H 4.73 -8.5 

41 O CH3 4.92 -8.6 

42 S H 4.93 -7.9 

43 - H 4.85 -8 

44 - OH 4.62 -8.2 

45 - NH2 4.87 -8.2 

46 - 4.36 -8.7 

47 - 4.84 

48 O - 4.72 -7.8 

49 S - 4.51 -7.9 

50 - 5.04 -6.9 
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Table 1. (Continued)

51-62 

Order R1 R2 R3 pIC50 
Binding energy 

(Kcal/Mol) 

51 - - 4.54 -7.9 

52 - - 4.59 -9.3 

53 -H2C-CN - - 4.98 -8.2 

54 H - - 4.55 -7.9 

55 - - 5.06 -10.3 

56 - - 4.94 -8.0 

57 5.01 -9.6 

58 - - 4.78 -8.4 

59 - - 4.94 -8.1 

60 - - 4.46 -9.2 

61 - - 4.87 -10.0 

62 - - 4.47 -9.5 

Order R pIC50 
Binding energy 

(kcal/mol) 

63 NH2 4.78 -8.1 

64 4.93 -8.3 

65 4.71 -9.3 

66 H 4.79 -8.2 

67 4.95 -8.3 

68 4.47 -9 
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Table 1. (Continued)

Order R1 R2 pIC50 
Binding energy 

(Kcal/mol) 

69 H OCH3 4.91 -8.2 

70 OCH3 5.05 -8.2 

71 H 5.01 -8.9 

72 5.12 -8.9 

73 H OCH3 4.99 -8.6 

74 OCH3 4.99 -8.6 

75 H 4.99 -8.8 

76 5.05 -9.1 

77 H H 5.42 -9.8 

78 Cl H 5.69 -9.6 

79 CF3 H 6.76 -10.9 

80 -6.85 -10 

81 H 6.79 -9.1 

Hyperchem 8.0 software (Hypercube Inc. 

version 8.0.3) was used to draw the structures 

and optimization by semi-empirical AM1 

calculations and Polak-Ribiere algorithm until 

the root mean square gradient of 0.01 kcal/mol

(20). Molecular volume, molecular surface 

area, hydrophobicity (Log P), hydration energy, 

and molecular polarizability were achieved by 

Hyperchem software. The other descriptors 

such as topological, constitutional, and 

functional descriptors were achieved by the 

Dragon package (version 5.5), developed by the 

Milano chemometrics and QSAR group (21). 

The calculated descriptors are briefly 

introduced in Table 2. Finally, kenardston 

algorithm was used for the classification of the 

data set into calibration and test sets. This 

method is not accompanied by error and 

randomness. 

Data screening and model building 

Stepwise regression SPSS (version 22.0) 

software was used to analyze the experimental 

data to achieve effective descriptors. Then, the 

effective descriptors were hoarded in a data 

matrix that the number of molecules and 

descriptors were collected in rows and columns, 

respectively. Multiple linear regressions 

(MLR), partial least squares (PLS), MLR with 

factor analysis (FA-MLR), and principal 

component regression analysis (PCRA) 

methods were utilized to derive the QSAR 

equations. 

A cross-validation and external test set were 

used to evaluate the model’s stability and 

prediction ability. For this purpose leave-one-

out, leave-group-out were used (34). Also, the 

PLS regression with NIPALS-based algorithm 

existed in the chemometrics toolbox of 

MATLAB software (version 21 Math work 

Inc.) was used to obtain the optimum number of 

factors based on the Harland and Thomas F-

ratio criterion (35). 

Molecular modeling procedure 

3D X-ray crystal structures of EGFR in 

complex with erlotinib (PDB ID: 1M17) were 

selected from Protein Data Bank 

(http://www.rcsb.org) based on the similarity of 

its co-crystal ligand to studied compounds 

(36,37). The structure of studied compounds 

was generated, minimized, and converted to 

pdbqt format. The pdbqt formats of the ligands 

were prepared by adding Gasteiger charges and 

http://www.rcsb.org/
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setting the degree of torsions by the AutoDock 

tools package (1.5.6). For the preparation of 

pdbqt format of protein, we removed cognate 

ligand, water molecules, added missing 

hydrogen atoms, and finally merged non-polar 

hydrogens according to their corresponding 

carbons (38,39). All preparation was performed 

by the AutoDock tools package (1.5.6). 

Docking procedure was done at the grid box 

with a size of 70 × 70 ×70 and the centre of x = 

20.14, y = 0.3, z = 52.2 Å by AutoDock Vina 

(1.1.2) (40). Using an in-house batch script 

(DOCKFACE) (41). The exhaustiveness was 

set to 100, and other docking parameters were 

set as default. The binding interactions of the 

docked compounds and the receptor were 

visualized by a fully automated protein-ligand 

interaction profiler (42). 

Table 2. Brief description of some descriptors used in this study. 

Descriptor type Molecular description 

Chemical 
LogP (octanol-water partition coefficient), hydration energy (HE), polarizability (Pol), molar refractivity 

(MR), molecular volume (V), molecular surface area (SA). 

Constitutional 

Mean atomic van der Waals volume (MV), no. of atoms, no. of non-H atoms, no. of bonds, no. of 

heteroatoms, no. of multiple bonds (nBM), no. of aromatic bonds, no. of functional groups (hydroxyl, 

amine, aldehyde, carbonyl, nitro, nitroso, etc.), no. of rings, no. of circuits, no of H-bond donors, no of 

H-bond acceptors, no. of Nitrogen atoms (NN), chemical composition, sum of Kier-Hall 

electrotopological states (Ss), mean atomic polarizability (Mp), number of rotable bonds (RBN), mean 

atomic Sanderson electronegativity (Me), number of Chlorine atoms (NCl), number of 9-membered 

rings (NR09), etc. 

Topological 

Molecular size index, molecular connectivity indices (X1A, X4A, X2v, X1Av, X2Av, X3Av, X4Av), 

information content index (IC), Sum of topological distances between F..F (T(F..F)), Ratio of multiple 

path count to path counts (PCR), Mean information content vertex degree magnitude (IVDM), 

Eigenvalue sum of Z weighted distance matrix (SEigZ), reciprocal hyper-detour index (Rww), 

Eigenvalue coefficient sum from adjacency matrix (VEA1), radial centric information index, 2D petijean 

shape index (PJI2), mean information index on atomic composition(AAC), Kier symmetry index(S0K), 

mean information content on the distance degree equality (IDDE), structural information content 

(neighborhood symmetry of 3-order) (SIC3), Randic-type eigenvector-based index from adjacency 

matrix (VRA1), sum of topological distances between N..N (T(N..N)), sum of topological distances 

between O..O(T(O..O)), etc. 

Geometrical 

3D-Balaban index (J3D), span R (SPAN), length-to-breadth ratio by WHIM (L/BW), sum of geometrical 

distances between N..N (G(N..N)), sum of geometrical distances between N..O (G(N..O)), sum of 

geometrical distances between O..O (G(O..O)), etc. 

Mol-Walk 
Molecular walk count of order 08 (MWC08), self-returning walk count of order 05 (SRW05), total walk 

count (TWC), etc. 

Burden matrix 

Highest eigenvalue n. 1 of burden matrix / weighted by atomic masses (BEHM1), highest eigenvalue n. 

7 of Burden matrix / weighted by atomic masses (BEHM7), lowest eigenvalue n. 1 of Burden matrix / 

weighted by atomic masses (BELM1), highest eigenvalue n. 1 of Burden matrix / weighted by atomic 

van der Waals volumes (BELV1), highest eigenvalue n. 2 of Burden matrix / weighted by atomic 

Sanderson electronegativities (BEHE2), etc. 

Galvez 
Topological charge index of order 1 (GGI1), topological charge index of order 6 (GGI6), topological 

charge index of order 7 (GGI7), global topological charge index (JGT), etc. 

2Dautocorrelation 

Broto-Moreau autocorrelation of a topological structure - lag 7 / weighted by atomic Sanderson 

electronegativities (ATS7E), Moran autocorrelation -lag 4 / weighted by atomic Sanderson 

electronegativities (MATS4E), Broto-Moreau autocorrelation of a topological structure - lag 3 / 

weighted by atomic Sanderson electronegativities (ATS3E), Broto-Moreau autocorrelation of a 

topological structure - lag 3 / weighted by atomic van der Waals volumes (ATS3V), etc. 

Charge Maximum positive charge (QPOS), partial charge weighted topological electronic charge (PCWTE), etc. 

Aromaticity 
Harmonic oscillator model of aromaticity index, RCI, Jug RC index aromaticity indices, HOMT; HOMA 

total (trial), etc. 

Randic DP0, molecular profile; SP0, shape profile; SHP, average shape profile index; etc. 

RDF 

Radial distribution function - 7.0 / unweighted (RDF070U), radial distribution function - 13.5 / 

unweighted (RDF135U), radial distribution function - 1.0 / weighted by atomic masses (RDF010M), 

radial distribution function - 3.0 / weighted by atomic masses (RDF030M), radial distribution function 

- 4.5 / weighted by atomic masses (RDF045M), radial distribution function - 12.5 / weighted by atomic 

masses (RFD125M), radial distribution function - 2.0 / weighted by atomic van der Waals volumes 

(RDF020V), radial distribution function - 8.5 / weighted by atomic van der Waals volumes (RDF085V), 

radial distribution function - 1.0 / weighted by atomic Sanderson electronegativities (RDF010E), etc. 

3D-MoRSE 
3D-MoRSE - signal 01 / unweighted (MOR01U) (01U,02U,…,32U), 3D-MoRSE - signal 01 / weighted 

by atomic van der Waals volumes (MOR01V) ( 01V,02V,…,32V), ect. 
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Table 2. (Continued) 

Descriptor type Molecular description 

WHIM 

First component symmetry directional WHIM index / weighted by atomic polarizabilities (G1P), second 

component symmetry directional WHIM index / weighted by atomic electrotopological states (G2S), D 

total accessibility index / weighted by atomic van der Waals volumes (DV), etc. 

GETAWAY 

H autocorrelation of lag 1 / lag2/ lag3 weighted by atomic Sanderson electronegativities 

(H1E,H2E,H3E), total information content on the leverage equality (ITH), R maximal autocorrelation 

of lag 3 / lag4 unweighted (R3U+,R4U+), R maximal autocorrelation of lag 6 / weighted by atomic 

masses (R6M+), R maximal autocorrelation of lag 5 / weighted by atomic van der Waals volumes 

(R5V+), R maximal autocorrelation of lag 1 / lag 4 weighted by atomic Sanderson electronegativities 

(R1E+), R maximal autocorrelation of lag 3 / weighted by atomic polarizabilities (R3P+), etc. 

Functional 

Number of total secondary C(sp3) (NCS), number of ring tertiary C(sp3) (NCRHR), number of 

secondary C(sp2) (n=CHR), number of tertiary amines (aliphatic) (NNR2), number of N hydrazines 

(aromatic) (nN-NPH), number of nitriles (aliphatic) (NCN), number of phenols (NOHPH), number of 

ethers (aromatic) (NRORPH), number of sulfures (NRSR), etc. 

Atom-centred 

CHR3 (C-003), CR4 (C-004), X--CR..X (C-034), Ar-C(=X)-R (C-039), R-C(=X)-X / R-C#X / X-=C=X 

(C-040), X--CH..X (C-042), H attached to C1(sp3) / C0(sp2) (H-047), RCO-N< / >N-X=X (N-072),R2S 

/ RS-SR (S-107), etc. 

Connectivity indices X0 (connectivity index chi-0), connectivity index chi-1 (x1), average connectivity index chi-0 (XOA) 

Information indices Uindex (Balaban U index), IC0 (information content index), TIC0 (total information content index) 

Edge adjacency indices EEig01x (eigen value 01), EEig01r (eigen value 01 from edge) 

Eigenvalue-based 

indices 

Eig1v (leading eigenvalue from van der Waals weighted distance matrix), SEigm: eigenvalue sum from 

mass-weighted distance matrix eigen value-based indices 

RESULTS 

MLR analysis 

The resulted QSAR models from different 

types of descriptors for the compounds (65 

molecules as calibration and 16 molecules as 

prediction sets) are listed in Table 3. The 

stepwise selection was used to achieve MLR 

analyses. 

Table 4 includes the statistical parameters of 

prediction that indicate the suitability of the 

proposed QSAR model based on MLR analysis 

of molecular parameters. The correlation 

coefficient of prediction is 0.97, which means 

that the resulted QSAR model could predict 

97% of variances in the anti-breast cancer 

activity data. It has a root mean square error 

(RMSE) of 0.21. 

Genetic algorithm-PLS analysis 

Genetic algorithm (GA) method was used to 

select the variable to find more effective 

descriptors to improve the performance of PLS 

analysis. The data set (n = 81) was disported in 

calibration (n = 65) and prediction set (n = 16) 

groups. A cross-validation procedure was used 

to achieve the optimum number of latent 

variables for each PLS model. In this work, 

many different GA-PLS runs were conducted 

using the different initial set of populations (50-

250), therefore, the most convenient GA-PLS 

model that resulted in the best fitness contained 

15 descriptors including six constitutional 

descriptors (nI, nR10, nBnz, nArX, nO, nX), 

five functional descriptors (n ROR, nC=S, 

npyridine, nHAcc, nArNO2), one chemical 

(SA), one resource description framework 

(RDF) parameter (RDF115v), one 2D 

autocorrelation parameter (MATS3m), and one 

charge (Qneg) parameter. The majority of these 

descriptors are constitutional indices. All of 

them being those obtained by different MLR-

based QSAR models. The PLS estimate of the 

regression coefficients is shown in Fig. 2.  

In order to investigate the relative 

importance of the variable that appeared in the 

final model, the variable important in projection 

(VIP) was employed (43). VIP values reflect 

the importance of terms in the PLS model. 

According to Erikson et al. X-variables 

(predictor variables) could be classified 

according to their relevance in explaining y 

(predicted variable), so that VIP > 1.0 and VIP 

< 0.8 mean highly or less influential, 

respectively, and 0.8 < VIP< 1.0 means 

moderately influential (Fig. 3).
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Table 3. The results of multiple linear regressions analysis with different types of descriptors. 

Equations Descriptors Positive effect Negative effect R2 F Q2 SE 

Eq1 Constitutional 
nF, nO, nCl, nI, nX, 

nAB, nR10, nR06 
0.91 218.993 0.87 0.47 

Eq2 
Topological 

descriptors 
T(O..O), PCR, Jhetv 

T(O..I), JhetZ, 

SEigv, piID, T(F..I) 
0.94 118.01 0.92 0.40 

Eq3 BCUT descriptors - BEHm1 0.89 514.932 .088 0.52 

Eq4 
Galvz topol. charge 

in dices 
JGI2, JGI5 JGI4, JGI6, GGGI3 0.72 31.46 0.68 0.86 

Eq5 2D autocorrelations 

MATS6m 

GATS4p 

ATS7m 

GATS1p 

MATS1m 

MATS1p 

GATS1m 

ATS4e 

ATS3m 

ATS8e 

MATS3m 

0.96 114.44 0.93 0.35 

Eq6 
Geometrical 

descriptors 

G(N..O) 

G(N..S) 

G(N..F) 

G(O..I) 

G(N..I) 

G(O..F) 

0.91 100.78 0.73 0.49 

Eq7 RDF descriptors 

RDF115v 

RDF120m 

RDF020u 

RDF020m 

RDF140v 
0.94 161.59 0.92 0.39 

Eq8 
3D MoRSE 

descriptors 

Mor11m 

Mor03m 

Mor28m 

Mor04v 

Mor15m 

Mor26v 

Mor04m 

Mor13v 

Mor10m 

0.92 72.61 0.88 0.47 

Eq9 WHIM descriptors E1s E1m, Am 0.87 145.88 0.85 0.56 

Eq10 
GETAWAY 

descriptors 
R3v+ 

R3p+ 

R8v+ 
0.88 156.77 0.4 0.55 

Eq11 
Fuctional group 

counts 

n=CHR, nCb, nArX, 

nArNO2,  nN-N, nROR, 

nSO2, nHAcc 

nCONR2, nC=S, 

npyridine 
0.82 54.33 0.77 0.69 

Eq12 
Atom-centred 

fragments 

C-016 

O-058 

I-099 

C-034 

C-024 

C-030 

0.97 322.25 0.96 0.28 

Table 4. Statistical parameters for testing prediction ability of the MLR, GA-PLS, PCR, and FA-MLR models 

RMSEp R2p RMSEcv R2
LOOCVR2Model 

0.21 0.97 0.2809 0.9687 0.97 MLR 

0.2125 0.9365 0.2788 0.9692 0.9803 GA-PLS 

0.25 0.95 0.4515 0.919 0.93 PCR 

- 1.00 0.2809 0.9687 0.97 FA-MLR 

MLR, Multiple linear regressions; GA-PLS, genetic algorithm-partial least squares; PCR, principal component 

regression; FA-MLR, MLR with factor analysis; R2, regression coefficient for calibration set; R2
LOOCV, regression 

coefficient for leave one out cross-validation; RMSEcv, root mean square error of cross-validation; R2p, regression 

coefficient for prediction set; RMSEp: root mean square error of prediction set. 

FA-MLR and PCRA 

In FA-MLR analysis, Factor Analysis was 

used to decrease the number of variables and 

also to identify the effective predictor variables 

and to decrease collinearities between them 

(44). PCRA was tried for the dataset along with 

FA-MLR (45). In this method, factor scores, as 

obtained from FA, were used as the predictor 

variables (44). 

Based on the process explained in the 

experimental part, the following five-

parametric equation is shown in Table 5. 

Y= 4.752(± 0.170) + 3.237 (± 0.122) nI +1.814 (± 0.294) 

(1) 

n = CHR + 0.134 (± 0.030) nO-O.069 (± 0.17) nCONR2 

+ 0.064 (± 0.027) nN-N 

R2  = 0.97; S.E = 0.24; F = 25.18; Q2 = 0.96; RMScv = 0.11 
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Fig. 2. Partial least squares regression coefficients for the 

variables used in the genetic algorithm-partial least 

squares model. 

Fig. 3. Plot of VIP for the descriptors used in genetic 

algorithm-partial least squares model. VIP, variables 

important in projection. 

Table 5. The results of multiple linear regressions analysis with factor analysis with different types of descriptors 

Models 

Unstandardized 

coefficients 

Standardized 

coefficients t Sig. R2 F Q2 SE 

B SE Beta 

Constant 4.752 .170 27.892 .000 0.97 25.18 0.9687 0.24 

nI 3.237 .122 .999 26.493 .000 

n=CHR 1.814 .249 .307 7.290 .000 

nO .134 .030 .116 4.533 .000 

nCONR2 .069 .017 -.126 -4.021 .000 

nN-N .064 .027 .080 2.342 .023 

Table 6. The results of principal component regression analysis. 

Unstandardized 

coefficients 

Standardized 

coefficients t Sig. R2 F Q2 SE 

B SE Beta 

(Constant) 3.866 .054 70.939 .000 0.93 23.354 0.91 0.42 

F1 -1.321 .051 -.887 -26.049 .000 

F4 .361 .049 .250 7.372 .000 

F2 -.420 .053 -.270 -7.940 .000 

F3 -.319 .055 -.197 -5.761 .000 

This equation could explain about 97% of 

the variance and predict 96% of the variance in 

pIC50 data. It has an RSME of 0.15.                               

This equation describes the effect of             

functional, constitutional and so on descriptors 

(nI, n = CHR, nO-O, nCONR2 and nN-N) on 

anti-breast activity of the studied molecules. 

Multiple regression equation using stepwise 

selection method (PCRA), the following 

equation was gained (Table 6). 

Y = 3.866 (± 0,054) - 1.321 (± 0.51) F1 + 0.361 (± 0.049) 

F4 - 0.420 (± 0.053) F2 - 0.319 (± 0.055) F3                   (2) 

R2 = 0.93; S.E. = 0.42; F = 23.35; Q2 = 0.91; RMScv = 

0.19 

This equation could explain and predict 93% 

and 91% of the variances in pIC50 data, 

respectively. The RSME of PCRA analysis was 

0.19. PCRA equation is better than those 

derived from FA-MLR. While the data of this 

analysis showed acceptable prediction, we 

observed that the predicted values of some 

molecules are near to each other. 

As it is shown in Table 5, in the case of each 
factor, the loading values for some descriptors 
are much higher than those of the others. These 
high values for each factor indicate that this 
factor delivers higher information about each 
index. It should be noted that all factors have 
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information from all descriptors but the 
contribution of the descriptor in different 
factors are not equal. For example, factors 1 and 
2 have higher loadings for the chemical, atom-
center, constitutional, functional, BCUT 
(modified burden eigenvalues) information, 
geometrical, 2D autocorrelations, and Walk and 
path counts indices whereas information about 
the weighted holistic invariant molecular 
(WHIM descriptor), connectivity indices, 3D 
MoRSE descriptors and functional descriptors 
are highly combined in factors 3 and 4. 

To assess the robustness and applicability 
domain of all gained models, leverage as 
standard procedures was used (Table 7). 
Warning leverage (h*) is another criterion to 
explain results. Leverage greater than warning 
leverage h* means that the predicted response 
is the result of substantial extrapolation of the 
model and therefore may not be reliable (46).  

Docking studies 

Molecular docking simulation is the 
computational method of ligand binding to a 
receptor that indicates the affinity of the 
binding ligand to the active site of the target. 
Quinazoline derivatives are well-known as 
EGFR inhibitors (47). So, the docking study 
was done for EGFR kinase to predict the 
binding modes, affinities, and orientation of 
ligands at the active sites of the enzyme. In the 

present research, molecular docking 
simulations were done on 81 molecules of data 
set as well as 30 designs of new compounds. 
The docking method was verified by docking of 
co-crystallized ligand (erlotinib) in EGFR 
active site and comparison of the results 
between docked and crystallized erlotinib 
conformations. RMSD of docking for erlotinib 
in comparison with its coordination in the 
crystal structure was 1.07. The free energy 
binding of docked compounds is summarized in 
Table 1. 

Docking study on EGFR 

All investigated complexes showed better 
docking binding energies than the reference 
drug (erlotinib) with a binding energy value of 
-5.8 kcal/mol which showed a good correlation 
with QSAR results, it means almost that the 
compounds with the lowest IC50 have the 
highest binding energy. The docked 
conformation of protein crystal structure 
(1M17) with erlotinib and three other 
quinazoline derivatives (33, 55, and 79), which 
possess strong binding energy, are shown in 
(Fig. 2). As depicted in Fig. 4, the nitrogen atom 
of the quinazoline moiety in compound 33 
binds to the Thr 766 via hydrogen bond 
interactions, and some hydrophobic 
interactions with the residues Lys 721, Ala 719, 
Leu 764, Met 769, and Leu 820 were observed. 

Table 7. Leverage (h) of the external test set molecules for different models. The last row (h*) is the warning leverage. 

FA-MLR PCR GA-PLS MLR Order 

0.087362 0.032966 0.140646 0.06361 10 

0.140623 0.06082 0.347163 0.074537 16 

0.055034 0.01619 0.152778 0.040178 34 

0.017237 0.038652 0.295696 0.040848 40 

0.018789 0.04964 0.370464 0.044381 42 

0.044838 0.041538 0.781316 0.091655 43 

0.02379 0.0391 0.294866 0.05129 48 

0.017309 0.05183 0.386286 0.039529 49 

0.042804 0.046114 0.598925 0.058363 51 

0.051489 0.038749 0.238978 0.075355 61 

0.036154 0.026166 0.241746 0.025045 65 

0.037855 0.020783 0.154907 0.054479 66 

0.047063 0.042428 0.51316 0.057342 67 

0.032708 0.016021 0.350891 0.037762 72 

0.134198 0.077436 0.391798 0.094482 73 

0.123573 0.025299 0.191118 0.075483 h* 

FA-MLR, Multiple linear regressions with factor analysis; GA-PLS, genetic algorithm-partial least squares; PCR, 

principal component regression.  
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Fig. 4. The main interaction between the active site of epidermal growth factor receptor (PDB ID: 1M17) with compounds 

33, 55, 79, and erlotinib.  

In compound 55, the nitrogen atom formed 

hydrogen bond interaction with Thr 766 and the 

phenyl ring formed pi-stacking interaction with 

Phe 699 and also there is some hydrophobic 

interaction with Val 702, Leu 764, and Leu 694. 

Compound 79 can be summarized by hydrogen 

bond interactions with Glu 738 and Thr 830 and 

the pi-cation interaction between quinazoline 

ring and Lys 721. Also, interaction with Leu 

699, 764, 766, 820, Val702, and Ala 719. To 

explain the binding mode of erlotinib, in brief, 

it should be announced that the oxygen atom of 

the erlotinib chain formed a hydrogen bond via 

Cys 733. In addition, pi-stacking interaction 

between the phenyl ring and Phe 699 was 

observed. 

In silico screening 

In silico methods can help to discover newly 

designed drugs before synthesized and offers a 

lot of benefits such as cost savings, time-

consuming, and increase the speed of predict 

and achieve new pharmaceutical compounds. 

Virtual screening is a computational technique 

to search active compounds from very large 

libraries by the effect of structural modification 

on binding energy and biological activity 

at the parent molecule. A new compound 

designed according to the best QSAR 

model and binding energy from docking 

simulation. We used the important descriptors 

selected in the GA-PLS model to design 

new active compounds because the GA-PLS 

model has the greatest statistical 

parameters. The in  silico screen was applied by 

substituting different groups in different     

places. We also analyzed the robustness 

and applicability domain of the model by 

calculation of leverage value on the whole

data set. The warning leverage (h*) was 

found to be 0.66 and it is cleared that 

all of the compounds have a smaller leverage 

value (h) than warning leverage (h*). 

The results of this investigation are summarized 

in Table 8. We designed 30 compounds

(Q1-Q30) and biological activities based on the 

GA-PLS equation were achieved. And also, 

docking binding energy was obtained. From the 

results, the Q14 has the best activity and have a 

good candidate for anticancer agents. 
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Table 8. Structural modification of studied compounds and their predicted activities and docking binding energies 

for epidermal growth factor receptor inhibitory based on genetic algorithm-partial least squares equation. 

Order Structures pIC50 leverage BE Order Structure pIC50 leverage BE 

Q1 5.42 0.4024 -9 Q16 5.39 0.1879 -10.3 

Q2 5.53 0.3517 -9.4 Q17 5.46 0.2763 -10.4 

Q3 5.14 0.2613 
-

10.1 
Q18 5.35 0.2763 -10.2 

Q4 5.04 0.2501 -9.5 Q19 5.29 0.4785 -10.2 

Q5 5.56 0.3908 -9 Q20 5.23 0.4925 -10.1 

Q6 5.32 0.1202 
-

10.1 
Q21 5.08 0.4337 -10 

Q7 5.45 0.2376 Q22 5.57 -10.3 

Q8 5.16 0.4408 -9.3 Q23 5.04 0.415 -10.1 

Q9 5.18 0.2422 -8.7 Q24 6.06 0.4467 -10.6 

Q10 5 0.1207 -8.8 Q25 5.85 0.458 -10.3 
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Table 8. (Continued) 

Order Structures pIC50 leverage BE Order Structure pIC50 leverage BE 

Q11 5.12 0.1676 -9 Q26 5.71 0.2092 -9.6 

Q12 5.52 0.2379 -9.1 Q27 5.29 0.497 -9.6 

Q13 5.33 0.2425 -8.9 Q28 5.57 0.0593 -9.9 

Q14 7.02 0.2526 
-

10.7 
Q29 5.34 0.4062 -9.8 

Q15 5.27 0.0157 -8.5 Q30 5.08 0.1926 -9 

BE, Binding energy. 

Table 9. Physicochemical properties of some potent designed compounds. 

Entry MW LogP HBD HBA TPSA (A2) n-RB Lipinski violation 

Q1 430.7 7.82 1 3 47.04 4 1 

Q5 558.58 9.6 1 2 37.81 3 2 

Q7 385.22 6.05 0 3 34.89 2 1 

Q14 445.86 3.03 3 8 137.69 10 0 

Q17 344.75 4.25 2 6 99.36 5 0 

Q24 661.34 6.35 2 7 124.81 7 1 

Q25 661.34 7.51 0 7 95.99 7 2 

Q28 613.45 8.92 1 5 73.34 8 2 

Rule of Lipinski ≤ 500 ≤ 5 ≤ 5 ≤ 10 ≤ 140 ≤ 10 ≤ 1 

MW, Molecular weight; LogP, logarithm of partition coefficient between n-octanol and water; HBD, number of 

hydrogen bond donors; HBA, number of hydrogen bond acceptors; TPSA, topological polar surface area; nRB, number 

of rotatable bonds. 

ADME and drug-likeness properties of 

designed compounds 
The physicochemical properties of some 

potent designed compounds were calculated by 

http://www.swissadme.ch/, and the results are 

shown in Table 9. The molecular weight of 

compounds (Q7, Q14, and Q17) was in the accepted 

range. The log P of hit compound Q14 values is 

lower than 5 and displayed that it has desire 

lipophilicity. Furthermore, the hydrogen bond 

properties and total polar surface area, and 

rotatable bond number of compound Q14 is within 

the acceptable limit. Generally, the data indicated 

that compound Q14 followed Lipinski’s rule of 

five and Veber rule. The drug-likeness and 

absorption, distribution, metabolism, and 

excretion (ADME) properties of some potent 

compounds were derived from the preADMET 

online server (http://preadmet.bmdrc. org/). ADME 

properties including human intestinal absorption, 

in vitro caucasian colon adenocarcinoma cell 

permeability (Caco-2), skin permeability, in vitro 

plasma protein binding, and in vivo, blood-brain 

barrier penetration are shown in Table 10.  

http://www.swissadme.ch/
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Table 10. In silico absorbance distribution metabolism and excretion of some potent designed compounds. 

Entry 

Absorption Distribution 

HIA (%) 
In vitro Caco-2 cell 

permeability (nm/s) 

In vitro skin permeability 

(log Kp, cm/h)  

In vitro plasma 

protein bonding 

(%) 

BBB (%) 

Q1 97.04 53.01 -2.3 100 5.21 

Q5 95.01 50.94 -2.3 100 17.15 

Q7 99.17 49.64 -2.7 99.07 0.52 

Q14 93.46 19.86 -4.09 80.06 0.01 

Q17 95.37 19.39 -3.4 97.64 0.05 

Q24 98.29 1.52 -2.5 94.6 1.39 

Q25 98.69 20.73 -1.7 100 4.39 

Q28 97.88 45.44 -1.8 92.56 0.34 

HIA, Human intestinal absorption; BBB, in vivo blood-brain barrier penetration. 

Human intestinal absorption analysis 

indicated that hit compound Q14 indicated well 

human intestinal absorption, which causes 

quick absorption from the intestine to the 

bloodstream. The Caco-2 permeability 

parameters suggest that compound Q14 has 

moderate permeability for penetration to 

biological membranes. Moreover, compound 

Q14 binds moderately to plasma proteins, so it 

may be used as an oral dosage form. It has low 

blood-brain barrier penetration; so, it has a low 

neurotoxicity effect. 

DISCUSSION 

In MLR analysis the equation 1 (Table 2) 

explained the effect of constitutional 

descriptors on the cytotoxicity activity of these 

compounds. It showed that increasing the 

numbers of substitution halogen atoms (nF, 

nCl, nI) on the compounds results in an activity 

enhancement, such as molecular series 6-7, 9-

14. It also showed that the iodine substitution

on the 6th position of quinazoline ring would 

have better activity. It also explains the positive 

effect nR10 and nR06 (number of 6-membered 

rings) such as phenyl ring on activity (such as 

molecule series 19-24, 25-30, and 33-37 have 

good activity). This equation also showed the 

effect of O numbers on the activity. The Keto 

group on the quinazoline ring has better activity 

than thio keto group on the ring (molecules 

number 50 has low activity). It also explains the 

positive effect of nDB (number of double 

bonds) on the activity. Quinazoline and phenyl 

ring have multiple double bonds. 

The result of the topological group counts 

parameter on cytotoxicity activity of the studied 

molecules has been introduced by equation 2 of 

Table 2. It showed that among the topological 

descriptors T (O. O), PCR, and JhetV have 

positive effects and T (O..I), JhetZ, SEigv, 

piID, and T(F..I) have negative effects on 

cytotoxic activity of the compounds.  

The equations 3-12 of Table 3 demonstrated 

the positive and negative effects of BCUT, 

Galvz topological, 2D autocorrelations, 

geometrical, RDF, 3D MoRSE, WHIM, 

GETAWAY, functional, and atom-centered 

fragments on the anti-breast cancer activity of 

these compounds. The MLR equation of Table 

2 obtained from the pool of functional groups 

descriptors, E11, explained the positive impact 

of the nCb (presence of benzene ring, especially 

with halogen atoms such as F and, Cl, is good 

for example compounds 33-37) n = CHR, nArX 

(number of X on the aromatic ring for example 

phenyl ring), nArNO2 (number of nitro groups 

(aromatic)), nN-N(number of N hydrazines), 

nROR (number of ethers), nSO2 (number of 

sulfone compounds 19-21), nHAcc(number of 

acceptor atoms for H-bonds (N, O, F) ) on the 

anticancer activity. The nCONR2 (number of 

tertiary amides compound 2), nC=S (number of 

thioketo compound 42), npyridine (number of 

pyridines compound 21) had negative compacts 

on the anti-breast cancer activity. The negative 

sign of this group proposed that a decrease in 

the number of these descriptors resulted in an 

activity enhancement. This equation, which has 

a high statistical quality (R2 = 0.97, Q2 = 0.96). 

The model extracted from PLS model has a 

high cross-validation statistic, and it also 

represents a high ability for modelling external 

test samples. It could explain and predict about 

93% of variances in the cytotoxic activity of the 
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studied molecules. There is a close agreement 

between the experimental and predicted values 

of anticancer activity data to evaluate the 

significance of the 15 selected PLS descriptors 

in the protein tyrosine kinase inhibitory 

activity. The VIP analysis of PLS equation is 

shown in (Fig. 2). As it is observed, nArX, nI, 

Qneg, nROR, and nArNO2 indices represent the 

most significant contribution in the resulted 

QSAR model. In addition, functional group 

parameters such as nO, n BnZ, and MATS3m 

are moderately influential parameters. The 

calculated leverage values of the prediction set 

samples for all models and the warning 

leverage, as the threshold value for accepted 

prediction, are shown in Table 6. As seen, the 

leverages of all test samples were lower than h* 

for all models. This means that all the predicted 

values were acceptable. 

Finally, the FA-MLR and PCRA results 

shown in Table 11, demonstrate the four-factor 

loadings of the variables (after VARIMAX 

rotation) for the compounds tested for cytotoxic 

activity. As it is observed, about 62% of 

variances in the original data matrix could be 

explained by the selected four factors.  

Table 11. Numerical values of factor loading numbers 1–4 for descriptors after varimax rotation 

Descriptors 
Components 

Descriptors 
Components 

1 2 3 4 1 2 3 4 

SA1 .086 .717 .458 -.045 G(N..I) .714 .556 .214 -.016 

nO .263 .879 .058 -.074 G(O..F) .136 -.052 .014 .677 

nF .052 -.030 .011 .729 G(O..I) .722 .590 .157 -.048 

nI .878 .359 .216 -.034 RDF020u -.028 .765 .240 .061 

JhetZ -.131 -.381 -.761 -.354 RDF020m .870 .378 .232 -.027 

Jhetv -.395 -.576 -.600 -.132 RDF080m .361 .672 .376 -.118 

SEigv -.180 -.886 -.051 -.180 RDF120m .119 .189 .143 .310 

piID .167 .334 .673 .307 RDF115v -.066 .499 .442 .255 

PCR .019 .107 .647 .576 RDF140v -.081 .437 .154 -.059 

T(O..O) .243 .887 -.026 -.030 Mor03m -.759 -.184 -.291 .134 

T(O..I) .678 .621 .144 -.041 Mor04m .662 .248 -.124 .057 

T(F..I) .281 -.078 .012 .245 Mor10m .452 .538 .293 .077 

MWC04 .239 .610 .670 .007 Mor11m -.780 -.313 -.210 .060 

SRW05 .419 .212 .298 -.088 Mor15m -.130 .129 .586 -.021 

BEHm1 .893 .324 .236 -.043 Mor28m -.634 -.053 -.099 .161 

GGI3 .199 .611 .346 -.151 Mor04v -.054 .193 -.512 -.012 

JGI2 -.116 -.009 -.721 .198 Mor13v -.364 -.394 -.555 -.307 

JGI4 .260 .123 -.594 -.412 Mor26v -.092 -.280 -.518 -.123 

JGI5 -.142 .170 -.231 -.391 E1m .906 .190 .108 .089 

JGI6 .612 .212 .168 -.317 E1s -.056 .218 -.173 .733 

ATS3m .830 -.042 -.116 -.014 Am .335 .636 .476 .098 

ATS7m .845 .075 .227 -.028 R8v .468 .245 .647 -.186 

ATS4e .451 .450 -.276 .080 R3v+ .750 -.084 .102 .161 

ATS8e .471 .615 .074 -.026 R3p .479 .316 .554 .118 

MATS1m .733 -.165 -.223 .161 nCp -.668 .075 -.090 -.312 

MATS3m -.339 -.169 -.052 .342 nCrH2 .102 .104 .167 -.206 

MATS6m .278 .263 -.227 .462 n=CHR -.282 -.001 .227 .755 

MATS1p -.091 -.333 -.284 -.001 nCONR2 .636 .399 .035 -.096 

GATS1m .854 .272 .216 -.122 nROR .328 .405 .357 -.072 

GATS1p -.866 .263 .017 -.018 C-016 -.222 .013 .351 .694 

GATS4p -.549 -.243 -.008 .311 C-024 .157 .092 .866 .147 

Qneg .107 .861 .269 .003 C-030 -.251 .067 .052 .725 

SHP2 -.136 -.562 -.724 -.074 C-034 .161 .045 .425 -.108 

G(N..O) .033 .941 .034 .060 O-058 .217 .861 -.083 -.027 

G(N..S) .081 .554 -.056 -.002 I-099 .878 .359 .216 -.034 

G(N..F) .007 -.009 .001 .743 %Variance 22.449 18.603 12.759 8.368 



QSAR and in silico studies of quinazoline analogues 

543 

The results of the docking studies indicated 

that the important amino acid in the active site 

of EGFR enzyme is Thr 766, Val 719 and 702. 

The majority interaction of studied compounds 

are hydrogen bond between substituent at 

quinazoline moiety with Thr 766 and the pi-

hydrogen bond between receptor and phenyl 

group of ligands. Molecular docking 

simulations were also applied to the newly 

designed compounds to obtain binding        

mode and energy with EGFR target.                         

The physicochemical and ADME properties 

of the designed compounds were also predicted. 

It was indicated that these compounds                    

were compatible with the Lipinski and                 

Veber rules and have desired pharmacokinetic 

characteristics. In future studies, 30                          

newly designed quinazoline compounds               

will be synthesized and subjected to cytotoxic 

laboratory evaluation. 

CONCLUSION 

The quantitative relationship between 

molecular descriptor and cytotoxic activity of 

different quinazoline derivatives was 

discovered by different chemometrics methods, 

such as MLR, FA-MLR, PCR, and GA-PLS. 

The reliability, accuracy, and predictability of 

the proposed models were evaluated by RSME 

of cross-validation, cross-validation, and the 

RMSE of prediction. A static comparison 

between different QSAR methods indicated 

that GA-PLS represented a good relationship 

between the chemical structure of quinazoline 

and anticancer activity for MCF-7 cell line. 

This study suggested that constitutional 

descriptors, functional descriptors, chemical, 

RDF parameter, 2D autocorrelation parameter, 

and charge parameter descriptors of molecules 

were important for the prediction of anticancer 

activity of quinazoline derivatives. In silico 

screening was employed to discover new 

compounds such as Q14, with good potential 

inhibitory as anticancer agents and suggested to 

be synthesized, furthermore, ADME and drug-

likeness properties of designed compounds 

indicated that compound Q14 is compatible with 

Lipinski and Veber rules and has desired 

pharmacokinetic properties. Also, the binding 

energy of docking simulation showed a desire 

correlation with QSAR and experimental data. 
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