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Abstract: Probiotics are living microbes that play a significant role in protecting the host in various
ways. Gut microbiota is one of the key players in maintaining homeostasis. Cancer is considered
one of the most significant causes of death worldwide. Although cancer treatment has received
much attention in recent years, the number of people suffering from neoplastic syndrome continues
to increase. Despite notable improvements in the field of cancer therapy, tackling cancer has been
challenging due to the multiple properties of cancer cells and their ability to evade the immune
system. Probiotics alter the immunological and cellular responses by enhancing the epithelial barrier
and stimulating the production of anti-inflammatory, antioxidant, and anticarcinogenic compounds,
thereby reducing cancer burden and growth. The present review focuses on the various mechanisms
underlying the role of probiotics in the prevention and treatment of cancer.

Keywords: probiotics; immunomodulation; metastasis; biotherapy; oncogene kinase

1. Introduction

The term “probiotics” has a Greek origin and it literally means “for Life” [1]. The
term was coined by Lilley and Stillwell in 1965 [2]. Fermented products, such as cheese,
bread, wine, beer, and kefir, were widely used for their nutritional and therapeutic benefits
long before the identification of probiotics [3]. Elie Metchnikoff, a Nobel laureate, was
the first scientist to describe probiotics. He hypothesized that manipulating the intestinal
microbiome with host-friendly bacteria would confer health benefits and delay senility [4].
He also considered Lactobacillus as a probiotic [1]. Hence, the credit of pioneering probiotics
research is eternally devoted to Elie Metchnikoff. The Food and Agricultural Organization
(FAO) defines probiotics as “live microorganisms which, when consumed in adequate
amounts, confer beneficial health effects on the host” [5]. The human gastrointestinal tract
is a reservoir of a complex and dynamic population of microorganisms (the gut microbiota),
which mainly comprises bacteria (in number over 1014) and exerts a significant influence on
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the host during homeostasis and disease. The presence of such an abundance of intestinal
bacteria contributes to the human body, having approximately ten times more prokaryotic
cells than eukaryotic cells [6]. In recent years, studies on the use of probiotics for the
prevention and treatment of human diseases have gained momentum [7].

1.1. Characteristics of Probiotics

Several researchers have documented the characteristics microorganisms should have
to be effective probiotics (Figure 1). Briefly, probiotics:
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1.2. Sources and Types of Probiotics

Several kinds of probiotics have been identified from different sources during the past
decade. According to Śliżewska et al. [6], an organism identified as a probiotic usually
belongs to the genera of bacteria or fungi, including Lactobacillus, Pediococcus, Propioni-
bacterium, Leuconostoc, Streptococcus, Enterococcus, Bifidobacterium, Bacillus, Saccharomyces
cerevisiae, Candida pintolopesii, Aspergillus oryzae, and Aspergillus niger. Lactic acid bacteria
(LAB) are one of the most widely used probiotics [15]. Among LAB, Bifidobacterium and
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Lactobacillus are the most important microbes [16]. These probiotic microorganisms are
isolated from different sources [6], such as vegetables, beef, salted crab, seafood, soybeans,
yogurt, cheese, milk, kefir, human breast milk, barley, oat groats, molasses, grains, ma-
rine fish, smoked salmon, cabbage, wheat flour, sourdough, dairy products, chicken crop,
porcine, and mangroves.

2. Probiotics and Cancer

Probiotics are used to treat several health conditions, such as dermatitis, inflammation,
halitosis, diarrhoea, irritable bowel syndrome, hypercholesterolemia, obesity, urogenital
infections, and cancers [17]. In particular, probiotics have gained attention due to their abil-
ity to modulate cancer signalling (Figure 2) [18]. Notably, probiotics can modulate cancers
via the (a) induction of apoptosis [19], (b) inhibition of mutagenic activity [20], (c) down-
regulation of oncogene expression [21], (d) induction of autophagy [22,23], (e) inhibition
of kinases [24], (f) reactivation of tumour suppressors [25], and (g) prevention of metas-
tasis [26]. The anticancer properties of probiotics are mainly attributed to metabiotics
(Figure 3). The term “metabiotics” refers to the structural components of probiotic microor-
ganisms, their metabolites, and signalling molecules having a defined chemical structure
that can optimize host-specific physiological functions as well as regulatory, metabolic, and
behaviour reactions associated with the activity of the host [27].
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Figure 2. Schematic representation of mechanisms underlying the prevention or treatment of cancer
using probiotics. The strategies include apoptosis, antimutagenic activity, down regulation of onco-
gene expression, autophagy induction in tumor cells, kinase inhibition, immune modulation, tumour
gene suppressor reactivation, and antimetastatic property. Created with BioRender.com, accessed on
28 December 2021.
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Figure 3. Schematic representation of the metabiotics of probiotics. The metabiotics of probiotics
can be divided in two types: (a) Structural components include surface proteins, capsular polysac-
charide, flagella, pili, lipoteichoic acid, and lipopolysaccharide. (b) Metabolic components include
extracellular proteins, short-chain fatty acids, extracellular vesicles, bacteriocin, and indole. Created
with BioRender.com, accessed on 28 December 2021.

The structural components of probiotics include surface layer proteins, capsular
polysaccharides, flagella, pili, lipoteichoic acid, and lipopolysaccharides. These struc-
tural components constitute microbe-associated molecular patterns [28]. The metabolites
produced by the probiotics include secreted proteins (extracellular proteins), hydrogen
peroxide, indole, extracellular vesicles, short-chain fatty acids, and bacteriocins [29].

3. Role of Probiotics in Apoptosis Induction

Several reports suggest that probiotics inhibit tumorigenesis and cancer progression
via apoptosis, but only a few studies have deduced the exact mechanism underlying
apoptosis induction. According to Pfeiffer and Singh (2018), apoptosis is a promising
target for cancer therapy [30]. Apoptosis is a form of cell death in which a “suicide”
program is triggered, leading to DNA fragmentation, cytoplasm reduction, membrane
changes, and cell death without lysis or damaging neighbouring cells [31]. The inhibition
of tumour growth is one of the main functions of apoptosis [32]. Three interconnected
pathways—mitochondrial/intrinsic pathway, death receptor/extrinsic pathway, and per-
forin/granzyme pathway—are involved in apoptosis [33]. The genes involved in apoptosis
are tumour necrosis factor (TNF), inhibitors of apoptosis proteins, caspases, B cell lym-
phoma (Bcl)-2, and p53 gene [34]. Several reports indicate that probiotics induce apoptosis
in cancer cells by modulating Bax/Bcl-2 and caspases [35,36] (Figure 4). In addition, col-
icin, a bacteriocin isolated from Escherichia coli, was found to have anticancer activity,

BioRender.com


Life 2022, 12, 59 5 of 19

resulting in the formation of minute pores on the plasma membrane [37]. These pores
induce apoptosis and cause cell cycle arrest in the G1 phase. Preet et al. demonstrated
the synergistic effect of nisin in combination with doxorubicin. They found that nisin and
doxorubicin reduce the tumour volume by 66.82% in mice when compared with the un-
treated control [38]. Konishi et al. [39] analysed the probiotic-derived tumour-suppressive
molecule ferrochrome, which has the ability to inhibit colon cancer progression via c-jun
N-terminal kinase (JNK)-mediated apoptosis. Moreover, conjugated linoleic acid, a func-
tional lipid produced by Lactobacillus plantarum (LPCLA), mediated apoptosis in breast
cancer cells via the downregulation of the NFκB pathway [40]. Lactobacillus acidophilus
and Bifidobacterium bifidum showed increased cytotoxic effects against breast and colon
cancer cell lines by upregulating Bax, IFN-γ, and TNF-α expression and downregulating
Bcl2 expression [41]. Further L. acidophilus induces apoptosis by increasing the mRNA
expression of survivin and decreasing the mRNA expression of SMAC [42]. Lactobacillus
casei significantly increases the expression of the hBD-2 gene in the cancer colon cell line
HT29 [43]. Joo et al. reported that nisin induced apoptosis and reduced proliferation in
HNSCC cells by increasing intracellular calcium, inducing cell cycle arrest, and activating
cation transport regulator homolog 1 (Chac1) [44]. Jan et al. found that mitochondrial pore
formation pathways induce apoptosis through caspase activation. Additionally, a study
revealed that Propionibacterium caused apoptosis in colorectal carcinoma cells via the action
of short-chain fatty acids on the mitochondria [45]. Overall, researchers continue to explore
the apoptotic potential of probiotics on cancers. The field of probiotics-induced apoptosis
research is rapidly progressing. Although many apoptotic proteins have been discovered,
their molecular mechanisms of action largely remain unknown.
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Figure 4. Flowchart representing the mechanism of apoptosis induction by probiotics via the modu-
lation of Bax/Bcl-2 and caspases. Bax: Bcl-2-associated X protein; Bcl-2: B cell lymphoma 2; MAPK:
mitogen-activated protein kinase; PTEN: Phosphatase and TENsin homolog deleted on chromo-
some 10; and NFkB: nuclear factor kappa-light-chain-enhancer of activated B cells. Created with
BioRender.com, accessed on 28 December 2021.

Asoudeh-Fard et al. found that the probiotic L. plantarum induces apoptosis via
the downregulation of mitogen-activated protein kinases (MAPK) and the upregulation
of phosphatase and tensin homolog (PTEN) pathways [46]. Additionally, Zhang et al.
reported that metabolites of Lactobacillus spp. have a negative effect on the viability of CAL-
27 (human tongue squamous cell carcinoma) cells and induce apoptosis [47]. L. salivarius
was found to reduce oral cancer in rats via the downregulation of COX-2/PCNA expression
and the induction of apoptosis [48]. As the alteration in normal oral flora promotes oral
cancer [49], the normal flora, particularly probiotics, plays a crucial role in the prevention
of oral cancer [50].
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4. Probiotics and Autophagy

Autophagy is a self-degradation process in which double-membrane autophagosomes
sequester organelles or portions of the cytosol fuse with lysosomes for breakdown by
resident hydrolases [51]. Although autophagy is essential for maintaining homeostasis in
normal cells, it has also been implicated in various diseases. Increasing evidence suggests
that autophagy promotes both tumour suppression [52] and progression [53]. Autophagy
is vital for the elimination of damaged cells or aged proteins and organelles. Addition-
ally, autophagy defects may lead to DNA damage and cancer, suggesting their role in
tumour suppression [54]. Literature on the inhibition of tumour growth using probiotics
via autophagy induction is lacking. Wang et al. reported that a surface protein from
L. acidophilus induced HCT116 cell death by altering the levels of an autophagy-linked
protein—microtubule-associated protein 1 light chain 3 (Figure 5) [55]. In addition, LAB pro-
moted apoptosis induction in the presence of 5-fluorouracil by triggering Beclin1/GRP78-
mediated autophagy activation [6]. The cell-bound exopolysaccharide of probiotics can
potentially activate autophagy in colon cancer cells by stimulating Beclin1/GRP78 and
the core regulators of intrinsic apoptosis pathway—Bcl-2 and Bak proteins [22]. The se-
quence of steps involved in autophagy are (a) sequestration (b) transport to lysosomes,
(c) degradation, and (d) utilization of degradation products [56]. The important genes and
proteins involved in autophagy include Beclin-1, lysosome-associated membrane protein,
damage-regulated autophagy modulator 1, and p53 [57]. There are four different types of
autophagy: chaperone-mediated autophagy, selective autophagy, macroautophagy, and
microautophagy [58]. Autophagy can either promote or inhibit tumour development de-
pending on several factors, such as cancer type or age [57]. However, probiotics-mediated
autophagy and its role in the elimination of cancer warrants further investigation.
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Figure 5. Schematic representation of autophagy in tumour cells or infected cells. The cell-bound
exopolysaccharide of probiotic bacteria induces autophagy by upregulating Beclin-1, GRP78, and Bcl-2
genes. The sequential events occurring during autophagy include (a) sequestration (b) transport to
lysosomes, (c) degradation, and (d) utilization of degradation products. Created with BioRender.com,
accessed on 28 December 2021.
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5. Probiotics as Potential Antimutagens

There are numerous agents that can cause DNA damage and mutations, which even-
tually lead to cancer [59]. Such agents that cause mutations are called mutagens. Carcino-
genicity and mutagenicity are closely associated with each other [60]. Chemicals, ionizing
and nonionizing radiations, and viruses are the widely known mutagens that cause can-
cers [61]. Probiotics are potential antimutagenic agents owing to their metabolites [62].
A study investigated the antimutagenic effects of probiotics against the mutagens sodium
azide and benzopyrene and reported that probiotics have a binding potential for mutagens
and are detoxifying antimutagens [63]. Of late, researchers are exploring the potential of
probiotics as an alternate preservative and detoxifying agent [64–66]. The antimutagenic
activity of Lactobacillus rhamnosus against the mutagen acridine orange has been previously
analyzed and confirmed [67]. Table 1 presents the mutagen, antimutagenic microorganisms,
and the source from which they are isolated.

Table 1. List of mutagens, antimutagenic probiotics, and sources of probiotics.

Mutagen Antimutagenic Microorganism Source Reference

Sodium azide and benzopyrene
Lactobacillus alimentarius DDL 48, Enterococcus
faecium DDE 39, Bifidobacterium bifidum DDBA,

and Lactobacillus reuteri DDL 19
Goat milk [63]

Acridine orange Lactobacillus rhamnosus Infant feces [67]
Heterocyclic amine binding and

N-nitrosamine Lactobacillus plantarum CM4 Thai fermented food products [68]

Benzo[a]pyrene and sodium azide Lactobacillus and Bifidobacterium ATCC [69]
4-nitro-O-phenylenediamine Lactobacillus acidophilus and Bifidobacteria [20]

Trp-P-1 and Trp-P-2 Bifidobacterium longum Milk [70]

Benzopyrene Bifidobacterium lactis Bb-12, Bifidobacterium
longum CCRC 14634 [71]

N-methyl-N’-nitro-N-nitrosoguanidine Lactobacillus, Streptococcus, Lactococcus, and
Bifidobacterium [72]

N-methyl, N’-nitro, N-nitroso-guanidine, and
3,2’-dimethyl-4-amino-biphenyl

Lactobacillus helveticus CH65, Lactobacillus
acidophilus BG2FO4, Streptococcus salivarius ssp.,
and Lactobacillus delbrueckii sp. bulgaricus 191R

Fermented milk [73]

2-nitroflourene and nitroquinoline-1-oxide Lactobacillus paracasei subsp. tolerans JG22 Pepper leaves Jangajji [74]
N-methyl-N’-nitro-N-nitrosoguanidine Bifidobacterium breve and Bifidobacterium longum Human infant stool [75]

4-nitro-O-phenylenediamine Lactobacillus plantarum KLAB21 Kimchi (Korean
fermented vegetables) [76]

3-amino-1-methyl-5H-pyrido[4,3−b]indole
(Trp-P2)

Lactobacillus acidophilus LA106 (LA2) and
Lactococcus lactis subsp. lactis L11103 Milk [77]

2-(2-furyI)-3-(5-nitro-2-furyl) acrylamide and
4-nitroquinoline-N-oxide

Lactobacillus bulgaricus and
Streptococcus thermophilus Milk [78]

1,1-diphenyl-2-picrylhydrazyl and
2,2′-azino-bis(3-ethylbenzothiazoline-

6-sulphonic acid)

Lactobacillus acidophilus, Lactobacillus casei, and
Lactobacillus paracasei subsp. paracasei Yogurt [79]

Furazolidone Bifidobacterium lactis Bb-12 and
Lactobacillus acidophilus [80]

N-methyl-N0-nitro-N-nitrosoguanidine Lactobacillus rhamnosus Vaginal mucosa [81]
Heterocyclic aromatic amines Lactobacillus helveticus Milk [82]

Sodium azide (NaN3) and
2-nitrofluorene (2-NF) Lactobacillus plantarum Fermented durian [83]

The antimutagenic effect of probiotics is well-documented in the literature. The com-
ponents of the probiotic cell wall, such as carbohydrates, proteins, lipids, and teichoic acids,
are responsible for binding to the mutagens, and this interaction is hydrophilic [67,82].
Apart from the cell wall components, the glycoproteins secreted extracellularly [84] and
organic acids, such as acetic, butyric, lactic, and pyruvic acids [20], also exhibit antimuta-
genic properties. For this reason, probiotics are used for the detoxification of food items
and the treatment of some gastrointestinal disorders [85].
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6. Probiotics-Mediated Tumour Suppressor Reactivation

Tumour suppressors slow down cell division, repair damaged DNA, and regulate
apoptosis [86]. The tumour suppressor genes present in humans are APC, BRCA1, BRCA2,
p16, p21, p53, Rb, and VHL [87,88]. Any defects or mutations in these genes can lead to
cancers. Hence, it is crucial to reactivate tumour suppressor genes that are turned off by
cancer cells. Many clinical trials are underway to determine if probiotics can be used as
a potentially novel targeted biotherapy for cancers [89,90]. Sharma et al. demonstrated
the involvement of short-chain fatty acids synthesized by probiotics in targeting tumour
cells via the epigenetic regulation of the expression of tumour suppressor genes and onco-
genes [91]. Epigenetic mechanisms alter gene expression without changing the primary
DNA sequence [92]. Moreover, these mechanisms are heritable, reversible, and involve
changes in DNA methylation, histone modifications, and small noncoding microRNAs
(miRNAs) [92]. Metabiotics extracted from the probiotic L. rhamnosus MD inhibit colorectal
cancer by upregulating the expression of the tumour suppressor gene p53 [93]. L. rhamno-
sus MD 14, L. acidophilus, and L. rhamnosus GG were shown to upregulate the expression
of tumour suppressor genes in 1,2-dimethylhydrazine-induced experimental colon car-
cinogenesis model [94]. Bifidobacterium longum, isolated from breast milk, induced the
expression of the tumour suppressor miRNAs miR-145 and miR-15 in murine colorectal
cancer [95]. Kumar et al. emphasized that probiotic metabolites prevent colon cancer via
epigenetic mechanisms and the metabiotics of probiotics play a key role in this process [96].
However, research related to the reactivation of tumour suppressors by probiotics is still in
its infancy.

7. Downregulation of Oncogene Expression by Probiotics

Oncogene expression causes cells to exhibit the properties of tumour cells, whereas
proto-oncogenes are the normal nonmutated forms of oncogenes [97]. Proto-oncogenes are
the precursors of oncogenes and are converted into oncogenes upon mutation [98]. The
downregulation of oncogenes is one of the druggable targets of cancer therapy [99]. Several
proto-oncogenes have been identified in different organisms by the virtue of structural
homology to retroviral oncogenes [100]. The important proto-oncogenes in humans include
Ras, HER2, Myc, cyclin D, cyclin E, β-catenin, and MITF (microphthalmia-associated tran-
scription factor) [81]. Several reports have demonstrated the tumour-suppressive activity of
probiotics via the downregulation of oncogenes [101,102]. The probiotic bacteria Lactobacil-
lus crispatus and L. rhamnosus modulate cancers by altering the expression of mTOR-related
genes and modulating the Wnt/β-catenin pathways [103]. Azam et al. showed that
the culture supernatants of L. acidophilus and L. crispatus can downregulate cancer-testis
gene expression in vitro [101]. A combination of probiotics and celecoxib (a nonsteroidal
anti-inflammatory drug) can also downregulate the KRAS proto-oncogene, decreasing
the incidence of colon cancer [94]. Understanding the mechanism of KRAS downregula-
tion by probiotics could be beneficial for patients with RAS-associated cancers. Hosseini
et al. revealed that the bacteriocin nisin as well as the cytoplasmic extract and cell wall
of Lactococcus lactis decreased cyclin D1 expression, thereby inhibiting the proliferation of
SW480 cells [104]. Lipoteichoic acid extracted from L. plantarum downregulated MITF [105].
Overall, approaches involving the regulation of oncogene expression using probiotics and
their metabolites are being extensively investigated.

8. Role of Probiotics in Preventing Metastasis

Metastasis involves the detachment of tumour cells from the primary tumour and
their dissemination to other parts of the body [106]. Cancer patients can develop metastasis
years after the diagnosis of the primary tumour [107]. Metastasis is the cause of death in
>90% of cancer patients [108]. It mainly occurs due to the epithelial–mesenchymal tran-
sition (EMT) of cancer cells [109], a physiological process by which epithelial cells attain
the characteristics of mesenchymal cells, both physiologically and morphologically [110].
The metastasis of cancer cells can be divided into five steps: (1) infiltration of the base-
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ment membrane; (2) intravasation into the surrounding vasculature or lymphatic system;
(3) persistence in the circulation; (4) extravasation to secondary tissue; and (5) colonization
at secondary tumour sites [111]. The prevention of initial metastasis is crucial for improving
the prognosis of cancer patients. Additionally, the inhibition of additional metastases in
patients with metastases is helpful for improving the prognosis [112]. Several reports have
highlighted the critical factors involved in metastasis, such as the interruption of cell–cell
adhesion, EMT, tumour microenvironment, and cancer stem cell maintenance, as well as
the antimetastatic effects of probiotics (Figure 6) [26]. Cell-free supernatants of probiotic
L. casei and L. rhamnosus GG reduced the incidence of colon cancer as well as its metastatic
effects by decreasing the levels of matrix metalloproteinase-9 (MMP-9) and increasing
the levels of tight junction protein ZO-1 [113,114]. Additionally, the cell-free supernatant
of L. plantarum YYC-3 inhibited the metastasis of colon cancer cells by suppressing the
vascular endothelial growth factor (VEGF)-MMP2/9 signalling pathway [115]. VEGF is
a signalling protein that promotes the growth of new blood vessels [116], whereas matrix
metalloproteinases (MMPs) degrade the extracellular matrix [117]. Therefore, the suppres-
sion of the VEGF-MMP2/9 signalling pathway can inhibit the degradation of the basement
membrane, which is the first step in metastasis. E-cadherin is the most important protein
for cell–cell adhesion [118]. Li et al. observed a significant upregulation in E-cadherin
levels in HeLa cells and the inhibition of cancer cell migration in response to probiotic
treatment [119]. Additionally, probiotic treatment lowered the expression of EMT-related
markers (Snail-1 and ZEB-1) in pancreatic cancer mouse models [120]. Kefir, a probiotic
fermented food, showed antimetastatic and antiangiogenic effects in murine breast can-
cer cells, leading to the upregulation of tissue inhibitors of MMPs (TIMPs) [121]. Hence,
probiotics play a key role in preventing metastasis.
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9. Kinase Inhibition by Probiotics

Kinases and phosphatases are enzymes that add and remove phosphate groups,
respectively [122]. Phosphorylation events alter other proteins by adding the terminal
γ-phosphate group of adenosine triphosphate (ATP) to threonine, serine, and tyrosine
residues [123]. Approximately 518 kinase-encoding and 156 phosphatase-encoding genes
are estimated to be present in the human genome [124,125]. Kinases play a major role in var-
ious aspects of tumour biology, such as cell propagation, motility, metabolism, new blood
vessel formation, and metastasis [126]. Hence, kinases are a potential therapeutic target for
cancers [127]. A few studies have demonstrated the use of probiotics and their metabolites
as kinase inhibitors for treating diarrhoea after cancer therapy [128,129]. Seth et al. demon-
strated that probiotic secretory proteins protect the intestinal epithelial tight junctions and
the barrier function from hydrogen peroxide-induced insult via a protein kinase C (PKC)
and MAPK-dependent mechanism [130]. L. plantarum induces apoptosis by downregu-
lating MAPKs and upregulating phosphatases [46]. Lactobacillus facilitated natural killer
cell activity by producing tumour necrosis factor-associated apoptosis-inducing ligand,
i.e., TNFAIL, in prostate cancer cell lines [131]. Further research efforts are targeting the
kinase inhibitor activity of probiotics.

10. Bacteriocin as a Potent Anticancer Agent

A plethora of research has demonstrated the antioxidant and anti-inflammatory ac-
tivities of metabiotics of probiotics, which forms the basis for their anticancer effects. Han
et al. analysed the anti-inflammatory activity of Lactobacillus lactis NK34 strain in RAW
264.7 cells [132]. A significant reduction in the proliferation of cells and the production of
nitric oxide and proinflammatory cytokines was observed [132]. The strains Lactobacillus
mucosae AN1 and Lactobacillus fermentum SNR1 significantly reduced paw oedema and
increased the expression of the anti-inflammatory cytokine IL-10 in comparison with the
proinflammatory cytokine IL-6 [133]. Chooruk et al. reported that L. fermentum, Lactobacillus
paracasei, and L. rhamnosus strains exhibit significant antioxidant activity [134]. Another
study conducted by Yang et al. showed that probiotics downregulated the enzymes pro-
ducing reactive oxygen species (ROS), glutathione (GSH), and butyrate [135]. Previous
studies indicated that probiotics could produce folate [136,137] and bacteriocin, a low
molecular weight protein with anti-inflammatory, anticancer, and immunomodulatory
properties [138–141].

There are three major types of bacteriocins: class I (<5 kDa), class II (<10 kDa), and
class III (>30 kDa) [142]. Bacteriocin is an FDA-approved compound that is commonly
used in the food and pharmaceutical industry [143]. The anticancer activity of bacteriocin
is well-documented in the literature [144–146]. Interestingly, bacteriocin specifically targets
cancer cells and spares normal cells [147]. Normal cells are asymmetric in nature owing
to the distribution of phospholipids on the inner and outer surfaces of the cell [148]. The
outer layer of the normal cells is made up of sphingomyelin and phosphatidylcholine,
which are neutral choline-containing zwitterionic phospholipids [149]. The inner layer is
made up of phosphatidylserine and phosphatidylethanolamine, which are aminophos-
pholipids [150]. On the contrary, cancer cells lack asymmetry as a result of changes in
their phospholipids and carry a negative charge due to the presence of O-glycosylated
mucins, heparin sulphates, and anionic phosphatidylserine [151]. Moreover, cancer cells
have higher membrane fluidity and a number of microvilli compared with normal cells,
resulting in an increased surface area [152]. Therefore, bacteriocin can preferentially bind
to negatively charged tumour cells rather than neutrally charged normal cells [37]. Several
studies have investigated cellular responses to bacteriocin in vitro (Table 2).
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Table 2. Bacteriocins and their anticancer activity in select cell lines.

Bacteriocin Source of Bacteriocin Cell Lines Reference

Enterocin LNS18 Enterococcus HepG2 (liver cancer) [141]
LHH1 Lactobacillus casei HZ1 MGC803, HCT116, and C666-1 (multiple origins) [153]

Microcin E492 Klebsiella pneumoniae HeLa (cervical cancer) [154]

Laterosporulin10 Brevibacillus sp. strain SKDU10 MCF-7, HEK293T, HT1080, HeLa, and H1299
(multiple origins) [141]

11. Drug Delivery Systems for Bacteriocin

Despite having excellent antimicrobial, antioxidant, and anticancer activities, bacteri-
ocins may not be optimal for use as a drug delivery system. They can be easily digested
by proteolytic enzymes in the intestinal tract. Hence, there is a need to examine alterna-
tive systems, such as liposomal delivery, for the delivery of antimicrobial and anticancer
peptides (Figure 7) [155,156]. Nanotechnology is a valuable strategy to improve bacteri-
ocin formulations and incorporate them into nanoparticles for delivery [157,158]. Nisin,
a bacteriocin, has been successfully used in implants and delivered in vivo to prevent the
growth of Staphylococcus aureus [159]. Hydrogels can be loaded with bacteriocins prior to
delivery [155,160]. Bacteriocins can also be administered in the form of oral tablets [161] and
chewing gum [162]. Additionally, bacteriocins can be used to coat medical devices, such as
catheters, to prevent infections by inhibiting the adhesion of bacteria to their surfaces [163].
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Figure 7. Novel delivery systems for bacteriocin. The strategies to deliver bacteriocin include
liposomal delivery, oral administration (tablets and chewing gum), hydrogel embedding, medical
device coating (e.g., catheter), and nanoparticle encapsulation. Created with BioRender.com, accessed
on 28 December 2021.

12. Clinical Trials with Probiotics

The World Health Organization defines clinical trial as “any research study that
prospectively assigns human participants or groups of humans to one or more health-
related interventions to evaluate the effects on health outcomes” [164]. While clinical
trials investigating probiotics date back to the 1900s, the number of trials has increased
significantly in recent years, with >100 studies being registered each year since 2010. Ac-
cording to ClinicalTrials.gov, accessed on 28 December 2021 and the International Clinical
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Trials Registry Platform, 323 and 1157 studies, respectively, are currently investigating
the role of probiotics in improving oral health, gut microbiota, immune regulation, pH
maintenance, and antimicrobial/anticancer activity throughout the United States, Europe,
and Asia [165,166]. L. rhamnosus GG and Bifidobacterium animalis were the most frequently
registered probiotic strains [167]. In addition, studies in children are higher in number
than those in the elderly population according to ClinicalTrials.gov, accessed on 28 De-
cember 2021 [167]. A major limitation of the current studies is that many of them are
observational. Nevertheless, immune regulation by probiotics has been demonstrated in
studies investigating checkpoint inhibition as a potential anticancer therapy and colitis
as an adverse effect of the therapy [167]. The ongoing research efforts are focused on
studying the role of probiotics in treating gastrointestinal, metabolic, neurological, autoim-
mune, and communicable diseases [167]. Additionally, clinical trials have also highlighted
the efficacy of probiotic strains in reducing the side effects of cancer-related microbiota
dysbiosis [168]. More clinical trials that are inclusive of diverse populations and have
a good statistical power are warranted to further explore the potential of probiotics in
improving human health.

13. Conclusions and Future Perspectives

Probiotics have demonstrated efficacy (although variable, depending upon the strain,
dosage, and duration of treatment) against various cancer types owing to their roles in
antioxidation, immunomodulation, apoptosis induction, antimutagenicity, oncogene ex-
pression downregulation, autophagy induction, kinase inhibition, tumour suppressor
reactivation, and metastasis prevention. A growing body of evidence suggests that pro-
biotics can be used as an adjunctive therapy for cancer patients receiving chemotherapy.
Although these findings are promising, large-scale randomized controlled trials are needed
to determine the overall safety and efficacy of the formulations in treating cancer. Any
regulatory issues and potential risks should also be addressed. The identification of specific
probiotic strains that have the most benefits and minimal or no adverse effects in the context
of cancer will be an important milestone in the development of a personalized approach
for each patient with cancer. Probiotics induce tumour cell apoptosis and inhibit tumour
cell proliferation and metastasis. However, considering that most of the current research
on probiotics and cancer is limited to gastrointestinal tumours, the specific mechanism of
probiotics against tumours has not been fully elucidated. As such, the therapeutic effects
of probiotics must be carefully considered. As additional supplementary active microor-
ganisms, the adverse reactions of probiotics, gastrointestinal side effects, skin reactions,
access to antibiotic resistance genes, harmful effects of probiotic metabolites, and abnormal
stimulation of the immune system must be evaluated.
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6. Śliżewska, K.; Markowiak-Kopeć, P.; Śliżewska, W. The Role of Probiotics in Cancer Prevention. Cancers 2020, 13, 20. [CrossRef]
7. Lu, K.; Dong, S.; Wu, X.; Jin, R.; Chen, H. Probiotics in Cancer. Front. Oncol. 2021, 11, 638148. [CrossRef]
8. Fuller, R. Probiotics in Human Medicine. Gut 1991, 32, 439–442. [CrossRef] [PubMed]
9. Corcoran, B.M.; Stanton, C.; Fitzgerald, G.F.; Ross, R.P. Survival of Probiotic Lactobacilli in Acidic Environments Is Enhanced in

the Presence of Metabolizable Sugars. Appl. Environ. Microbiol. 2005, 71, 3060–3067. [CrossRef]
10. Singhal, N.; Maurya, A.K.; Mohanty, S.; Kumar, M.; Virdi, J.S. Evaluation of Bile Salt Hydrolases, Cholesterol-Lowering

Capabilities, and Probiotic Potential of Enterococcus Faecium Isolated From Rhizosphere. Front. Microbiol. 2019, 10, 1567.
[CrossRef]

11. Han, S.; Lu, Y.; Xie, J.; Fei, Y.; Zheng, G.; Wang, Z.; Liu, J.; Lv, L.; Ling, Z.; Berglund, B.; et al. Probiotic Gastrointestinal Transit and
Colonization After Oral Administration: A Long Journey. Front. Cell. Infect. Microbiol. 2021, 11, 102. [CrossRef]

12. Lebeer, S.; Vanderleyden, J.; De Keersmaecker, S.C.J. Host Interactions of Probiotic Bacterial Surface Molecules: Comparison with
Commensals and Pathogens. Nat. Rev. Microbiol. 2010, 8, 171–184. [CrossRef]

13. Bodera, P.; Chcialowski, A. Immunomodulatory Effect of Probiotic Bacteria. Recent Pat. Inflamm. Allergy Drug Discov. 2009, 3,
58–64. [CrossRef]

14. Gerbaldo, G.A.; Barberis, C.; Pascual, L.; Dalcero, A.; Barberis, L. Antifungal Activity of Two Lactobacillus Strains with Potential
Probiotic Properties. FEMS Microbiol. Lett. 2012, 332, 27–33. [CrossRef]

15. Fijan, S. Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature. Int. J. Environ. Res. Public. Health
2014, 11, 4745–4767. [CrossRef]

16. Waigankar, S.S.; Patel, V. Role of Probiotics in Urogenital Healthcare. J. Life Health 2011, 2, 5–10. [CrossRef] [PubMed]
17. Soccol, C.R.; Vandenberghe, L.P. de de Souza Vandenberghe, L.P.; Spier, M.R.; Medeiros, A.B.P.; Yamaguishi, C.T.; Lindner, J.D.D.;

Pandey, A.; Thomaz-Soccol, V. The Potential of Probiotics: A Review. Food Technol. Biotechnol. 2010, 48, 413–434.
18. Górska, A.; Przystupski, D.; Niemczura, M.J.; Kulbacka, J. Probiotic Bacteria: A Promising Tool in Cancer Prevention and Therapy.

Curr. Microbiol. 2019, 76, 939–949. [CrossRef] [PubMed]
19. Tiptiri-Kourpeti, A.; Spyridopoulou, K.; Santarmaki, V.; Aindelis, G.; Tompoulidou, E.; Lamprianidou, E.E.; Saxami, G.; Ypsilantis,

P.; Lampri, E.S.; Simopoulos, C.; et al. Lactobacillus Casei Exerts Anti-Proliferative Effects Accompanied by Apoptotic Cell Death
and Up-Regulation of TRAIL in Colon Carcinoma Cells. PLoS ONE 2016, 11, e0147960. [CrossRef]

20. Lankaputhra, W.E.; Shah, N.P. Antimutagenic Properties of Probiotic Bacteria and of Organic Acids. Mutat. Res. 1998, 397,
169–182. [CrossRef]

21. Thilakarathna, W.P.D.W.; Rupasinghe, H.P.V.; Ridgway, N.D. Mechanisms by Which Probiotic Bacteria Attenuate the Risk of
Hepatocellular Carcinoma. Int. J. Mol. Sci. 2021, 22, 2606. [CrossRef] [PubMed]

22. Kim, Y.; Oh, S.; Yun, H.S.; Oh, S.; Kim, S.H. Cell-Bound Exopolysaccharide from Probiotic Bacteria Induces Autophagic Cell
Death of Tumour Cells. Lett. Appl. Microbiol. 2010, 51, 123–130. [CrossRef] [PubMed]

23. Ravi, A.V.; Musthafa, K.S.; Jegathammbal, G.; Kathiresan, K.; Pandian, S.K. Screening and Evaluation of Probiotics as a Biocontrol
Agent against Pathogenic Vibrios in Marine Aquaculture. Lett. Appl. Microbiol. 2007, 45, 219–223. [CrossRef]

24. Uccello, M.; Malaguarnera, G.; Basile, F.; D’agata, V.; Malaguarnera, M.; Bertino, G.; Vacante, M.; Drago, F.; Biondi, A. Potential
Role of Probiotics on Colorectal Cancer Prevention. BMC Surg. 2012, 12, S35. [CrossRef]

25. Lamichhane, P.; Maiolini, M.; Alnafoosi, O.; Hussein, S.; Alnafoosi, H.; Umbela, S.; Richardson, T.; Alla, N.; Lamichhane, N.;
Subhadra, B.; et al. Colorectal Cancer and Probiotics: Are Bugs Really Drugs? Cancers 2020, 12, 1162. [CrossRef]

26. Motevaseli, E.; Dianatpour, A.; Ghafouri-Fard, S. The Role of Probiotics in Cancer Treatment: Emphasis on Their In Vivo and In
Vitro Anti-Metastatic Effects. Int. J. Mol. Cell. Med. 2017, 6, 66–76. [CrossRef]

27. Shenderov, B.A. Metabiotics: Novel Idea or Natural Development of Probiotic Conception. Microb. Ecol. Health Dis. 2013, 24.
[CrossRef] [PubMed]

28. Lebeer, S.; Bron, P.A.; Marco, M.L.; Van Pijkeren, J.-P.; O’Connell Motherway, M.; Hill, C.; Pot, B.; Roos, S.; Klaenhammer, T.
Identification of Probiotic Effector Molecules: Present State and Future Perspectives. Curr. Opin. Biotechnol. 2018, 49, 217–223.
[CrossRef] [PubMed]

29. Kumar, M.; Nagpal, R.; Verma, V.; Kumar, A.; Kaur, N.; Hemalatha, R.; Gautam, S.K.; Singh, B. Probiotic Metabolites as Epigenetic
Targets in the Prevention of Colon Cancer. Nutr. Rev. 2013, 71, 23–34. [CrossRef]

30. Pfeffer, C.M.; Singh, A.T.K. Apoptosis: A Target for Anticancer Therapy. Int. J. Mol. Sci. 2018, 19, 448. [CrossRef]

http://doi.org/10.1097/MCG.0000000000000697
http://www.ncbi.nlm.nih.gov/pubmed/27741152
http://doi.org/10.1186/s13048-020-00668-x
http://www.ncbi.nlm.nih.gov/pubmed/32527332
http://doi.org/10.3389/fpubh.2013.00052
http://doi.org/10.1097/MCG.0b013e318269fdd5
http://doi.org/10.3390/cancers13010020
http://doi.org/10.3389/fonc.2021.638148
http://doi.org/10.1136/gut.32.4.439
http://www.ncbi.nlm.nih.gov/pubmed/1902810
http://doi.org/10.1128/AEM.71.6.3060-3067.2005
http://doi.org/10.3389/fmicb.2019.01567
http://doi.org/10.3389/fcimb.2021.609722
http://doi.org/10.1038/nrmicro2297
http://doi.org/10.2174/187221309787158461
http://doi.org/10.1111/j.1574-6968.2012.02570.x
http://doi.org/10.3390/ijerph110504745
http://doi.org/10.4103/0976-7800.83253
http://www.ncbi.nlm.nih.gov/pubmed/21897732
http://doi.org/10.1007/s00284-019-01679-8
http://www.ncbi.nlm.nih.gov/pubmed/30949803
http://doi.org/10.1371/journal.pone.0147960
http://doi.org/10.1016/S0027-5107(97)00208-X
http://doi.org/10.3390/ijms22052606
http://www.ncbi.nlm.nih.gov/pubmed/33807605
http://doi.org/10.1111/j.1472-765X.2010.02859.x
http://www.ncbi.nlm.nih.gov/pubmed/20536712
http://doi.org/10.1111/j.1472-765X.2007.02180.x
http://doi.org/10.1186/1471-2482-12-S1-S35
http://doi.org/10.3390/cancers12051162
http://doi.org/10.22088/acadpub.BUMS.6.2.1
http://doi.org/10.3402/mehd.v24i0.20399
http://www.ncbi.nlm.nih.gov/pubmed/23990841
http://doi.org/10.1016/j.copbio.2017.10.007
http://www.ncbi.nlm.nih.gov/pubmed/29153882
http://doi.org/10.1111/j.1753-4887.2012.00542.x
http://doi.org/10.3390/ijms19020448


Life 2022, 12, 59 14 of 19

31. Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, 4th ed.; Garland Science: New York,
NY, USA, 2002; ISBN 978-0-8153-3218-3.

32. Lopez, J.; Tait, S.W.G. Mitochondrial Apoptosis: Killing Cancer Using the Enemy Within. Br. J. Cancer 2015, 112, 957–962.
[CrossRef] [PubMed]

33. Igney, F.H.; Krammer, P.H. Death and Anti-Death: Tumour Resistance to Apoptosis. Nat. Rev. Cancer 2002, 2, 277–288. [CrossRef]
[PubMed]

34. Kiraz, Y.; Adan, A.; Kartal Yandim, M.; Baran, Y. Major Apoptotic Mechanisms and Genes Involved in Apoptosis. Tumour Biol. J.
Int. Soc. Oncodev. Biol. Med. 2016, 37, 8471–8486. [CrossRef] [PubMed]

35. Sharma, S.; Singh, R.L.; Kakkar, P. Modulation of Bax/Bcl-2 and Caspases by Probiotics during Acetaminophen Induced Apoptosis
in Primary Hepatocytes. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2011, 49, 770–779. [CrossRef]

36. Karimi Ardestani, S.; Tafvizi, F.; Tajabadi Ebrahimi, M. Heat-Killed Probiotic Bacteria Induce Apoptosis of HT-29 Human Colon
Adenocarcinoma Cell Line via the Regulation of Bax/Bcl2 and Caspases Pathway. Hum. Exp. Toxicol. 2019, 38, 1069–1081.
[CrossRef]

37. Chumchalová, J.; Smarda, J. Human Tumor Cells Are Selectively Inhibited by Colicins. Folia Microbiol. 2003, 48, 111–115.
[CrossRef] [PubMed]

38. Preet, S.; Bharati, S.; Panjeta, A.; Tewari, R.; Rishi, P. Effect of Nisin and Doxorubicin on DMBA-Induced Skin Carcinogenesis—a Possible
Adjunct Therapy. Tumour Biol. J. Int. Soc. Oncodev.l Biol. Med. 2015, 36, 8301–8308. [CrossRef] [PubMed]

39. Konishi, H.; Fujiya, M.; Tanaka, H.; Ueno, N.; Moriichi, K.; Sasajima, J.; Ikuta, K.; Akutsu, H.; Tanabe, H.; Kohgo, Y. Probiotic-
Derived Ferrichrome Inhibits Colon Cancer Progression via JNK-Mediated Apoptosis. Nat. Commun. 2016, 7, 12365. [CrossRef]

40. Kadirareddy, R.H.; Vemuri, S.G.; Palempalli, U.M.D. Probiotic Conjugated Linoleic Acid Mediated Apoptosis in Breast Cancer
Cells by Downregulation of NFκB. Asian Pac. J. Cancer Prev. APJCP 2016, 17, 3395–3403.

41. Khosrovan, Z.; Haghighat, S.; Mahdavi, M. The Probiotic Bacteria Induce Apoptosis in Breast and Colon Cancer Cells:
An Immunostimulatory Effect. Immunoregulation 2020, 3, 37–50. [CrossRef]

42. Isazadeh, A.; Hajazimian, S.; Shadman, B.; Safaei, S.; Bedoustani, A.B.; Chavoshi, R.; Shanehbandi, D.; Mashayekhi, M.; Nahaei,
M.; Baradaran, B. Anti-Cancer Effects of Probiotic Lactobacillus Acidophilus for Colorectal Cancer Cell Line Caco-2 through
Apoptosis Induction. Pharm. Sci. 2020, 27, 262–267. [CrossRef]

43. Yavari, M.; Ahmadizadeh, C. Effect of the Cellular Extract of Co-Cultured Lactobacillus Casei on BAX and Human β-Defensin 2
Genes Expression in HT29 Cells. Horiz. Med. Sci. 2020, 26, 364–381. [CrossRef]

44. Joo, N.E.; Ritchie, K.; Kamarajan, P.; Miao, D.; Kapila, Y.L. Nisin, an Apoptogenic Bacteriocin and Food Preservative, Attenuates
HNSCC Tumorigenesis via CHAC1. Cancer Med. 2012, 1, 295–305. [CrossRef]

45. Jan, G.; Belzacq, A.-S.; Haouzi, D.; Rouault, A.; Métivier, D.; Kroemer, G.; Brenner, C. Propionibacteria Induce Apoptosis of
Colorectal Carcinoma Cells via Short-Chain Fatty Acids Acting on Mitochondria. Cell Death Differ. 2002, 9, 179–188. [CrossRef]
[PubMed]

46. Asoudeh-Fard, A.; Barzegari, A.; Dehnad, A.; Bastani, S.; Golchin, A.; Omidi, Y. Lactobacillus Plantarum Induces Apoptosis in
Oral Cancer KB Cells through Upregulation of PTEN and Downregulation of MAPK Signalling Pathways. BioImpacts BI 2017, 7,
193–198. [CrossRef] [PubMed]

47. Zhang, G.; Zhang, J.; Wang, X.; Yang, W.; Sun, Z.; Kumar, C.N.; Guan, H.; Guan, J. Apoptosis of Human Tongue Squamous Cell
Carcinoma Cell (CAL-27) Induced by Lactobacillus Sp. A-2 Metabolites. J. Appl. Oral Sci. Rev. FOB 2014, 22, 282–286. [CrossRef]

48. Zhang, M.; Wang, F.; Jiang, L.; Liu, R.; Zhang, L.; Lei, X.; Li, J.; Jiang, J.; Guo, H.; Fang, B.; et al. Lactobacillus Salivarius REN
Inhibits Rat Oral Cancer Induced by 4-Nitroquioline 1-Oxide. Cancer Prev. Res. 2013, 6, 686–694. [CrossRef] [PubMed]

49. Stashenko, P.; Yost, S.; Choi, Y.; Danciu, T.; Chen, T.; Yoganathan, S.; Kressirer, C.; Ruiz-Tourrella, M.; Das, B.; Kokaras, A.; et al.
The Oral Mouse Microbiome Promotes Tumorigenesis in Oral Squamous Cell Carcinoma. mSystems 2019, 4, e00323-19. [CrossRef]
[PubMed]

50. La Rosa, G.R.M.; Gattuso, G.; Pedullà, E.; Rapisarda, E.; Nicolosi, D.; Salmeri, M. Association of Oral Dysbiosis with Oral Cancer
Development. Oncol. Lett. 2020, 19, 3045–3058. [CrossRef]

51. Li, X.; He, S.; Ma, B. Autophagy and Autophagy-Related Proteins in Cancer. Mol. Cancer 2020, 19, 12. [CrossRef] [PubMed]
52. Yang, Z.J.; Chee, C.E.; Huang, S.; Sinicrope, F.A. The Role of Autophagy in Cancer: Therapeutic Implications. Mol. Cancer Ther.

2011, 10, 1533–1541. [CrossRef]
53. Jogalekar, M.P.; Veerabathini, A.; Gangadaran, P. Recent Developments in Autophagy-Targeted Therapies in Cancer. Exp. Biol.

Med. 2021, 246, 207–212. [CrossRef]
54. Tran, S.; Fairlie, W.D.; Lee, E.F. BECLIN1: Protein Structure, Function and Regulation. Cells 2021, 10, 1522. [CrossRef]
55. Wang, H.; Cheng, X.; Zhang, L.; Xu, S.; Zhang, Q.; Lu, R. A Surface-Layer Protein from Lactobacillus Acidophilus NCFM Induces

Autophagic Death in HCT116 Cells Requiring ROS-Mediated Modulation of MTOR and JNK Signaling Pathways. Food Funct.
2019, 10, 4102–4112. [CrossRef] [PubMed]

56. Parzych, K.R.; Klionsky, D.J. An Overview of Autophagy: Morphology, Mechanism, and Regulation. Antioxid. Redox Signal. 2014,
20, 460–473. [CrossRef] [PubMed]

57. Bednarczyk, M.; Zmarzły, N.; Grabarek, B.; Mazurek, U.; Muc-Wierzgoń, M. Genes Involved in the Regulation of Different Types
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