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Abstract

Mucosal immunoglobulins comprise mainly secretory IgA antibodies (SIgAs), which are the

major contributor to pathogen-specific immune responses in mucosal tissues. These SIgAs

are highly heterogeneous in terms of their quaternary structure. A recent report shows that

the polymerization status of SIgA defines their functionality in the human upper respiratory

mucosa. Higher order polymerization of SIgA (i.e., tetramers) leads to a marked increase in

neutralizing activity against influenza viruses. However, the precise molecular mechanisms

underlying the effects of SIgA polymerization remain elusive. Here, we developed a method

for generating recombinant tetrameric monoclonal SIgAs. We then compared the anti-viral

activities of these tetrameric SIgAs, which possessed variable regions identical to that of a

broadly neutralizing anti-influenza antibody F045-092 against influenza A viruses, with that

of monomeric IgG or IgA. The tetrameric SIgA showed anti-viral inhibitory activity superior

to that of other forms only when the antibody exhibits low-affinity binding to the target. By

contrast, SIgA tetramerization did not substantially modify anti-viral activity against targets

with high-affinity binding. Taken together, the data suggest that tetramerization of SIgA

improved target breadth, but not peak potency of antiviral functions of the broadly neutraliz-

ing anti-influenza antibody. This phenomenon presumably represents one of the mecha-

nisms by which SIgAs present in human respiratory mucosa prevent infection by antigen-

drifted influenza viruses. Understanding the mechanisms involved in cross neutralization of

viruses by SIgAs might facilitate the development of vaccine strategies against viral infection

of mucosal tissues.
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Author summary

SIgAs exist as mainly dimers and tetramers and play critical roles in mucosal immune

responses against influenza. Detailed characterization of these anti-viral SIgA is important

for better understanding of the mechanisms underlying anti-viral immunity. Here, we

describe a means of generating a recombinant tetrameric monoclonal SIgA to enable

exhaustive characterization of tetrameric SIgAs. The tetrameric monoclonal SIgA possess-

ing variable regions of anti-influenza viruses broadly neutralizing antibody show that tet-

ramerization of SIgA improves target breadth, but not the peak potency, of their anti-viral

functions. These results broaden our knowledge about the fundamental role of SIgA tetra-

merization in anti-viral humoral response at the human respiratory mucosa.

Introduction

Secretory IgA antibodies (SIgAs) play an important role as a first line of defense by inactivating

pathogens on mucosal surfaces; this is especially true in the case of viruses such as influenza [1,

2]. Recently, extensive efforts were made to develop novel vaccines that induce immunity via

the mucosal route. SIgA is the major contributor to humoral mucosal immunity and is a key

molecule that underpins the action of mucosal vaccines [3, 4]. Therefore, understanding how

SIgA works is important if we are to accelerate development of mucosal vaccines.

IgA is the major immunoglobulin isotype in humans; indeed, its production exceeds that of

all other immunoglobulin classes combined [2]. In addition, IgA displays a number of features

that make it unique among the immunoglobulin classes; the most characteristic of these is its

quaternary structure [5]. Most of the IgA in human serum is monomeric (comprising two α
heavy (H) and two light (L) chains). IgA present in external secretions is highly heterogeneous,

although the majority is present in the form of polymers in which the heavy chains are cova-

lently linked by a J chain. Moreover, these polymeric IgA antibodies are associated with the

extracellular portion of the polymeric immunoglobulin receptor (pIgR), called the secretory

component (SC), resulting in SIgA [5]. SIgA is composed primarily of dimers, although some

larger polymeric forms, particularly tetramers, are present at low levels [5–10]. These tetra-

meric SIgA antibodies display greater neutralizing activity against influenza A viruses in the

nasal mucosa than monomers or dimers [8, 9]. However, the molecular mechanisms that

underlie these characteristics of tetrameric SIgA remain largely unknown. Therefore, to eluci-

date these molecular mechanisms and evaluate the impact of SIgA polymerization on protec-

tion against viral infections, it is essential to obtain IgA antibodies as monomers, dimers, and

tetramers that display identical variable regions; only in this way can we make a fairly accurate

comparison of their functions. Although several in vitro methods of generating recombinant

polymeric IgA have been reported, they focus mainly on producing dimeric IgA [11–13] rather

than tetramers. No one has yet developed a method of generating trimeric or tetrameric IgA

molecules.

Here, we developed a method of generating recombinant monoclonal human tetrameric

SIgAs by co-expressing human αH, L, and J chains plus the SC in mammalian cells. This sim-

ple method enabled us to examine the effects of SIgA polymerization on its anti-viral activity

against influenza A viruses. We compared the reactivity and functionality of generated broadly

neutralizing antibodies (bnAb) comprising monomeric IgA, dimeric SIgA, or tetrameric SIgA

and found that SIgA polymerization led to a marked increase in activity against viruses to

which the antibodies bind with low-affinity, but not with high-affinity at monomeric state.
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Taken together, the results suggest that SIgA polymerization improves target breadth, but not

the peak potency of anti-viral functions of bnAbs against influenza A viruses.

Results

Co-expression of the SC along with human αH, L, and J chains in

mammalian cells enables generation of recombinant tetrameric

monoclonal SIgAs in vitro
Previous studies report that co-expression of αH, L, and J chains in mammalian cells results in

formation of dimeric IgA [11–14]. However, production of polymeric IgA antibodies larger

than dimers is restricted [14]. Indeed, even when researchers succeeded in generating some

polymeric antibodies larger than dimers, they were not well characterized [13]. In general, tri-

meric or tetrameric forms of IgA are present in external sections as secretory forms containing

a SC. Therefore, to generate polymeric IgA antibodies in secretory form, the SC was co-

expressed in mammalian cells along with human α1 heavy (A1), L, and J chains. Next, IgA

antibodies purified from the cell culture supernatant were separated by size exclusion chroma-

tography (SEC). SEC analysis revealed that co-expression of A1, L, and J chains produced IgA

antibodies with three different quaternary structures, corresponding to peak A (retention vol-

ume around 10.4 mL), peak B (retention volume around 9.3 mL), and peak C (retention vol-

ume around 8.4 mL). Peak C (with the lowest retention volume corresponding to the largest

molecule size) was increased to a significantly greater extent upon co-expression of the SC (Fig

1A). Furthermore, co-expression of the SC along with a α2 heavy (A2m2) chain instead of A1

(another subclass of human IgA) led to a marked increase in production of molecules corre-

sponding to peak C and a reduction in production of those corresponding to peak B (Fig 1A).

To characterize these polymeric forms of recombinant IgA1 and IgA2m2, we analyzed each

peak fraction containing IgA antibodies co-expressed with the SC by sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS-PAGE), and Blue Native polyacrylamide gel electro-

phoresis (BN-PAGE). SDS-PAGE revealed that the peak fractions corresponding to peaks B

and C comprised A1/A2m2, L, and, J chains plus the SC, suggesting that these antibodies were

secretory forms. By contrast, the fraction corresponding to peak A lacked the J chain and the

SC (Fig 1B, left panel). BN-PAGE analysis showed that IgA1 in peak B had a molecular weight

of around 500 KDa, whereas peak C mainly contained proteins with molecular weight >720

KDa (Fig 1B, right panel). The band observed in peak B was not detected in peak C from

IgA2m2, although the band corresponding to the protein with a molecular weight >720 KDa

was detected (Fig 1B, right panel). To determine the molecular size of the recombinant IgA

antibodies more accurately, each peak fraction of IgA1 or IgA2m2 (derived from A1/L/J/SC-

or A2m2/L/J/SC-expressing cells, respectively) was examined by high-mass MALDI-TOF MS.

IgA1 samples yielded peaks corresponding to four quaternary structures: a monomer (Mo,

MH+ = 158.211 ± 0.163 kDa) in peak A (Fig 1C), a dimer (Di, MH+ = 407.976 ± 0.603 kDa) in

peak B (Fig 1D), a trimer (Tr, MH+ = 561.075 ± 0.678 kDa) in peak C, and a tetramer (Te, MH

+ = 716.775 ± 0.879 kDa) in peak C (Fig 1E). By contrast, IgA2m2 yielded peaks corresponding

to three quaternary structures: a monomer (Mo, MH+ = 161.461 ± 0.190 kDa) in peak A (Fig

1F), a trimer (Tr, MH+ = 575.022 ± 0.633 kDa) in peak C, and a tetramer (Te, MH+ =

735.493 ± 0.941 kDa) in peak C (Fig 1G). Although high-mass MALDI-TOF MS analysis is

only a qualitative, and not a quantitative method, the peaks corresponding to the trimer in

peak C were much smaller than those corresponding to the tetramer in peak C; this was true

for both IgA1 and IgA2m2, implying that the major quaternary structure in peak C was tetra-

mer (for both IgA1 and IgA2m2). To rule out the possibility that the peak C fraction com-

prised aggregates of dimeric SIgA, we determined the ratios of each SIgA1 or SIgA2m2
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Fig 1. Production of recombinant tetrameric monoclonal SIgAs. (A) Recombinant monoclonal IgA antibodies purified from the culture supernatant of cells co-

transfected with A1+L (left upper), A1+L+J (left lower), A1+L+J+SC (right upper), or A2m2+L+J+SC (right lower), were subjected to size exclusion chromatography

(SEC) analysis. A chromatogram showing absorbance at 280 nm revealed three major peaks: peak A (retention volume around 10.4 ml), peak B (retention volume

around 9.3 ml), and peak C (retention volume around 8.4 ml). Data are representative of three independent experiments. (B) SDS-PAGE and BN-PAGE analysis of

IgG and IgA1/IgA2m2 in each peak fraction (peak A, B, and C) purified from cells co-expressing SC (A1+L+J+SC or A2m2+L+J+SC). (C, D, E) High-mass

MALDI-TOF MS analysis of the each peak fraction containing recombinant IgA1 purified from the culture supernatant of cells transfected with A1, L, J, and SC. (C)

One main peak (arrow) corresponding to monomer (Mo) was detected in the peak A fraction. (D) Two main peaks (arrows) corresponding to a dimer (Di) and a di-

cation dimer (Di2+) were detected in the peak B fraction. (E) Three main peaks (arrows) corresponding to a tetramer (Te), trimer (Tr), and di-cation tetramer (Te2+)

were detected in the peak C fraction. (F, G) High-mass MALDI-TOF MS analysis of the each peak fraction of recombinant IgA2m2 purified from the culture
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subunit in the peak B or C fraction. We performed LC-MS analysis of marker peptides selected

for respective IgA subunits after addition of corresponding stable isotope-labeled internal stan-

dard peptides followed by trypsin digestion. The ratio of H:L:J:SC of the peak C derived from

both of IgA1 and IgA2m2 was approximately 8:8:1:1, whereas that of peak B derived from

IgA1 was approximately 4:4:1:1 (Fig 1H). This was consistent with a previous report of human

tetrameric IgA [6], and confirmed that majority of polymeric IgA molecules in the peak C frac-

tion were tetrameric, and not dimeric (ratio, 4:4:1:1) or trimeric (assumed ratio, 6:6:1:1).

Therefore, the peak A, B, or C fractions generated by co-expression of SC and A1/A2m2, L,

and J chains were labeled monomeric, dimeric, or tetrameric, respectively. For further confir-

mation of the structures of this recombinant tetrameric SIgA antibody in peak C, we visualized

the quaternary molecular architecture of the SIgA1 (A1Te) or SIgA2m2 (A2m2Te) molecules

in the peak C fraction using high-speed atomic force microscopy (HS-AFM). HS-AFM

revealed that peak C contained molecules with eight radial arms (A1Te) or more than six arms

(A2m2Te), a similar quaternary structure to that of tetrameric SIgA derived from human nasal

mucosa, but not similar to trimeric IgA; this also suggests most of the molecules in this fraction

were tetrameric (Fig 1I). Taken together, the data show that co-expression of SC along with

IgA1/IgA2m2 heavy, light, and J chains in mammalian cells increases production of recombi-

nant tetrameric monoclonal SIgAs, which possess a characteristic quaternary structure corre-

sponding to tetrameric SIgAs found in human external secretions.

SIgA polymerization increases the binding activity of bnAb against

influenza A viruses

In a previous study, we showed that trimeric/tetrameric SIgAs in the human nasal mucosa dis-

play greater neutralizing activity against influenza A viruses than monomeric immunoglobu-

lins [8, 9]. To reveal the mechanism underlying this polymerization-mediated antibody

activity enhancement, recombinant monomeric, dimeric or tetrameric monoclonal SIgAs pos-

sessing variable regions of antibody clone F045-092, a bnAb against influenza A viruses [15,

16], was prepared. It was reported by Ohshima et al. that clone F045-092 IgG possesses binding

activity against all H3N2 viruses isolated during 1968 to 2004, as well as some H1N1, H2N2,

and H5N1 viruses [16]. The antibody recognizes the receptor-binding domain on the hemag-

glutinin (HA) protein of influenza A viruses and shows hemagglutination inhibition (HI)

activity and neutralization (NT) activity [15, 16]. Antibodies with HI activity block the interac-

tion between the receptor-binding domain located on the HA head and its sialic-acid receptor

[17]. In addition, HI activity is the main component of anti-influenza virus immunity in vivo,

and correlates with the level of protection against influenza in humans.

At first, to determine whether polymerization of monoclonal SIgAs influences their reactiv-

ity with HA proteins of influenza A viruses, we examined the reactivity of monomeric IgA1

(A1Mo), dimeric SIgA1 (A1Di), tetrameric SIgA1 (A1Te), monomeric IgA2m2 (A2m2Mo),

and tetrameric SIgA2m2 (A2m2Te) harboring identical variable regions derived from F045-

092 against recombinant HA proteins from A/Sydney/05/97 (H3N2; Syd05), A/New York/55/

2004 (H3N2; NY55), A/New York/39/2012 (H3N2; NY39), A/Victoria/210/2009 (H3N2;

supernatant from cells transfected with A2m2, L, J, and SC. (F) One main peak (arrow) corresponding to a monomer (Mo) was detected in the peak A fraction. (G)

Three main peaks (arrows) corresponding to a tetramer (Te), a trimer (Tr), and a di-cation tetramer (Te2+) were detected in the peak C fraction. (H) Quantification

of the amount of each subunit within the peak B or C fraction of recombinant SIgA1 or SIgA2m2 antibodies purified from the culture supernatant of cells transfected

with A1/L/J,/SC or A2m2/L/J/SC using LC-MS with stable isotope-labeled standard peptides. The abundance of each subunit to that of J chain is expressed as a ratio.

Data are expressed as box-and-whisker plot with minimum, maximum, median, upper and lower quartiles (n = 6–7). (I) HS-AFM image of peak C derived from a

recombinant SIgA1 (A1Te) or SIgA2m2 (A2m2Te) antibody purified from the culture supernatant of cells transfected with A1/L/J/SC or A2m2/L/J/SC. Scale bar, 20

nm.

https://doi.org/10.1371/journal.ppat.1007427.g001
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Vic210), A/Victoria/361/2011 (H3N2; Vic361), A/New Caledonia/20/99 (H1N1; NC20), A/

Japan/305/1957 (H2N2; JP305), and A/Indonesia/05/2005 (H5N1; Ind05) by Enzyme-linked

immunosorbent assay (ELISA). The reactivity of IgA1 antibodies to HA proteins increased sig-

nificantly in line with molecular size (the exception was NY55 HA) (Fig 2A and 2B). In partic-

ular, the reactivity of tetrameric SIgA1 against Vic210 HA, Vic361 HA, NC20 HA, and Ind05

HA was significantly higher than that of dimeric SIgA1. By contrast, the three forms of IgA1

antibodies (Mo, Di, and Te) showed no difference in reactivity to NY55 HA; all three showed

good potency, indicating that the effects of SIgA1 polymerization might be limited by the bind-

ing mode between the epitope and paratope. Meanwhile, A2m2Te showed markedly higher

reactivity against HA proteins of all viruses than A2m2Mo (Fig 2C and 2D). Increase in reac-

tivity of F045-092 IgA1 and IgA2m2 by polymerization could also be observed against whole

virions of NC20 virus (S1 Fig). These results suggest that tetramerization boosts the avidity of

the F045-092 SIgA antibody to HA on the virions.

In order to fairly compare binding characteristics of F045-092 IgG1, A1, and A2m2 against

a recombinant HA protein, we examined the binding dynamics of these antibodies to JP305

HA by surface plasmon resonance (SPR). A1Mo and A2m2Mo dissociated less well from

JP305 HA than IgG1 (Fig 3A). In addition, A1Te and A2m2Te dissociation rates were evi-

dently lower than those of their smaller molecular sizes, A1Mo, A1Di, or A2m2Mo, respec-

tively (Fig 3B and 3C). Thus, although isotype conversion to IgA backbone from IgG

backbone influenced the antibody reactivity, IgA tetramerization boosted the antibody avidity

of IgA molecules, which is likely to be through different mechanisms from the effect by the iso-

type conversion from IgG to IgA backbone.

Effects of SIgA polymerization on the inhibitory activity of bnAb against

influenza A viruses

Polymerization of the F045-092 antibody using an IgA backbone increased its reactivity with

several HA proteins. However, the biological activity of antibodies specific for influenza

viruses, which is designated as the “functionality” of an antibody here, does not necessarily

correspond to the binding activity observed in an ELISA, which is designated as the “reactiv-

ity” of an antibody here. The HI and NT assays are the most widely accepted assays for mea-

suring the functional activity of antibodies against influenza viruses [18]. Although both assays

measure the functionality of inhibitory antibodies, they measure immune responses in differ-

ent ways. The NT assay measures the ability of antibodies to inhibit virus infection of mamma-

lian host cells. By contrast, HI activity correlates only with the ability of antibodies to inhibit

virus attachment to host cells via sialic-acid receptors; thus, the readout from the HI assay

emphasizes steps that occur very early during infection [17]. Therefore, the two activities do

not necessarily correlate, and the difference depends on how the antibody interacts with its tar-

get antigen.

The effect of SIgA polymerization on HI activity of F045-092 differed by virus strain and

IgA antibody subclass. Here, we found that the HI activities of A2m2Te against Syd05 or

NY55 viruses were significantly higher than that of the F045-092 antibody with an IgG1 back-

bone (Fig 4A and 4B). In addition, the HI activity of all of polymerized SIgAs (A1Di, A1Te,

and A2m2Te) against Vic361 or NC20 viruses was markedly higher than that of IgG1 (Fig 4E

and 4F). By contrast, the HI activity of SIgAs against NY39 or Vic210 viruses was similar to

that of IgG1 (Fig 4C and 4D).

The degree of NT activity enhancement by SIgA polymerization also differed by the virus

strain used and the IgA antibody subclass. The NT activity of the polymerized SIgA against

Syd05 or NY39 viruses was no different from that of IgG1 (Fig 4I and 4K), but NT activity
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against Vic210 or NC20 viruses was significantly higher than that of IgG1 (Fig 4L and 4N).

However, only the IgA1 polymer (A1Di or A1Te) showed higher NT activity against NY55 or

Vic361 viruses than IgG1 (Fig 4J and 4M).

Enhancement in functionality of F045-092 by SIgA polymerization could also be seen

against the JP305 and Ind05 viruses, each of the H2N2 and H5N1 subtype, respectively (Fig

4G, 4H, 4O and 4P). Of note, for JP305 and Ind05 virus strains, against which F045-092 IgG1

did not possess HI activity, significant increases in HI activity could be observed by just con-

verting F045-092 from IgG1 to A1Mo form (Fig 4G and 4H). A significant increase could also

be observed in NT activity against Ind05 virus by the same conversion (Fig 4P). This may be,

in part, due to the difference in F045-092 avidity to HA between IgG1, and IgA monomers

including A1Mo and A2m2Mo (Fig 3A). Furthermore, virus neutralization experiments in the

mouse respiratory tract indicated that there is a slight possibility that polymeric SIgA have

additive effects on protection from influenza virus infection in vivo even in the absence of

increased NT activity in vitro (S2 Fig). Taken together, the results suggest that although there

are some differences in the levels of functional enhancement in the HI or NT assays, polymeri-

zation of SIgA led to a significant increase in functionality against some viruses.

SIgA polymerization leads to improvement in target breadth of bnAb

against influenza A viruses

The effects of SIgA polymerization on functionality against influenza A viruses were more

complex; Fig 4 shows that some viruses were more susceptible to SIgA polymers than others.

Fig 2. Reactivity of F045-092 bnAb against influenza A viruses on IgA backbones with or without polymerization. (A) Reactivity of

monomeric (red, A1Mo), dimeric (orange, A1Di), and tetrameric (blue, A1Te) F045-092 IgA1 antibodies against recombinant HA proteins

from A/Sydney/05/97 (H3N2; Syd05), A/New York/55/2004 (H3N2; NY55), A/New York/39/2012 (H3N2; NY39), A/Victoria/210/2009

(H3N2; Vic210), A/Victoria/361/2011 (H3N2; Vic361), A/New Caledonia/20/99 (H1N1; NC20), A/Japan/305/2957 (H2N2, JP305), and A/

Indonesia/5/2005 (H5N1, Ind05) viruses. Data are expressed as the mean ± SD of three technical replicates. (B) Area under the reactivity

curve (AUC) for each IgA1 antibody (A1Mo, A1Di, and A1Te) tested against each HA. The AUC was calculated from the plots in (A). Data

are expressed as the mean ± SD of three technical replicates. (C) Reactivity of monomeric (red, A2m2Mo) and tetrameric (blue, A2m2Te)

F045-092 IgA2m2 antibodies against recombinant HA proteins from Syd05, NY55, NY39, Vic210, Vic361, NC20, JP305, and Ind05 viruses.

Data are expressed as the mean ± SD of three technical replicates. (D) AUC for the IgA2m2 antibody (A2m2Mo, and A2m2Te) tested against

each HA. The AUC was calculated from the plots in (C). Data are expressed as the mean ± SD of three technical replicates. �p<0.05,
��p<0.01, ���p<0.001, and ����p<0.0001 (unpaired Student t-test or one-way ANOVA followed by Tukey’s multiple comparison test).

https://doi.org/10.1371/journal.ppat.1007427.g002

Fig 3. Binding dynamics analysis of IgG and IgA antibodies by surface plasmon resonance (SPR) analysis. (A) F045-092 IgG1 (black), monomeric IgA1 (red,

A1Mo), and monomeric IgA2m2 (blue, A2m2Mo) antibodies were subjected to SPR analysis of their binding dynamics to the recombinant trimeric HA proteins

from JP305 virus (H2N2). (B) Binding dynamics of F045-092 IgG1 (black), monomeric IgA1 (red, A1Mo), dimeric SIgA1 (orange, A1Di), and tetrameric SIgA1

(blue, A1Te) antibodies to the recombinant trimeric HA proteins from JP305 virus (H2N2) were examined. (C) Binding dynamics of F045-092 IgG1 (black),

monomeric IgA2m2 (red, A2m2Mo), and tetrameric SIgA2m2 (blue, A2m2Te) antibodies to the recombinant trimeric HA proteins from JP305 virus (H2N2)

were examined. Sensorgrams were x and y-axis adjusted (x = 0, y = 0: baseline, y = 100:binding) to allow comparisons between different antibody forms in terms

of the dissociation rate of IgA from HA.

https://doi.org/10.1371/journal.ppat.1007427.g003
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Fig 4. Hemagglutinin inhibition and neutralizing activities of F045-092 on IgG and IgA, with or without polymerization. (A–H) HI activity of F045-092 IgG1,

monomeric (Mo) IgA1, dimeric (Di) SIgA1, tetrameric (Te) SIgA1, monomeric (Mo) IgA2m2, tetrameric (Te) SIgA2m2 against Syd05 (A), NY55 (B), NY39 (C),

Vic210 (D), Vic361 (E), NC20 (F), JP305 (G), or Ind05 (H) viruses. HI activity is shown on scatter plots as the geometric mean (with 95% confidence intervals) of the

reciprocal of the lowest concentration (μg/ml) of antibody that inhibited hemagglutination of the virus (n = 4 for H3 viruses, n = 6 for JP305 and Ind05 viruses, and

n = 9 for NC20 virus). (I–P) NT activity of F045-092 IgG1, monomeric (Mo) IgA1, dimeric (Di) SIgA1, tetrameric (Te) SIgA1, monomeric (Mo) IgA2m2, and

tetrameric (Te) SIgA2m2 against Syd05 (I), NY55 (J), NY39 (K), Vic210 (L), Vic361 (M), NC20 (N), JP305 (O), or Ind05 (P) viruses. NT activity is expressed on

scatter plots as the geometric mean (with 95% confidence intervals) of the reciprocal of the lowest concentration (μg/ml) of antibody that neutralized the virus (n = 4
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The degree of enhancement may be defined by the antibody clone’s inherent binding

affinity to various HA molecules. To clarify the relationship between reactivity and altered

anti-viral activity shown in Fig 4 induced by SIgA polymerization, we plotted the HI and

NT activities of IgG1, IgA monomer, and IgA polymers against six viruses ordered based

on the reactivity to F045-092 with an IgG1 backbone, which is defined here as the “origi-

nal” reactivity. Syd05, NY55, NY39, Vic210, Vic361, and NC20 viruses, against which

F045-092 possessed both HI and NT activity at the IgG1 form, were included in the analy-

ses. As a result, we found that the polymerized antibodies showed increased anti-viral

activity (i.e., HI and NT activity) against the viruses to which they originally bound with

relatively low-affinity (Fig 5A, 5B, 5D and 5E). By contrast, tetramerization of SIgA2m2

increased its anti-viral activity against almost all viruses when compared with the mono-

meric IgA2m2 antibody, although the monomeric IgA2m2 antibody showed lower activ-

ity than the IgG1 form; this suggests that the IgA2m2 backbone has some functional

disadvantages compared to the IgG1 or IgA1 backbones, and that tetramerization of

SIgA2m2 might overcome the disadvantages inherent in the IgA2m2 backbone (Fig 5C

and 5F). To determine more accurately how SIgA polymerization affects reactivity and

functionality of antibodies, we measured the increase in reactivity and anti-viral activity

(HI or NT activities) and compared them with those of the monomeric forms. The data

clearly show that SIgA1 dimerization increased anti-viral activity (HI and NT activities),

and that tetramerization of SIgA1 and SIgA2m2 led to a significant increase in anti-viral

activity against viruses with low original reactivity. Polymerization of SIgAs had a negligi-

ble effect on anti-viral activity against viruses with relatively high original reactivity such

as Syd05, NY55, NY39, and Vic210 when compared with that against viruses with low

original reactivity, such as Vic361 and NC20 (Fig 5G, 5H and 5I). By contrast, no signifi-

cant difference in the effect of IgA polymerization on antibody reactivity could be

observed among the six viruses (Fig 5G, 5H and 5I). In addition, the effects of SIgA1 or

SIgA2m2 tetramerization on anti-viral activities against the NC20 virus, which exhibited

the lowest original reactivity against, were significantly greater than the effects of SIgA1

dimerization (Fig 5J). Furthermore, SIgA1 tetramerization led to a higher-fold increase in

NT activity than in HI activity against the NC20 virus, although SIgA1 dimerization led to

a similar degree of increases in NT and HI activity (Fig 5J). On the other hand, SIgA2m2

tetramerization led to a higher-fold increase in HI activity rather than in NT activity

against the NC20 virus. The differing effects of polymerization on SIgA1 and SIgA2m2

functionality suggest that each subclass of polymerized SIgA has a distinct mechanism of

action when it comes to inhibiting influenza A virus infection.

To summarize, tetramerization of both IgA subclass increased anti-viral activities

against influenza A viruses. These functional enhancements of antibodies appeared strik-

ing against viruses to which antibodies showed relatively low original reactivity, and no

evident functional enhancements could be observed against viruses to which antibodies

showed relatively high original reactivity. The number of antigen binding sites per anti-

body molecule did not simply correlate with the degree of increase in antibody reactivity

nor functionality. Taken together, polymerization of a bnAb IgA antibody leads to an

increase in its target breadth, but not in its peak potency of anti-viral functional activities

(Fig 5K).

for H3 viruses, n = 6 for JP305 and Ind05 viruses, and n = 9 for NC20 virus). The dotted line in the graph represents the detection limit (DL) of each experiment. Half

of the detection limit value was applied to samples with titers below the detection limit for statistical analyses. �p<0.05, ��p<0.01, ���p<0.001, and ����p<0.0001

(compared with IgG; Kruskal-Wallis test followed by Dunn’s multiple comparison test).

https://doi.org/10.1371/journal.ppat.1007427.g004
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Discussion

In the present study, we show that tetrameric monoclonal SIgA antibodies could be success-

fully generated by co-expression of antibody chains with the human SC in a mammalian cell

line. Previous studies have shown that co-expression of αH, L, and J chains in vitro induces

production of polymeric IgA, which comprises mainly dimeric IgA and some multimeric IgA

antibodies [11–14]. However, these multimeric IgA antibodies were not characterized in detail,

and differences in function between dimeric and multimeric IgA antibodies have remained

obscure. The method described in the present study enables efficient production of recombi-

nant tetrameric SIgA monoclonal antibodies, which enabled detailed examination of the

molecular features and functions of SIgA antibodies of different valence.

The observation that the co-expression of A2, L, and J chains and the SC enhances the pro-

duction of polymeric SIgA antibodies is inconsistent with previous reports [11, 12] showing

that stable transfection of a mouse myeloma cell line (Sp2/0) expressing human SC and

mouse-human chimeric dimeric IgA1 produced dimeric but not tetrameric SIgA [12]. In addi-

tion, CHO cells constitutively expressing human A2, L, and J chains and the SC also produced

dimeric SIgA but no tetrameric SIgA [11]. However, these studies used stable cell lines consti-

tutively expressing antibodies; these were obtained by a repeated cloning process in which cells

expressing dimeric SIgA were selected. These methods may emphasize production of dimeric

SIgA alone and create bias toward selecting cell clones that do not produce multimers larger

than dimers. On the other hand, some IgA-producing hybridomas secrete trimeric and tetra-

meric IgA spontaneously in the absence of the J chain and SC [19, 20], indicating that αH

chains have the intrinsic ability to form tetramers. However, plasma cells secreting polymeric

IgA in vivo synthesize the J chain covalently linked to the αH chain [21], and IgA-producing

cells in mucosal tissues express the J chain whereas IgA-positive cells in normal bone marrow

do not [22]. These conflicting observations indicate that tetramerization of IgA may vary

according to the intracellular environment. Here, we used a transient expression system based

on Expi293F human cells derived from the 293 cell line. This system is specialized for recombi-

nant protein expression and as such may not accurately and fairly reflect the molecular

machinery involved in in vivo protein syntheses in specific types of cells, such as antibody-

secreting cells, and may involve mechanisms distinct from the naive pathway used in vivo to

generate tetrameric IgA antibodies. Although the molecular mechanism(s) responsible for the

marked effects of SC co-expression on tetramer formation remain unclear (and appear to be

artificial), we used sophisticated analytical chemistry techniques such as high-mass

Fig 5. Relationship between increased functionality and reactivity of polymerized SIgA. (A–F) Line graphs depict the relationship between hemagglutinin

inhibition (A–C) or neutralizing (D–F) activity of IgG1 (gray dotted line in A–F), monomeric IgA1 (A1Mo; red line in A, B, D and E), dimeric SIgA1 (A1Di;

orange line in A and D), tetrameric SIgA1 (A1Te; blue line in B and E), monomeric IgA2m2 (A2m2Mo; red line in C and F), and tetrameric SIgA2m2 (A2m2Te;

blue line in C and F) and reactivity against each virus HA. The HI and NT activity against Syd05, NY55, NY39, Vic210, Vic361, and NC20 viruses, against which

F045-092 possessed both HI and NT activity at IgG1 state as shown in Fig 4, are integrated into the graphs. The Y-axis shows HI or NT activity and the X-axis

shows the reactivity value, expressed as the geometric mean of the reciprocal of the lowest concentration (μg/ml) of F045-092 IgG1 that binds to each viral HA.

Vertical dotted lines denote the reactivity value against the virus indicated below the X-axis. The each symbol on the vertical dotted line represents the geometric

mean (with 95% confidence intervals) of the HI or NT activity against the virus indicated below the X-axis. �p<0.05, ��p<0.01, ���p<0.001, and ����p<0.0001

(compared with monomeric IgA; Holm-Sidak t-test). (G–I) The line graphs depict the relationship between reactivity (determined by the IgG1 backbone) against

each viral HA protein and the ratio of reactivity (orange line), HI activity (red line), or NT (blue line) activity of A1Di (G), A1Te (H), or A2m2Te (I) to that of

monomeric IgA (A1Di/A1Mo, A1Te/A1Mo, or A2m2Te/A2m2Mo). The X-axis shows the reactivity value, expressed as the geometric mean of the reciprocal of

the lowest concentration (μg/ml) of F045-092 IgG1 that bound to each viral HA protein. Vertical dotted lines show reactivity against the virus indicated below the

X-axis. Each symbol on the vertical dotted line represents the mean ± SEM. �p<0.05, ��p<0.01, ���p<0.001, and ����p<0.0001 (functional activity of antibodies

against each virus compared with that against the Syd05 virus; two-way ANOVA followed by Dunnett’s multiple comparison test). (J) Increase of reactivity, HI,

and NT activity against NC20 virus induced by SIgA1 dimerization, SIgA1 tetramerization, and SIgA2m2 tetramerization. Data are expressed as the mean ± SD.
����p<0.0001 (two-way ANOVA followed by Tukey’s multiple comparisons test). (K) A hypothesis-explanatory drawing illustrating the effect of SIgA

polymerization on antibody function. Polymerization of both IgA subclasses increased anti-viral activity against influenza A viruses. Increased the anti-viral

activity emerged strikingly to the viruses with low-affinity binding resulting in increased breadth, but not peak potency, of the anti-viral activity of antibody.

https://doi.org/10.1371/journal.ppat.1007427.g005
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MALDI-TOF MS, HS-AFM, and LC-MS to show that tetrameric SIgAs obtained by this

method have a molecular architecture similar to that of antibodies produced in vivo, and that

they are fully functional in term of inactivating influenza A virus.

We previously reported that polymeric SIgAs larger than dimers play critical in vivo roles in

protecting the human upper respiratory mucosa from virus attack, although the molecular

mechanisms that underlie these particular characteristics of polymeric SIgA remain largely

unknown [9]. The recombinant monoclonal IgA or SIgA (monomers, dimers, and tetramers)

prepared herein served as fundamental tools for evaluating the impact of SIgA polymerization

on anti-viral protection. Comparison of the reactivity and functionality of monomeric IgA,

dimeric SIgA, and tetrameric SIgA F045-092 antibodies revealed that SIgA polymerization led

to a marked increase in functionality against viruses to which the antibodies bound with rela-

tively low affinity, but not with high affinity. This may suggest that in the case when the para-

tope and epitope of an antibody completely matches, the anti-viral activities against the virus

will reach maximum level at monomeric state, leaving no room for further boosting of anti-

viral activity by SIgA polymerization. Furthermore, against viruses with low affinity, the

increase in functionality (e.g., HI and NT activity) due to tetramerization is much higher than

the increase in reactivity, indicating that mechanisms other than increased avidity could be

involved in functional enhancement. Therefore, polymerization of IgA may increase the

breadth, but not the peak potency, of antibody function. In addition, recent reports present

conflicting data on the effect of IgA polymerization; these reports focused on improving the

functionality of bnAb against HIV1 by swapping the Fc region from IgG to IgA, and then poly-

merizing the IgA, though among these studies, the effect of IgA polymerization has remained

controversial [23–29]. These reports used various viruses and bnAb antibody clones. Based on

our observations that the degree of functional enhancement of IgA via polymerization might

depend on the original affinity between the antibody and the antigen, we believe that the dif-

ferences among data reported in the previous studies are due to differences in the viruses and

clones used. Furthermore, the effect of dimerization of SIgA on antibody reactivity and func-

tionality was markedly lower than that of tetramerization of SIgA (as evidenced by our obser-

vations), and previous reports did not examine the function of tetrameric forms.

Of note, in addition to the valence of IgA antibodies, the antibody subclasses and isotypes,

which define the structure of the antibody backbone, may also influence the reactivity and

functionality of antibodies [30, 31]. Human α1 and α2 H chains comprise one variable and

three constant regions (CH1, CH2, and CH3), and harbor unique hinge regions between CH1

and CH2. The hinge region of IgA1 comprises 26 amino acids, whereas that of IgA2 comprises

13. The extended hinge region of IgA1 makes it highly susceptible to IgA1-specific proteases

produced by several bacterial pathogens. However, this extended hinge provides greater seg-

mental flexibility than that observed for IgA2. Thus, IgA1 may be better at binding antigens

spaced at greater distances, which may enable recognition of pathogens (such as viral particles)

possessing repeated antigenic structures spaced along their surfaces. Moreover, IgA1 accounts

for most of the increase in anti-influenza virus IgA antibody titers observed in the human

upper respiratory tract after influenza virus infection [32]. By contrast, antibodies in colostrum

or saliva, which are specific for bacterial lipopolysaccharide and lipoteichoic acid, are predomi-

nantly IgA2, suggesting that the type of antigen may influence the subclass-specific IgA

response [33]. The disadvantage of IgA2 antibodies in anti-viral activity could also be observed

in the data presented in the current study. Whereas the HI and NT activities of monomeric

IgA1 are higher than those of IgG1 (Fig 5B and 5E), the anti-viral activities of monomeric

IgA2m2 are generally lower than those of IgG1 (Fig 5C and 5F). Since IgA2m2 could success-

fully boost these anti-viral activities by SIgA tetramerization, it could be assumed that SIgA tet-

ramerization may be functioning as a way to overcome these functional disadvantages of
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monomeric SIgA2m2 antibodies. The fact that a significant increase in reactivity against H3

NY55 HA by SIgA tetramerization was only seen in IgA2m2 and not in IgA1 is also in accor-

dance with such theories (Fig 2). In addition, we found that tetramerization of IgA1 and IgA2

increases different functions (HI activity and NT activity), which are distinct indicators of

influenza virus infection (Figs 2, 5H and 5I). This suggests that each polymerized SIgA subclass

has a distinct mechanism of action against influenza virus infections, and that tetrameric

SIgA1 (which shows increased NT activity) might be more potent against influenza virus infec-

tions than tetrameric SIgA2. This may explain the molecular mechanisms underlying IgA sub-

class-specific immune responses to pathogens.

The observations made herein broaden our knowledge about the functions of tetrameric

SIgA. Nevertheless, further work is needed if we are to obtain a more detailed picture of the

functions of tetrameric SIgAs and the underlying molecular mechanisms. The method

described herein may form the foundation for further studies designed to examine the impact

of polymerizing antibody clones with different characteristics; this may enable us to generate

bnAb against other virus infections including HIV and influenza viruses.

In conclusion, the comparison of reactivity and functionality among monomeric IgA,

dimeric SIgA, and tetrameric SIgA monoclonal antibodies obtained by a novel method

described herein revealed that SIgA tetramerization dramatically enhanced their functionality

against viruses, to which the antibodies bind with relatively low affinity, but not with sufficient

affinity, indicating SIgA tetramerization improves target breadth, but not peak potency of

anti-viral functions of a bnAb against influenza A viruses. This phenomenon suggests the

potential of SIgA antibodies to prevent infection of antigenically drifted influenza viruses at

the human respiratory mucosa.

Materials and methods

Ethics statement

The study using embryonated chicken was carried out in compliance with the Standards Relating

to the Care and Management of Laboratory Animals and Relief of Pain (the Ministry of Environ-

ment Notification No.88). The use of embryonated chicken eggs before hatching is not considered

animal use. Embryonated eggs were purchased from Omiya Kakin Laboratory (Saitama, Saitama,

Japan), inoculated with influenza viruses at day 8–11, incubated at 35˚C for 2 days, and then incu-

bated at 4˚C overnight before allantoid fluid harvesting. For mice experiments, 7-week-old female

BALB/c mice were purchased from Japan SLC (Hamamatsu, Shizuoka, Japan). Animal studies

were performed in strict accordance with the Guidelines for Proper Conduct of Animal Experi-

ments of the Scientific Council of Japan. All animal experiments were conducted in strict compli-

ance with animal husbandry and welfare regulations in handled in biosafety level two animal

facilities according to the guidelines of the Animal Care and Use Committee of the National Insti-

tute of Infectious Diseases, and were approved by this Committee (approval no. 118088). Mice

were monitored daily for clinical signs of morbidity and mortality up to 21 days post infection.

The human endpoint was used for mice that lost 30% or more of their initial body weight during

the study. When the animals met the criteria, they were scored dead and euthanized under excess

isoflurane anesthesia according to institutional guidelines.

Viruses and cells

Madin-Darby canine kidney (MDCK, ATCC) cells were maintained in Dulbecco’s modified

Eagle’s medium (DMEM, Gibco) containing 10% FBS (FBS, Gibco) and pen-strep mix (100

units/ml of penicillin and 100 μg/ml of streptomycin, Gibco) at 37˚C/5% CO2 [34]. Expi293F

(ThermoFisher Scientific) cells were maintained in Erlenmeyer flasks in Expi293 expression
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medium at 37˚C/8% CO2. Influenza viruses were grown in 8–11-day-old embryonated chicken

eggs. The virus strains used in this study were: A/Sydney/05/97 (H3N2; Syd05), A/New York/

55/2004 (H3N2; NY55), A/New York/39/2012 (H3N2; NY39), A/Victoria/210/2009 (H3N2;

Vic210), A/Victoria/361/2011 (H3N2; Vic361), A/New Caledonia/20/99 (H1N1; NC20), A/

Japan/305/57 (H2N2; JP305), and A/Indonesia/05/2005 (H5N1; Ind05), and mouse adapted

A/Guizou/54/1989 (H3N2; Gui54).

Expression and purification of IgG and IgA

The plasmid harboring the α1H or α2H chain was derived from the γ1HC vector [35] by

replacing the IgG1 constant domain with the human IgA1 or IgA2m2 constant domain,

respectively. The DNA fragment encoding the human IgA1 constant domain was amplified by

PCR using plasmid pFUSE-CHIg-hA1 (InvivoGen) as a template. The DNA fragment encod-

ing the human IgA2m2 constant domain was codon-optimized (for humans) and synthesized

using GeneArt Strings DNA Fragments (ThermoFisher Scientific). To establish the method

used to produce tetrameric SIgA antibodies, the Fab regions derived from the B12 clone were

used. The DNA fragment encoding the variable region of the H or L chain of the B12 clone

was amplified by PCR using cDNA obtained from a single-sorted B cell from a healthy adult

volunteer. The DNA fragment encoding the variable region of the H or L chain of F045-092

[16] was codon-optimized and synthesized using GeneArt Strings DNA Fragments (Thermo-

Fisher Scientific). These synthesized DNA fragments were cloned into α1H, α2H, γ1HC, or

λLC vectors. Human J chain was synthesized using GeneArt Strings DNA Fragments (Ther-

moFisher Scientific) and cloned into the pCXSN vector [36]. Human SC, consisting of the

extracellular domain of the polymeric immunoglobulin receptor [37], the thrombin recogni-

tion site, and a hexa-histidine affinity tag at the C-terminus was synthesized and cloned into

the pCXSN vector. To generate IgG, Expi293F cells grown in Expi293 expression medium

were diluted to 2.5×106 cells/ml and transfected with 100 μg of plasmid (35 μg of γ1HC and

65 μg of λLC) using 267 μl of ExpiFectamine293 Transfection reagent per 100 ml of final cul-

ture volume. To generate IgA, Expi293F cells were diluted to 2.5×106 cells/ml and transfected

with 40 μg of αH, 40 μg of λLC, 20 μg of J chain, and 20 μg of SC using 267 μl of ExpiFecta-

mine293 Transfection reagent in 100 ml of final culture volume. At 16–18 hours post-transfec-

tion, 500 μl of ExpiFectamin293 Transfection Enhancer 1 and 5 ml of ExpiFectamin293

Transfection Enhancer 2 were added. Then, 5–7 days later, the cell culture supernatants were

centrifuged at 2,000×g and filtered to remove cell debris. The supernatants were then purified

using CaptureSelect IgG-Fc (Hu) (ThermoFisher Scientific) or CaptureSelect IgA (Thermo-

Fisher Scientific), according to the manufacturer’s instructions. To prepare monomeric IgA,

dimeric SIgA, and tetrameric SIgA, IgA samples purified using CaptureSelect were subjected

to gel filtration chromatography on a Superose6 10/300 GL column (GE Healthcare) or Super-

ose6 Increase 10/300 GL column (GE Healthcare). The peak fractions corresponding to each

structure were collected and concentrated using Amicon Ultracell (Millipore) centrifugation

units with a cut-off of 30 kDa and the buffers were changed to 20 mM phosphate buffer (PB)

(pH 7.4) using a Zeba Spin Desalting Column (ThermoFisher Scientific). Purified antibodies

were analyzed by Blue Native polyacrylamide gel electrophoresis (BN-PAGE) on NativePAGE

3–12% Bis-Tris gels (ThermoFisher Scientific) and by sodium dodecyl sulfate polyacrylamide

gel electrophoresis (SDS-PAGE) on NuPAGE 4–12% Bis-Tris gels (ThermoFisher Scientific).

NativeMark (ThermoFisher Scientific) or Precision Plus Protein All Blue standards (Bio-Rad

Laboratories, Inc.) were used as a molecular weight markers for BN-PAGE or SDS-PAGE,

respectively. The SDS-PAGE gels were stained with SimplyBlue SafeStain (ThermoFisher

Scientific).
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HA proteins

The mammalian cell-derived HA proteins used in this study were: H1 NC20, H3 NY39, H3

Vic361, H3 Vic210, H3 NY55, H3Syd05, H3 BJ353 (from A/Beijing/353/1989 (H3N2) virus),

H2 JP305, and H5 Ind05. These HA proteins comprise the extracellular domain of HA C-ter-

minally fused to the thrombin site, the trimeric Foldon of T4 fibritin, and a hexa-histidine

affinity tag [38] or a Strep-tag II and a hexa-histidine affinity tag. HA proteins were expressed

using the Expi293 Expression System (ThermoFisher Scientific), according to the manufactur-

er’s instructions. Briefly, Expi293F cells grown in Expi293 expression medium in Erlenmeyer

flasks were diluted to 2.5×106 cells/ml and transfected with 100 μg of a HA-encoding plasmid

using 267 μl of ExpiFectamine293 Transfection reagent per 100 ml of culture volume. At 16–

18 hours post-transfection, 500 μl of ExpiFectamin293 Transfection Enhancer 1 and 5 ml of

ExpiFectamin293 Transfection Enhancer 2 were added. At Day 5, the medium was clarified by

centrifugation at 2,000×g, filtered, and purified on a HisTrap excel column (GE Healthcare).

HA proteins with a Strep-tag II were purified with Strep-Tactin Superflow resin (iba), accord-

ing to the manufacturer’s instructions, after purification on a HisTrap excel column. The puri-

fied HA proteins were concentrated using Amicon Ultracell (Millipore) centrifugation units

with a cut-off of 30 kDa and the buffer was changed to phosphate buffered saline (PBS) (pH

7.4). The HA proteins were stored at -80˚C until use.

Quantification of IgA subunits

Stable isotope-labeled peptides (summarized in Table 1) were custom synthesized by Anygen.

The internal standard peptides were mixed into 1–2 μg of each SIgA sample in 100 mM Tris-

HCl/1 mM CaCl2 (pH 7.6). The samples were reduced with 5 mM dithiothreitol (Wako) at

56˚C for 30 min and subsequently alkylated with 25 mM iodoacetamide (Wako) at room tem-

perature for 30 min. The samples were then digested with sequencing-grade-modified trypsin

(Promega; 1:20 enzyme/substrate ratio) at 37˚C for 16 h. After addition of formic acid to a

final concentration of 1% and filtration through a 0.45 μm filter, the peptide solutions were

analyzed by electrospray LC-MS using an ultra-high resolution quadrupole time-of-flight mass

spectrometer maXis II (Bruker Daltonics) coupled to a Shimadzu Prominence UFLC-XR sys-

tem (Shimadzu). Peptide separation was performed using a BIOshell A160 Peptide C18 HPLC

Column (5 μm particle size, L × I.D. 150 mm × 2.1 mm; Supelco) at a flow rate of 500 μl/min

and a column temperature of 80˚C with a binary gradient as follows: 98% solvent A (0.1% for-

mic acid) for 2 min, linear gradient of 2–50% solvent B (100% acetonitrile) for 4 min, 90% sol-

vent B for 2 min, and 98% solvent A for 2 min. The MS scan was performed over an m/z range

of 50–2500 with a frequency of 2 Hz using otofControl version 4.0 (Bruker Daltonics). The

absolute amounts of respective SIgA subunits were estimated using the peak area ratio of

selected marker peptides to that of the corresponding internal standard peptides.

Size exclusion chromatography (SEC) analysis

Purified antibodies were filtered using Cosmo spin filter H (Nacalai Tesque, Inc.) to remove

precipitates or debris before SEC analysis. Then, the antibodies were passed through an Agi-

lent Bio SEC-5 500 Å (7.8×300 mm) column (Agilent Technologies) coupled to an Agilent

1260 Infinity Bio-inert HPLC system (Agilent Technologies). Analyses were performed using

1 μg or more of each antibody sample, with a flow rate of 1 ml/min. PBS (pH 7.4) was used as

an eluent. Data were analyzed using OpenLAB CDS ChemStation Edition (Agilent

Technologies).
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High-mass MALDI-TOF MS analysis

MALDI-TOF MS analysis was performed using the CovalX HM4 interaction module, with a stan-

dard nitrogen laser focusing on mass ranges from 0 to 1,500 kDa [8]. Aliquots (20 μl) of each pro-

tein sample were pipetted to prepare 2-fold dilutions, each with a final volume of 10 μl. Aliquots

(1 μl) of each obtained dilution were mixed with 1 μl of a matrix comprising a re-crystallized sina-

pinic acid matrix (10 mg/ml) in acetonitrile/water (1:1 vol/vol) and 0.1% TFA (K200 MALDI Kit;

CovalX). After mixing, 1 μl of each sample was spotted onto the MALDI plate (SCOUT 384; Bru-

ker). After crystallization at room temperature, the plate was introduced into the MALDI mass

spectrometer and analyzed immediately in high-mass MALDI mode. The analysis was repeated

in triplicate. The following parameters were applied: mass spectrometer, linear and positive mode;

ion source 1, 20 kV; ion source 2, 17 kV; lens, 12 kV; pulse ion extraction, 400 ns; HM4 gain volt-

age, 3.14 kV; and HM4 acceleration voltage, 20 kV. The instrument was externally calibrated

using clusters of BSA and IgG. Three spots per sample were analyzed (300 laser shots per spot).

The presented spectrum corresponds to the sum of 300 laser shots. The MS data were analyzed

using CovalX Complex Tracker analysis software, version 2.0.

High speed atomic force microscopy (HS-AFM)

The HS-AFM experiments were performed using a Nano Explorer High-Speed atomic force

microscope (Research Institute of Biomolecule Metrology Co., Ltd.) with an Ultra-Short

Table 1. Marker peptides used for quantitation of IgA subunits.

Peptide m/z z
HC (IgA1)_1 NFPPSQDASGDLYTTSSQLTLPATQCLAGK 1056.8433 ± 0.02 3

HC (IgA1)_1-IS NFPPSQDASGDLYTTSSQLTLPATQCLAGK 1059.5147 ± 0.02 3

HC (IgA1)_2 DASGVTFTWTPSSGK 770.8675 ± 0.02 2

HC (IgA1)_2-IS DASGVTFTWTPSSGK 774.8746 ± 0.02 2

HC (IgA2)_1 NFPPSQDASGDLYTTSSQLTLPATQCPDGK 1066.1628 ± 0.02 3

HC (IgA2)_1-IS NFPPSQDASGDLYTTSSQLTLPATQCPDGK 1068.8342 ± 0.02 3

HC (IgA2)_2 DASGATFTWTPSSGK 756.8519 ± 0.02 2

HC (IgA2)_2-IS DASGATFTWTPSSGK 760.8590 ± 0.02 2

LC (λ)_1 YAASSYLSLTPEQWK 872.4330 ± 0.02 2

LC (λ)_1-IS YAASSYLSLTPEQWK 876.4401 ± 0.02 2

LC (λ)_2 SYSCQVTHEGSTVEK 856.3832 ± 0.02 2

LC (λ)_2-IS SYSCQVTHEGSTVEK 860.3903 ± 0.02 2

LC (κ)_1 DSTYSLSSTLTLSK 751.8829 ± 0.02 2

LC (κ)_1-IS DSTYSLSSTLTLSK 755.8900 ± 0.02 2

LC (κ)_2 TVAAPSVFIFPPSDEQLK 973.5171 ± 0.02 2

LC (κ)_2-IS TVAAPSVFIFPPSDEQLK 977.5242 ± 0.02 2

J_1 SSEDPNEDIVER 695.3101 ± 0.02 2

J_1-IS SSEDPNEDIVER 700.3142 ± 0.02 2

J_2 CYTAVVPLVYGGETK 828.9187 ± 0.02 2

J_2-IS CYTAVVPLVYGGETK 832.9258 ± 0.02 2

SC_1 VYTVDLGR 461.7532 ± 0.02 2

SC_1-IS VYTVDLGR 466.7573 ± 0.02 2

SC_2 GSVTFHCALGPEVANVAK 619.6490 ± 0.02 3

SC_2-IS GSVTFHCALGPEVANVAK 622.3204 ± 0.02 3

K: 13C6
15N2-lysine. R: 13C6

15N4-arginine. C: carbamidomethylated cysteine.

https://doi.org/10.1371/journal.ppat.1007427.t001
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Cantilever (USC-F1.2-k0.15; NanoWorld). The tetrameric SIgA antibodies [2 μg/ml (2 μl in 10

mM PB (pH7.4))] were adsorbed onto a mica surface (Ted Pella, Inc.), incubated for 10 min,

washed with 20 μl of double-distilled water (DDW), and then subjected to time-lapse imaging

in DDW. Images containing 200×200 pixels were obtained at a scan rate of one frame per sec-

ond (fps). Images were analyzed using SPIP software (Image Metrology A/S).

ELISA

Half-area flat-bottomed microtiter plates (Costar) were coated overnight at 4˚C with either

recombinant HA proteins (H1 NC20, H2 JP305, H3 NY39, H3 Vic361, H3 Vic210, H3 NY55,

H3 Syd05, or H5 Ind05) or whole virions (H1 NC20). Plates were coated with 50 ng/well for

recombinant HA proteins except for H5 Ind05 and 250 ng/well for H5 Ind05 recombinant HA

proteins and H1 NC20 whole virions. Plates were blocked for 1 h at 37˚C with 1% BSA in PBS

(pH 7.4) and serially diluted antibody samples were added to each well. Following incubation

for 2 h at 37˚C, wells were washed three times with PBS containing 0.05% Tween 20. After

addition of diluted HRP-conjugated goat anti-human IgA antibody (Bethyl), HRP-conjugated

mouse anti-human IgA2 antibody (abcam) or HRP-conjugated goat anti-human IgG-Fc frag-

ment antibody (Bethyl) plates were incubated for 1 h at 37˚C, washed three times, and incu-

bated with One-Step Ultra TMB ELISA HRP substrate solution (Thermo Fisher Scientific).

The reaction was stopped with H2SO4. Absorbance at 450 nm (reference: 655 nm) was mea-

sured in an iMark Microplate Reader (Bio-Rad). ELISA binding was expressed in terms of the

area under the curve (AUC) as it better captures changes in both affinity and maximum bind-

ing of each antibody [39–41]. Curves and AUCs were constructed using GraphPad Prism soft-

ware. The reactivity value was defined as the reciprocal of the lowest concentration (μg/ml) of

antibody that bound to each viral HA protein. The titers of mice serum IgG specific for the

HA proteins of H3 BJ353 virus, which was isolated in the same year as the challenge virus,

A/Guizou/54/1989 (H3N2; Gui54) virus, were determined by ELISA. Half-area flat-bottomed

microtiter plates (Costar) were coated (250 ng/well) overnight at 4˚C with the HA proteins.

Plates were blocked for 1 h at 37˚C with 1% BSA in PBS (pH 7.4) and serially diluted serum

samples were added to each well. Following incubation for 2 h at 37˚C, wells were washed

three times with PBS containing 0.05% Tween 20. After addition of diluted HRP-conjugated

goat anti-mouse IgG-Fc fragment antibody (Bethyl) plates were incubated for 1 h at 37˚C,

washed three times, and incubated with One-Step Ultra TMB ELISA HRP substrate solution

(Thermo Fisher Scientific). The reaction was stopped with H2SO4. Absorbance at 450 nm (ref-

erence: 655 nm) was measured in an iMark Microplate Reader (Bio-Rad). The antibody titer

for a given sample was calculated as the reciprocal of the highest dilution of the test sample

that gave an absorbance greater than a cutoff value equal to the mean + 3 standard deviation

(SD) of 8 two-fold serial dilutions (starting at 1:20 and ending at 1:2560) of the negative control

serum (uninfected mice).

Surface plasmon resonance (SPR) assay

SPR assay was performed by using Biacore X100 (GE Healthcare Japan). Recombinant tri-

meric HA proteins of H2 JP305 with a C-terminal His-tag was immobilized on the surface of

Sensor Chip NTA (GE Healthcare Japan) by using the NTA reagent kit (GE Healthcare Japan)

according to the manufacturer’s instructions. After trimeric HA immobilization (1 μg/ml for

180 seconds), the molecular interaction of HA with either IgG or IgA was analyzed with a con-

tact time of 60 seconds and a dissociation time of 600 seconds with an antibody concentration

of either 100 μg/ml (Fig 3A) or 50μg/ml (Fig 3B and 3C). To compare the degree of antibody

dissociation from recombinant HA proteins between multiple antibody forms, sensorgrams

Production and characterization of tetrameric anti-influenza IgA bnAb

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007427 January 3, 2019 18 / 23

https://doi.org/10.1371/journal.ppat.1007427


obtained from multiple analyses were x and y-axis adjusted (x = 0, y = 0: baseline, y = 100:

binding).

HI assay

HI titers were examined using a microtitration method as previously described, with minor

modifications [42]. Briefly, purified antibodies (in duplicate) were serially diluted (two-fold),

mixed with an equal volume of diluent containing influenza virus equivalent to 4 HA units,

and incubated for 10 min at room temperature. Turkey red blood cells (RBCs) were added to

the mixture, incubated at room temperature, and measurements were taken after 30 min. HI

activity was defined as the reciprocal of the lowest concentration (μg/ml) of antibody that

completely inhibited virus-mediated hemagglutination of RBCs.

Neutralization (NT) assay

A microneutralization assay was performed using MDCK cells and 100 TCID50 (50% tissue

culture infectious doses) of influenza virus essentially as previously described [43]. Briefly,

2-fold serial dilutions of each sample were mixed with an equal volume of diluent containing

influenza virus equivalent to 100 TCID50. This was added to the wells of a 96-well plate con-

taining a monolayer culture of MDCK cells. Four control wells containing virus or diluent

alone were included on each plate. The plates were incubated for 5 days at 37˚C/5% CO2. All

wells were observed for the presence or absence of cytopathic effects by light microscopy. NT

activity was defined as the reciprocal of the lowest concentration (μg/ml) of antibody that neu-

tralized the virus.

In vivo virus neutralization assay of recombinant IgG and SIgA antibodies

Mouse adapted A/Guizou/54/1989 (H3N2; Gui54) virus, which could infect mice and could be

neutralized by F045-092 antibody was used for mice experiments. Virus was pre-incubated

with either F045-092 IgG1, IgA1 monomer (A1Mo), IgA1 polymer (unfractionated crude mix-

ture of IgA1 monomers and polymers; A1Poly), or PBS prior to mice challenge. 40 LD50 of

Gui54 virus pre-incubated with F045-092 antibody (0.2 μg or 2 μg/head of either IgG1, A1Mo,

or A1Poly) or PBS were intranasally administered to infect the upper (10 μl/head, 5 μl/nostril)

and lower (20 μl/head) respiratory tracts of 7-week-old female BALB/c mice (six per experi-

mental condition). Three days post-infection, nasal wash, and lung wash samples were col-

lected and virus titers were measured by plaque assays. Mice were monitored daily for survival

and weight loss until two weeks post-infection. Mice that lost 30% or more of their initial body

weights were euthanized. Twenty-one days post-infection, serum samples were collected and

anti-HA IgG titers were determined by ELISA.

Plaque assays

Measurement of virus titers within mice nasal and lung wash samples were done by plaque

assay, as described by Tobita et al. [44]. In brief, serial 10-fold dilutions of samples were pre-

pared, and 200 μl aliquots of each dilution were inoculated into MDCK cells in a six-well plate.

After 1 hr of incubation for sample absorption, each well was overlaid with 2 ml of agar

medium. Plates were incubated for 2 days at 37˚C/5% CO2 and stained with crystal violet for

plaque counting. The virus titer of each experimental group was represented by the mean ± SD

of pfu/ml of samples from six mice in each group.
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Statistical analysis

All statistical analyses were performed using the Prism statistical software package (version

6.0; GraphPad Software, Inc.). An unpaired Student t-test, the Holm-Sidak t-test, one-way

ANOVA followed by Tukey’s multiple comparison test, the Kruskal-Wallis test followed by

Dunn’s multiple comparison tests, or two-way ANOVA followed by Dunnett’s multiple com-

parisons tests were used to analyze each data set as indicated in the figure legends. The thresh-

old for statistical significance was set at 5% (p< 0.05). For statistical analyses of HI and NT

titers, half of the detection limit value was applied to samples with titers below the detection

limit.

Supporting information

S1 Fig. Reactivity of F045-092 bnAb against influenza A whole virions on IgA backbones

with or without polymerization. (A) Reactivity of monomeric (red, A1Mo), dimeric (orange,

A1Di), and tetrameric (blue, A1Te) F045-092 IgA1 antibodies against whole virions of A/New

Caledonia/20/99 (H1N1; NC20) virus. Data are expressed as the mean ± SD of three technical

replicates. An evident shift of reactivity curves to the right were observed by SIgA1 multimeri-

zation. (B) Area under the reactivity curve (AUC) for each IgA1 antibody (A1Mo, A1Di, and

A1Te) against NC20 whole virions from the plots in (A). Data are expressed as the mean ± SD

of three technical replicates. The reactivity of SIgA1 significantly increased by SIgA1 multi-

merization. (C) Reactivity of monomeric (red, A2m2Mo) and tetrameric (blue, A2m2Te)

F045-092 IgA2m2 antibodies against whole virions of A/New Caledonia/20/99 (H1N1; NC20)

virus. Data are expressed as the mean ± SD of three technical replicates. An evident shift of

reactivity curves to the right were observed by SIgA2m2 tetramerization. (D) AUC for each

IgA2m2 antibody (A2m2Mo, and A2m2Te) tested against NC20 whole virions. The AUC was

calculated from the plots in (C). The reactivity of SIgA2m2 significantly increased by SIgA2m2

tetramerization. Data are expressed as the mean ± SD of three technical replicates. �p<0.05

(unpaired Student t-test or one-way ANOVA followed by Tukey’s multiple comparison test).

(TIF)

S2 Fig. In vivo passive transfer experiment of recombinant IgG and SIgA antibodies in

mice. (A) In vitro neutralizing activities of IgG1, monomeric (A1Mo), and polymeric (A1Poly)

F045-092 IgA1 antibodies against A/Guizou/54/1989 (H3N2; Gui54) virus. NT activity is

expressed on scatter plots as the geometric mean (with 95% confidence intervals) of the recip-

rocal of the lowest concentration (μg/ml) of antibody that neutralized the virus (n = 6 for each

antibody). All antibody forms presented high NT activity against virus in vitro, and no signifi-

cant difference could be observed between antibody forms. (B) Mice (six per experimental

condition) were infected with Gui54 virus pre-incubated with F045-092 antibody (0.2 μg or

2 μg/head of either IgG1, A1Mo, or A1Poly) or PBS. The percentage of initial body weight and

survival were plotted. Data are represented as mean ± SD. All mice administered with antibody

pre-incubated virus survived. (C, D) Virus titers within lung (C) and nasal (D) wash samples

collected on day 3 post infection. Virus titers are expressed on scatter plots as the mean ± SD.

Virus titers could only be measured in the PBS group, and no infectious virus was detected

from the groups infected with virus pre-incubated with antibodies. (E) Serum IgG antibody

titers against H3 HA proteins in serum samples collected on day 21 post infection were mea-

sured by ELISA. Serum IgG responses against recombinant HA proteins from A/Beijing/353/

1989 (H3N2; BJ353) virus was observed in one out of 6 mice in groups administered with virus

pre-incubated with 0.2 μg IgG1 or A1Mo. This indicated the occurrence of asymptomatic

infections of Gui54 virus in these mice, which suggested that only A1Poly was able to
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completely inactivate virus with an equal amount of antibody. The dotted line in the graph

represents the detection limit (DL) of each experiment.

(TIF)

Acknowledgments

We thank Dr. Kurosawa (Fujita Health University) for kindly giving us the permission to use

the variable region of the H and L chains of clone F045-092; Dr. Kawamoto and Dr. Kotani

(Research Institute of Biomolecule Metrology Co., Ltd.) for technical support with AFM analy-

sis; Dr. Nazabal (CovalX AG) for support with high-mass MALDI-TOF MS analysis; Ms.

Sataka (National Institute of Infectious Diseases) for technical support with expression of anti-

bodies and HA proteins.

Author Contributions

Conceptualization: Shinji Saito, Kaori Sano, Tadaki Suzuki.

Funding acquisition: Tadaki Suzuki, Hideki Hasegawa.

Investigation: Shinji Saito, Kaori Sano, Tadaki Suzuki, Akira Ainai, Yuki Taga, Tomonori

Ueno, Koshiro Tabata, Kumpei Saito, Yuji Wada, Yuki Ohara, Kiyoko Ogawa-Goto.

Methodology: Shinji Saito, Kaori Sano, Tadaki Suzuki, Akira Ainai, Yuki Taga, Kiyoko

Ogawa-Goto.

Project administration: Tadaki Suzuki, Hideki Hasegawa.

Resources: Shinji Saito, Kaori Sano, Tadaki Suzuki, Akira Ainai, Kumpei Saito, Yuji Wada,

Takato Odagiri, Tsutomu Kageyama, Pretty Multihartina, Vivi Setiawaty, Krisna Nur

Andriana Pangesti.

Supervision: Tadaki Suzuki, Haruko Takeyama, Hideki Hasegawa.

Validation: Haruko Takeyama.

Visualization: Tadaki Suzuki.

Writing – original draft: Shinji Saito, Kaori Sano, Tadaki Suzuki.

Writing – review & editing: Kaori Sano, Tadaki Suzuki, Hideki Hasegawa.

References

1. Pabst O. New concepts in the generation and functions of IgA. Nat Rev Immunol. 2012; 12(12):821–32.

https://doi.org/10.1038/nri3322 PMID: 23103985

2. Macpherson AJ, McCoy KD, Johansen F-E, Brandtzaeg P. The immune geography of IgA induction

and function. Mucosal Immunol. 2008; 1(1):11–22. https://doi.org/10.1038/mi.2007.6 PMID: 19079156

3. Suzuki T, Ainai A, Hasegawa H. Functional and structural characteristics of secretory IgA antibodies

elicited by mucosal vaccines against influenza virus. Vaccine. 2017; 35(39):5297–302. https://doi.org/

10.1016/j.vaccine.2017.07.093 PMID: 28780981

4. Sano K, Ainai A, Suzuki T, Hasegawa H. The road to a more effective influenza vaccine: Up to date

studies and future prospects. Vaccine. 2017; 35(40):5388–95. https://doi.org/10.1016/j.vaccine.2017.

08.034 PMID: 28866292

5. Woof JM, Russell MW. Structure and function relationships in IgA. Mucosal Immunol. 2011; 4(6):590–7.

https://doi.org/10.1038/mi.2011.39 PMID: 21937984

6. Halpern MS, Koshland ME. The stoichiometry of J chain in human secretory IgA. The Journal of Immu-

nology. 1973; 111(6):1653–60. PMID: 4201552

7. Mestecky J, Kilian M. Immunoglobulin A (IgA). Meth Enzymol. 1985; 116:37–75. PMID: 3911017

Production and characterization of tetrameric anti-influenza IgA bnAb

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007427 January 3, 2019 21 / 23

https://doi.org/10.1038/nri3322
http://www.ncbi.nlm.nih.gov/pubmed/23103985
https://doi.org/10.1038/mi.2007.6
http://www.ncbi.nlm.nih.gov/pubmed/19079156
https://doi.org/10.1016/j.vaccine.2017.07.093
https://doi.org/10.1016/j.vaccine.2017.07.093
http://www.ncbi.nlm.nih.gov/pubmed/28780981
https://doi.org/10.1016/j.vaccine.2017.08.034
https://doi.org/10.1016/j.vaccine.2017.08.034
http://www.ncbi.nlm.nih.gov/pubmed/28866292
https://doi.org/10.1038/mi.2011.39
http://www.ncbi.nlm.nih.gov/pubmed/21937984
http://www.ncbi.nlm.nih.gov/pubmed/4201552
http://www.ncbi.nlm.nih.gov/pubmed/3911017
https://doi.org/10.1371/journal.ppat.1007427


8. Suzuki T, Kawaguchi A, Ainai A, Tamura S-i, Ito R, Multihartina P, et al. Relationship of the quaternary

structure of human secretory IgA to neutralization of influenza virus. Proc Natl Acad Sci USA. 2015; 112

(25):7809–14. https://doi.org/10.1073/pnas.1503885112 PMID: 26056267

9. Terauchi Y, Sano K, Ainai A, Saito S, Taga Y, Ogawa-Goto K, et al. IgA polymerization contributes to

efficient virus neutralization on human upper respiratory mucosa after intranasal inactivated influenza

vaccine administration. Human vaccines & immunotherapeutics. 2018:0. https://doi.org/10.1080/

21645515.2018.1438791 PMID: 29425074.

10. TOMASI TB, TAN EM, SOLOMON A, PRENDERGAST RA. CHARACTERISTICS OF AN IMMUNE

SYSTEM COMMON TO CERTAIN EXTERNAL SECRETIONS. J Exp Med. 1965; 121(1):101–24.

11. Berdoz J, Blanc CT, Reinhardt M, Kraehenbuhl JP, Corthésy B. In vitro comparison of the antigen-bind-

ing and stability properties of the various molecular forms of IgA antibodies assembled and produced in

CHO cells. Proc Natl Acad Sci USA. 1999; 96(6):3029–34. PMID: 10077631

12. Chintalacharuvu KR, Morrison SL. Production of secretory immunoglobulin A by a single mammalian

cell. Proc Natl Acad Sci USA. 1997; 94(12):6364–8. PMID: 9177223

13. Lorin V, Mouquet H. Efficient generation of human IgA monoclonal antibodies. Journal of Immunological

Methods. 2015; 422(C):102–10.

14. Yoo EM, Coloma MJ, Trinh KR, Nguyen TQ, Vuong LU, Morrison SL, et al. Structural requirements for

polymeric immunoglobulin assembly and association with J chain. J Biol Chem. 1999; 274(47):33771–

7. PMID: 10559270

15. Lee PS, Ohshima N, Stanfield RL, Yu W, Iba Y, Okuno Y, et al. Receptor mimicry by antibody F045-092

facilitates universal binding to the H3 subtype of influenza virus. Nat Commun. 2014; 5:3614. https://doi.

org/10.1038/ncomms4614 PMID: 24717798

16. Ohshima N, Iba Y, Kubota-Koketsu R, Asano Y, Okuno Y, Kurosawa Y. Naturally occurring antibodies

in humans can neutralize a variety of influenza virus strains, including H3, H1, H2, and H5. Journal of

Virology. 2011; 85(21):11048–57. https://doi.org/10.1128/JVI.05397-11 PMID: 21865387

17. Ohmit SE, Petrie JG, Cross RT, Johnson E, Monto AS. Influenza hemagglutination-inhibition antibody

titer as a correlate of vaccine-induced protection. The Journal of Infectious Diseases. 2011; 204

(12):1879–85. https://doi.org/10.1093/infdis/jir661 PMID: 21998477

18. Truelove S, Zhu H, Lessler J, Riley S, Read JM, Wang S, et al. A comparison of hemagglutination inhibi-

tion and neutralization assays for characterizing immunity to seasonal influenza A. Influenza Other

Respi Viruses. 2016; 10(6):518–24.

19. Muramatsu M, Yoshida R, Yokoyama A, Miyamoto H, Kajihara M, Maruyama J, et al. Comparison of

antiviral activity between IgA and IgG specific to influenza virus hemagglutinin: increased potential of

IgA for heterosubtypic immunity. PLoS ONE. 2014; 9(1):e85582. https://doi.org/10.1371/journal.pone.

0085582 PMID: 24465606

20. Tanimoto T, Haredy AM, Takenaka N, Tamura S-i, Okuno Y, Mori Y, et al. Comparison of the cross-

reactive anti-influenza neutralizing activity of polymeric and monomeric IgA monoclonal antibodies.

Viral Immunology. 2012; 25(5):433–9. https://doi.org/10.1089/vim.2012.0026 PMID: 22985289

21. Atkin JD, Pleass RJ, Owens RJ, Woof JM. Mutagenesis of the human IgA1 heavy chain tailpiece that

prevents dimer assembly. The Journal of Immunology. 1996; 157(1):156–9. PMID: 8683109

22. Brewer JW, Corley RB. Late events in assembly determine the polymeric structure and biological activ-

ity of secretory IgM. Molecular Immunology. 1997; 34(4):323–31. PMID: 9244345

23. Tudor D, Derrien M, Diomede L, Drillet A-S, Houimel M, Moog C, et al. HIV-1 gp41-specific monoclonal

mucosal IgAs derived from highly exposed but IgG-seronegative individuals block HIV-1 epithelial trans-

cytosis and neutralize CD4&plus; cell infection: an IgA gene and functional analysis. Mucosal Immunol.

2009; 2(5):412–26. https://doi.org/10.1038/mi.2009.89 PMID: 19587640

24. Fouda GG, Eudailey J, Kunz EL, Amos JD, Liebl BE, Himes J, et al. Systemic administration of an HIV-

1 broadly neutralizing dimeric IgA yields mucosal secretory IgA and virus neutralization. Mucosal Immu-

nol. 2016; 10(1):228–37. https://doi.org/10.1038/mi.2016.32 PMID: 27072605

25. Lorin V, Malbec M, Eden C, Bruel T, Porrot F, Seaman MS, et al. Broadly neutralizing antibodies sup-

press post-transcytosis HIV-1 infectivity. Mucosal Immunol. 2017; 10(3):814–26. https://doi.org/10.

1038/mi.2016.106 PMID: 27966557

26. Shen R, Drelichman ER, Bimczok D, Ochsenbauer C, Kappes JC, Cannon JA, et al. GP41-specific anti-

body blocks cell-free HIV type 1 transcytosis through human rectal mucosa and model colonic epithe-

lium. J Immunol. 2010; 184(7):3648–55. https://doi.org/10.4049/jimmunol.0903346 PMID: 20208001

27. Watkins JD, Sholukh AM, Mukhtar MM, Siddappa NB, Lakhashe SK, Kim M, et al. Anti-HIV IgA iso-

types: differential virion capture and inhibition of transcytosis are linked to prevention of mucosal R5

SHIV transmission. AIDS. 2013; 27(9):F13–20. https://doi.org/10.1097/QAD.0b013e328360eac6

PMID: 23775002

Production and characterization of tetrameric anti-influenza IgA bnAb

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007427 January 3, 2019 22 / 23

https://doi.org/10.1073/pnas.1503885112
http://www.ncbi.nlm.nih.gov/pubmed/26056267
https://doi.org/10.1080/21645515.2018.1438791
https://doi.org/10.1080/21645515.2018.1438791
http://www.ncbi.nlm.nih.gov/pubmed/29425074
http://www.ncbi.nlm.nih.gov/pubmed/10077631
http://www.ncbi.nlm.nih.gov/pubmed/9177223
http://www.ncbi.nlm.nih.gov/pubmed/10559270
https://doi.org/10.1038/ncomms4614
https://doi.org/10.1038/ncomms4614
http://www.ncbi.nlm.nih.gov/pubmed/24717798
https://doi.org/10.1128/JVI.05397-11
http://www.ncbi.nlm.nih.gov/pubmed/21865387
https://doi.org/10.1093/infdis/jir661
http://www.ncbi.nlm.nih.gov/pubmed/21998477
https://doi.org/10.1371/journal.pone.0085582
https://doi.org/10.1371/journal.pone.0085582
http://www.ncbi.nlm.nih.gov/pubmed/24465606
https://doi.org/10.1089/vim.2012.0026
http://www.ncbi.nlm.nih.gov/pubmed/22985289
http://www.ncbi.nlm.nih.gov/pubmed/8683109
http://www.ncbi.nlm.nih.gov/pubmed/9244345
https://doi.org/10.1038/mi.2009.89
http://www.ncbi.nlm.nih.gov/pubmed/19587640
https://doi.org/10.1038/mi.2016.32
http://www.ncbi.nlm.nih.gov/pubmed/27072605
https://doi.org/10.1038/mi.2016.106
https://doi.org/10.1038/mi.2016.106
http://www.ncbi.nlm.nih.gov/pubmed/27966557
https://doi.org/10.4049/jimmunol.0903346
http://www.ncbi.nlm.nih.gov/pubmed/20208001
https://doi.org/10.1097/QAD.0b013e328360eac6
http://www.ncbi.nlm.nih.gov/pubmed/23775002
https://doi.org/10.1371/journal.ppat.1007427


28. Hur EM, Patel SN, Shimizu S, Rao DS, Gnanapragasam PNP, An DS, et al. Inhibitory effect of HIV-spe-

cific neutralizing IgA on mucosal transmission of HIV in humanized mice. Blood. 2012; 120(23):4571–

82. https://doi.org/10.1182/blood-2012-04-422303 PMID: 23065154

29. Wolbank S, Kunert R, Stiegler G, Katinger H. Characterization of Human Class-Switched Polymeric

(Immunoglobulin M [IgM] and IgA) Anti-Human Immunodeficiency Virus Type 1 Antibodies 2F5 and

2G12. Journal of Virology. 2003; 77(7):4095–103. https://doi.org/10.1128/JVI.77.7.4095-4103.2003

PMID: 12634368

30. Mak TM, Hanson BJ, Tan YJ. Chimerization and characterization of a monoclonal antibody with potent

neutralizing activity across multiple influenza A H5N1 clades. Antiviral research. 2014; 107:76–83.

https://doi.org/10.1016/j.antiviral.2014.04.011 PMID: 24797696.

31. Maurer MA, Meyer L, Bianchi M, Turner HL, Le NPL, Steck M, et al. Glycosylation of Human IgA Directly

Inhibits Influenza A and Other Sialic-Acid-Binding Viruses. Cell reports. 2018; 23(1):90–9. https://doi.

org/10.1016/j.celrep.2018.03.027 PMID: 29617676; PubMed Central PMCID: PMC5905402.

32. Brown TA, Murphy BR, Radl J, Haaijman JJ, Mestecky J. Subclass distribution and molecular form of

immunoglobulin A hemagglutinin antibodies in sera and nasal secretions after experimental secondary

infection with influenza A virus in humans. Journal of Clinical Microbiology. 1985; 22(2):259–64. PMID:

4031039

33. Brown TA, Mestecky J. Immunoglobulin A subclass distribution of naturally occurring salivary antibodies

to microbial antigens. Infect Immun. 1985; 49(2):459–62. PMID: 2410367

34. Imai M, Watanabe S, Ninomiya A, Obuchi M, Odagiri T. Influenza B virus BM2 protein is a crucial com-

ponent for incorporation of viral ribonucleoprotein complex into virions during virus assembly. J Virol.

2004; 78(20):11007–15. https://doi.org/10.1128/JVI.78.20.11007-11015.2004 PMID: 15452221;

PubMed Central PMCID: PMCPMC521833.

35. Tiller T, Meffre E, Yurasov S, Tsuiji M, Nussenzweig MC, Wardemann H. Efficient generation of mono-

clonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. Jour-

nal of Immunological Methods. 2008; 329(1–2):112–24. https://doi.org/10.1016/j.jim.2007.09.017

PMID: 17996249

36. Suzuki T, Orba Y, Okada Y, Sunden Y, Kimura T, Tanaka S, et al. The human polyoma JC virus agno-

protein acts as a viroporin. PLoS Pathog. 2010; 6(3):e1000801. https://doi.org/10.1371/journal.ppat.

1000801 PMID: 20300659

37. Lewis MJ, Pleass RJ, Batten MR, Atkin JD, Woof JM. Structural requirements for the interaction of

human IgA with the human polymeric Ig receptor. The Journal of Immunology. 2005; 175(10):6694–

701. PMID: 16272325

38. Stevens J, Corper AL, Basler CF, Taubenberger JK, Palese P, Wilson IA. Structure of the uncleaved

human H1 hemagglutinin from the extinct 1918 influenza virus. Science. 2004; 303(5665):1866–70.

https://doi.org/10.1126/science.1093373 PMID: 14764887

39. Meade P, Latorre-Margalef N, Stallknecht DE, Krammer F. Development of an influenza virus protein

microarray to measure the humoral response to influenza virus infection in mallards. Emerging

microbes & infections. 2017; 6(12):e110. https://doi.org/10.1038/emi.2017.98 PMID: 29209053;

PubMed Central PMCID: PMC5750464.

40. Rajendran M, Nachbagauer R, Ermler ME, Bunduc P, Amanat F, Izikson R, et al. Analysis of Anti-Influ-

enza Virus Neuraminidase Antibodies in Children, Adults, and the Elderly by ELISA and Enzyme Inhibi-

tion: Evidence for Original Antigenic Sin. mBio. 2017; 8(2). https://doi.org/10.1128/mBio.02281-16

PMID: 28325769; PubMed Central PMCID: PMC5362038.

41. Stadlbauer D, Rajabhathor A, Amanat F, Kaplan D, Masud A, Treanor JJ, et al. Vaccination with a

Recombinant H7 Hemagglutinin-Based Influenza Virus Vaccine Induces Broadly Reactive Antibodies in

Humans. mSphere. 2017; 2(6). https://doi.org/10.1128/mSphere.00502-17 PMID: 29242836; PubMed

Central PMCID: PMC5729220.

42. Hierholzer JC, Suggs MT, Hall EC. Standardized viral hemagglutination and hemagglutination-inhibition

tests. II. Description and statistical evaluation. Appl Microbiol. 1969; 18(5):824–33. PMID: 4984203

43. Ainai A, Tamura S-i, Suzuki T, van Riet E, Ito R, Odagiri T, et al. Intranasal vaccination with an inacti-

vated whole influenza virus vaccine induces strong antibody responses in serum and nasal mucus of

healthy adults. Human Vaccines & Immunotherapeutics. 2013; 9(9):1962–70.

44. Tobita K, Sugiura A, Enomote C, Furuyama M. Plaque assay and primary isolation of influenza A

viruses in an established line of canine kidney cells (MDCK) in the presence of trypsin. Medical microbi-

ology and immunology. 1975; 162(1):9–14. PMID: 1214709.

Production and characterization of tetrameric anti-influenza IgA bnAb

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007427 January 3, 2019 23 / 23

https://doi.org/10.1182/blood-2012-04-422303
http://www.ncbi.nlm.nih.gov/pubmed/23065154
https://doi.org/10.1128/JVI.77.7.4095-4103.2003
http://www.ncbi.nlm.nih.gov/pubmed/12634368
https://doi.org/10.1016/j.antiviral.2014.04.011
http://www.ncbi.nlm.nih.gov/pubmed/24797696
https://doi.org/10.1016/j.celrep.2018.03.027
https://doi.org/10.1016/j.celrep.2018.03.027
http://www.ncbi.nlm.nih.gov/pubmed/29617676
http://www.ncbi.nlm.nih.gov/pubmed/4031039
http://www.ncbi.nlm.nih.gov/pubmed/2410367
https://doi.org/10.1128/JVI.78.20.11007-11015.2004
http://www.ncbi.nlm.nih.gov/pubmed/15452221
https://doi.org/10.1016/j.jim.2007.09.017
http://www.ncbi.nlm.nih.gov/pubmed/17996249
https://doi.org/10.1371/journal.ppat.1000801
https://doi.org/10.1371/journal.ppat.1000801
http://www.ncbi.nlm.nih.gov/pubmed/20300659
http://www.ncbi.nlm.nih.gov/pubmed/16272325
https://doi.org/10.1126/science.1093373
http://www.ncbi.nlm.nih.gov/pubmed/14764887
https://doi.org/10.1038/emi.2017.98
http://www.ncbi.nlm.nih.gov/pubmed/29209053
https://doi.org/10.1128/mBio.02281-16
http://www.ncbi.nlm.nih.gov/pubmed/28325769
https://doi.org/10.1128/mSphere.00502-17
http://www.ncbi.nlm.nih.gov/pubmed/29242836
http://www.ncbi.nlm.nih.gov/pubmed/4984203
http://www.ncbi.nlm.nih.gov/pubmed/1214709
https://doi.org/10.1371/journal.ppat.1007427

