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Abstract: Mesenchymal stem cells (MSCs) are pluripotent stem cells derived from mesoderm. Through cell-to-cell contact or 
paracrine effects, they carry out biological tasks like immunomodulatory, anti-inflammatory, regeneration, and repair. 
Extracellular vesicles (EVs) are the primary mechanism for the paracrine regulation of MSCs. They deliver proteins, nucleic 
acids, lipids, and other active compounds to various tissues and organs, thus facilitating intercellular communication. 
Rheumatic diseases may be treated using MSCs and MSC-derived EVs (MSC-EVs) due to their immunomodulatory capabil-
ities, according to mounting data. Since MSC-EVs have low immunogenicity, high stability, and similar biological effects as to 
MSCs themselves, they are advantageous over cell therapy for potential therapeutic applications in rheumatoid arthritis, 
systemic erythematosus lupus, systemic sclerosis, Sjogren’s syndrome, and other rheumatoid diseases. This review integrates 
recent advances in the characteristics, functions, and potential molecular mechanisms of MSC-EVs in rheumatic diseases and 
provides a new understanding of the pathogenesis of rheumatic diseases and MSC-EV-based treatment strategies. 
Keywords: mesenchymal stem cells, extracellular vesicles, exosome, immunomodulation, rheumatic disease

Introduction
Rheumatic diseases are refractory conditions that affect multiple systems and organs and are primarily brought on by 
autoimmune responses.1 Abnormal activation of immune cells due to acute or chronic infection results in abundant immune 
reaction, large amounts of autoantibodies, deposition of immune complexes, and inflammatory response, which thus causes 
damages to specific tissues and organs, leading to arthralgia, skin lesions, myalgia, dry mouth, dry eyes, hair loss, and other 
clinical symptoms. The most prevalent conditions are rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), 
systemic sclerosis (SSc), Sjogren’s syndrome (SS), and osteoarthritis (OA). Currently, hormones, antirheumatic drugs, and 
biological agents are the principal medications to treat rheumatic disorders.2 However, not all patients respond well to those 
drug therapies, and some patients still can not achieve disease remission after standardized treatments. Furthermore, long- 
term use of antirheumatic drugs often leads to serious side effects in several patients with rheumatic disorders. Therefore, one 
problem that needs to be resolved is identifying novel therapeutic targets for rheumatic disease.

Mesenchymal Stem Cells (MSCs)
Stem cells have proven beneficial in recent times for autoimmune illnesses like SLE, RA, and SSc.3–5 MSCs widely exist in the 
bone marrow, umbilical cords, peripheral blood, fatty tissue, and other tissues. They are adult stem cells with multidirectional 
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differentiation potentials. MSCs serve as a promising stem cell-based therapeutic choice and possess properties of regeneration, 
repair, anti-inflammation, and immunomodulation. However, MSC treatment, as a live cell therapy, inevitably has safety concerns 
of tumorigenicity and transplant rejection. Accumulated evidence has revealed that MSC-derived extracellular vesicles (MSC- 
EVs) also perform strong biological functions similar to MSCs by transferring active molecules to the corresponding organs and 
tissues, such as proteins, nucleic acids, and lipids. More importantly, MSC-EVs exert biological effects with excellent biocompat-
ibility and stability in rheumatic disorders, such as exosomes, which are the most common particles with diameters less than 200 
nm in size. In our previously published review, the role of MSCs and MSC-EVs in SLE has been summarized.6 In the current 
paper, an updated review of MSCs and MSC-EVs in regulating innate and adaptive immunity rheumatoid arthritis has been 
performed, primarily including SLE, SS, RA, and SSc. This review will be useful to explore new therapeutic strategies for 
rheumatic diseases based on MSC-EVs.

Biological Characterization of MSC and MSC-EVs
MSCs can differentiate into various cells, including osteoblasts,7 fat cells,8 and chondrocytes.9 MSCs display low 
immunogenicity, multidirectional differentiation, self-renewal, and immunomodulatory characteristics. Thus, MSCs are 
star cells for regeneration medicine suggested by several studies on preclinical research and Phase I/II clinical trials.10–12 

MSCs express surface markers such as CD105, CD73 and CD90, while lacking expression of CD45, CD34, CD11b, 
CD19, and HLA-DR.13 Multiple studies have confirmed that MSCs can influence monocytes/macrophages, T cells, and 
B cells by producing bioactive factors in autoimmune and inflammatory diseases.14–16

In recent years, many studies have reported that many bioactive factors are encapsulated and delivered by MSC-EVs, 
which subsequently participate in the intercellular communications between MSCs and the recipient cells, including 
Immune and histological cells (Figure 1). EVs are heterogeneous particles with lipid bilayers that can be secreted by all 
cell types and mediate intercellular communication. EVs can transport lipids, proteins, and nucleic acids to target cells.17 

EVs are categorized into exosomes, microvesicles, and apoptotic vesicles by size. These vesicles play a crucial role in 
intracellular signaling transduction in MSCs. Apoptotic vesicles are the largest vesicles with a diameter of up to 5000 nm, 
forming during the late stage of apoptosis through direct budding of the membrane.18 Microvesicles, with the diameter 
ranging from 100 to 1000 nm, are generated by the budding and shedding of the cell membrane following fusion with the 
cell membrane.19 Exosomes are known as the smallest particles, ranging from 30 and 150 nm in size, which are formed 
when the cell membrane is endocytosed (Figure 1).20 Exosomes are one of the most prevalent EVs among them. They 
have a diameter of 30–150nm, specifically expressing phenotypic markers like CD9, CD63, and CD81. Exosomes confer 
biological effects by delivering functional molecules to specific sites. Via EVs, T cells, B cells, and MSCs can carry out 
biological functions by secreting paracrine substances (Figure 2). MSC-EVs are secreted from inside the cell to the 
outside and like MSCs, have functions of immune regulation, tissue regeneration, and wound healing. EVs derived from 
MSCs contain a substantial quantity of miRNAs, which play significant roles in various physiological and pathological 
processes (Figure 2).

MSC-EVs exhibit biological activities similar to those of MSCs, with much lower immunogenicity and higher 
stability. Although most research has demonstrated that MSC has anti-cancer effects, Gloria Bonuccelli et al have found 
that MSC makes osteosarcoma cells more aggressive.21 Furthermore, two patients receiving MSC therapy for renal 
illness experienced thrombosis.22 Pulmonary embolism after treatment with MSC in both in vivo and clinical trials.23,24 

For patients, these MSC side effects might be quite harmful. In terms of safety, MSC-EV is not affected by these and can 
be used as a good treatment.25 Patients with grade III–IV CKD treated with cell-free cord-blood mesenchymal stem cells 
derived extracellular vesicles (CF-CB-MSCs-EVs) have shown improvements in their overall renal function, and there 
are no known concerns related to MSC therapy, such as tumorigenicity or pulmonary embolism (Table 1).26 In a Phase 2a 
clinical trial study (NCT04276987) conducted in Wuhan, China, seven patients with severe COVID-19 pneumonia who 
received nebulized inhalation of human adipose-derived MSCs-Exosomes (haMSC-Exos) showed varying degrees of 
regression of lung lesions and significant relief of symptoms (Table 1).27 In a different clinical study, a patient treated 
with MSC-Exo for Graft-versus-Host disease demonstrated a reduction in inflammatory factors in the peripheral blood 
and an improvement in clinical symptoms of GvHD (Table 1).28 Although the patient died of pneumonia after 7 months 
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of exosomes, the improvement in these symptoms still provides evidence for effective treatment of GvHD.28 Thus, MSC- 
EVs are promising cell-free nanoparticles for future biotherapeutics.

Regulation of Innate Immunity by MSC-EVs
Regulation of Macrophages by MSC-EVs
Macrophages are critical cells involved in innate immunity, which are responsible for removing necrotic debris and 
pathogens from the damaged tissues. Macrophages are highly plastic and can be divided into M1 proinflammatory cells 
and M2 anti-inflammatory cells. MSC-EVs can help convert M1 to M2, according to numerous research (Table 2 and 
Figure 2). After receiving MSC-Exos, mice’s colitis is lessened because their M2-like substance is expressed, while their 
M1-like substance is less.30 Exosomes derived from human umbilical cord MSCs (hUMSC-Exos) have been suggested to 
alleviate steroid-resistant asthma by inhibiting M1 but promoting M2 polarization via suppressing tumor necrosis factor 
receptor-related factor 1.31 Also, MSC-EV reduced salpingitis by shaping macrophage from M1 to M2.32 Furthermore, 
some bioactive molecules encapsulated in MSC-EVs can also regulate macrophage functions and phenotypes, such as 

Figure 1 The formation of EVs derived from MSCs. Inside MSCs, the membrane invaginations form early endosomes, which further mature into multivesicular bodies 
(MVB). MVBs fuse with the cell membrane and release their internal intracavicular vesicles outside the cell to form exosomes. As an important medium of intercellular 
communication, exosomes carry and deliver a variety of bioactive molecules, such as proteins, DNA, mRNA, etc., to regulate the function of recipient cells by direct 
contaction or transporting these bioactive molecules.
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cytokines, miRNAs, and peptides. MiR-216a-5p derived from hypoxia-preconditioned MSC-Exo has been found to 
repair spinal cord injury by regulating microglia M1/M2 polarization.33 By preventing M1, MSC-EVs transfer of non- 
coding RNA tSNA-21109 has also been shown to dramatically reduce SLE.34 Moreover, adipose tissue-derived MSC-EV 
(AD-MSC-EV) is demonstrated to improve healing, reduce matrix degradation, and switch synovial macrophages 
towards M2-type in knee OA via encapsulating microRNA.35

Figure 2 Role of MSC-derived EVs in regulating autoimmunity and inflammation. MSC-EVs suppress activation of B and NK cells, and reverse M1 phenotype into M2 
phenotype. Further, MSC-EVs suppress DCs, leading to increased anti-inflammatory (TGF-β and IL-10) and decreased pro-inflammatory (IL-6) factors. MSC-EVs up-regulate 
Treg and Th2 but down-regulate Th1 and Th17 In addition to immunological cells, MSC-EV improves rheumatic disorders by acting on salivary gland cells, fibroblasts, and 
synovial cells and exerting anti-inflammatory effects.

Table 1 Application of MSC-Derived Extracellular Vesicles in the Clinic

EV types MSC source Number of 
Patients

Biological Function Disease Reference

CF-CB-MS-EV Human cord blood Forty Improve kidney function Chronic kidney diseases [26]

HaMSC-Exo Human adipose Seven Lung lesions subsided significantly COVID-19 [27]
BM-MSC- Exo Human bone marrow One Symptoms such as diarrhea are relieved Graft-versus-host disease [28]

MSC-EV Human placental One Reduces SSc Systemic sclerosis [29]
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Table 2 Application of MSC-Derived EVs in Animal Research

EV Types MSC Source Animal 
Model

Encapsulated 
Active Substances

Biological Function Regulatory Mechanism Disease Reference

MSC-Exo Human bone marrow Mice Metallothionein-2 Reduces inflammation of the colon Decreases IL-1β, IL-6 and TNF-α, 

increases CD206

Inflammatory bowel 

disease

[30]

HUC-MSC-Exo Human umbilical cord Mice TRAF1 Improves steroid-resistant asthma Regulates NF-κβ and PI3K/AKT signaling 

pathways

Steroid-resistant 

asthma

[31]

HUC-MSC-EV Human umbilical cord Mice — Treats chronic salpingitis Promotes macrophage from M1 to M2, 

inhibits the TLR4 signaling pathway

Salpingitis [32]

BMSC-Exo Mouse bone marrow Mice miR-216a-5p Repairs traumatic spinal cord injuries Inhibits TLR4/NF-κβ and activates the 

PI3K/AKT signaling pathway

Traumatic spinal cord 

injury

[33]

HUC-MSC-sEV Human umbilical cord Rabbit miR-100-5p Reduces autoimmune dacryoadenitis Promotes M2 polarization Autoimmune 

dacryoadenitis

[36]

HUC-MSC-Exo Human umbilical cord Mice — Improves SLE Promotes M2 macrophage and inhibits M1 SLE [37]

HUC-MSC-sEV Human umbilical cord Rat — Improves OA Suppresses M1 and increases M2 Osteoarthritis [38]

MSC-EV Rat bone marrow Rat miR-139-3p Improves myocardial infarction Inhibits the Stat1 pathway and encourages 

M2 polarization]

Myocardial infarction [39]

MSC-Exo Mouse bone marrow Mice — Promotes renal self-recovery Promotes the conversion of M1 to M2 Acute kidney injury [40]

MSC-MV Human umbilical cord Rat HGF Reduces renal fibrosis Promotes M2 macrophage polarization Renal fibrosis [41]

IPFP-MSC-Exo Rat IPFP Rat — Promotes anterior cruciate ligament 

reconstruction and intra-articular graft 

remodeling

Reduces M1 and promotes M2 Anterior cruciate 

ligament 

reconstruction

[42]

MSC-EV Human Wharton’s 

jelly

Mice — Improves acute lung injury Promotes M2 polarization Acute lung injury [43]

P-EV Mouse bone marrow Mice miR-21a-5p Improves myocardial ischemia Promotes M1 to M2 polarization Myocardial ischemia- 

reperfusion

[44]

MSC-EV Human pulp Mice — Alleviates TNBS-induced colitis Promotes M1/M2 infiltration Crohn’s Disease [45]

MSC-EV Human bone marrow Rat miR-15b, miR-19b, 

miR-22

Promotes bone regeneration Down-regulates M1 and up-regulates M2 Rat calvaria defect [46]

H@TI-EV Human umbilical cord Mice — Improves Type 1 Diabetes Suppresses CD4+ T cell, and induces the 

transition of macrophages from M1 to M2

Type 1 Diabetes [47]

BMSC-Exo Rat bone marrow Rat — Promotes healing of diabetic wounds Converts M1 to M2 Diabetes [48]

BMSC-Exo Human bone marrow Rat — Promotes regeneration of blood vessels Up-regulates PTEN, promotes M2, and 

inhibits M1

Diabetes [49]

MSC-Exo Mouse bone marrow Mice let-7a, miR-23a, miR- 

125b

Alleviates neurovascular dysfunction Down-regulates TLR4/NF-κβ signaling 

pathway

Diabetic peripheral 

neuropathy

[50]

MSC-EV Human bone marrow Mice miR-21-5p Promotes cell proliferation Reduces PTEN, activates Akt and STAT3, 

and facilitates M2

Non-Small-Cell Lung 

Carcinoma

[51]

MSC-EV Human bone marrow Mice — Improves neonatal brain damage Down-regulates TNF-a and up-regulates 

the M2 marker]

Hypoxia-ischemia [52]

BMSC-Exo Male monkey bone 

marrow

Mice — Promotes myelin re-formation Increases M2 and down-regulates TLR2/ 

IRAK1/NF-κβ signaling pathway

Demyelinating 

diseases

[53]

(Continued)
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Table 2 (Continued). 

EV Types MSC Source Animal 
Model

Encapsulated 
Active Substances

Biological Function Regulatory Mechanism Disease Reference

HUC-MSC-sEV Human umbilical cord Rat — Reduces inflammation Up-regulates IGFBP2/EGFR activates the 

EGFR/STAT3 pathway

Rat Spinal cord injury [54]

MSC-Exo Rat bone marrow Rat — Improves acute brain injury Reverses CysLT2R-ERK1/2-mediated 

microglial M1 polarization

Acute Brain Injury [55]

BMSC-EV Rat bone marrow Rat miR-223-3p Reduces cerebral ischemia Converts M1 to M2 Cerebral ischemia [56]

ADMSC-EV Mouse fat Mice — Reduces spleen lymphocyte proliferation Increases IL-10 and TGF-β, decreases IL-6 — [57]

BMSC-MV Mouse bone marrow Mice miR-146a Improves survival of allografts Promotes IL-12 expression and inhibits 

DC maturation

Allogeneic kidney 

graft

[58]

HUC-MSC-EV Human umbilical cord Mice — Improves dry eyes Inhibits DCs and reduces Th17 Dry Eye Disease [59]

MSC-EV Human umbilical cord Rat — Protects enal ischemia-reperfusion Reduces TLR-2 and CX3CL1 expression Renal ischemic 

reperfusion injury

[60]

HUC-MSC-sEV Human umbilical cord Sheep — Repair rotator cuff Reduces T-cell proliferation Rotator cuff [61]

MSC-Exo Human umbilical 

cord, mouse bone 

marrow

Mice miR-223 Reduces aGVHD Reduces donor T-cell migration Acute Graft-versus- 

host disease

[62]

MSC-sEV Mouse bone marrow Mice Eid3 Inhibits Th17 cells Destroying the stability of RORγt — [63]

MSC-sEV Human umbilical cord Mice — Improves autoimmune uveitis Inhibits Th1 and Th17 Autoimmune uveitis [64]

HUC-MSC-sEV Human umbilical cord Rat — Improves the CIA Inhibits T lymphocytes and increases Treg Collagen-induced 

arthritis

[65]

MSC-Exo Mouse fat Mice miR-21, miR-29 Improves acute colitis Inducts Treg cells inhibit inflammatory 

cytokines, produces the anti-apoptotic 

effect

Inflammatory bowel 

disease

[66]

MSC-Exo Human umbilical cord Mice — Improves acute colitis Increases TGF-β and IL-10, decreases IL- 

17 levels

Acute colitis [67]

MSC-Exo Mouse bone marrow Mice miR-125a, miR-125b Alleviates colitis in mice Reduces T cells on Stat3 and inhibits Th17 Colitis [68]

MSC-Exo Human umbilical cord Mice — Improves multiple sclerosis Increases Tregs and decreases Th1 and 

Th17

Multiple sclerosis [69]

MSC-EV Human umbilical cord Mice — Alleviates experimental autoimmune 

encephalomyelitis

Induces Treg cells Experimental 

autoimmune 

encephalomyelitis

[70]

SubQ-MSC-EV Human subcutaneous 

fat

Mice — Inhibits T-cell proliferation Reduces Th1/Th17 response Crohn’s disease [71]

MSC-EV Human bone marrow Mice miR-503 Destroys T cell proliferation and promotes 

glioma immune escape

Blocks KIF5A-dependent IL-7 signaling 

pathway

Glioma [72]

MSC-EV Human umbilical cord Mice — Alleviates skin fibrosis in tumor-bearing 

cGVHD mice

Blocks Tfh and germinal center B cell 

action

Chronic graft-versus- 

host-disease

[73]

BMSC-Exo Mouse bone marrow Mice miR-205-5p Inhibits RA-FLS Down-regulates MDM2 and Inhibits MAPK 

and NF-κβ
Rheumatoid arthritis [74]
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BMSC-EV Human bone marrow Rat miR-34a Improves RA Inhibits cyclin II/ATM/ATR/p53 signaling 

pathway

Rheumatoid arthritis [75]

MSC-Exo Human bone marrow Rat circFBXW7 Inhibits RA-FLS inflammation Inhibits miR-216a-3p and up-regulates 

HDAC4

Rheumatoid arthritis [76–78]

BMSC-EV Mouse bone marrow Mice miR-21 Inhibits mFLS Inhibits TET1/KLF4 axis Rheumatoid arthritis [76–78]

MSC-Exo Human bone marrow Mice miR-320a Inhibits RA-FLS Down-regulates CXCL9 Rheumatoid arthritis [76–78]

HUC-MSC-Exo Human umbilical cord 

blood

Rat miR-451a Targeting ATF2 Prevents FLS migration Rheumatoid arthritis [79]

GMSC-Exo Human gingival 

fibroblasts

Mice — Inhibits joint deterioration Inhibits synovial fibrosis Rheumatoid arthritis [80]

MSC-Exo Mouse bone marrow Mice miR-150-5p Improves RA Inhibits MMP14 and VEGF Rheumatoid arthritis [81]

SMSC-Exo Human synovial 

membrane

Mice circEDIL3 Improves RA Targeting miR-485-3p/PIAS3/STAT3 to 

regulate VEGF

Rheumatoid arthritis [82]

SMSC- sEV Synovial 

mesenchymal stem 

cells

Mice miR-433-3p Lessens arthritis Increases VEGF expression Rheumatoid arthritis [83]

AMSC-EV Mouse fat Mice IL-1ra Improves RA Inhibits IL-1 and TNFα Rheumatoid arthritis [84]

iMSC-Exo Human iPSC Mice — Improves RA Reduces IL-17, IL-10, increases TGF-β1 Rheumatoid arthritis [85]

ESC-MSC-sEV Human Embryonic 

stem cell

Mice — Improves RA Increases M2 and decreases IL-6 Rheumatoid arthritis [86]

GMSC-Exo Human gingival 

fibroblasts

Mice — Relieves RA, and reduces bone erosion Inhibits IL-17RA-Act1-TRAF6-NF-κβ 
signaling pathway

Rheumatoid arthritis [87]

ADMSC-Exo Mouse fat Mice miR-146a, miR-155 Improves RA Increases Treg cell Rheumatoid arthritis [88]

BMSC-Exo Rat bone marrow Rat miR-223 Inhibits inflammatory factors Down-regulates NLRP3 Rheumatoid arthritis [89]

BMSC-EV Human bone marrow Mice miR-378a-5p Reduces inflammation suppress the IRF1/STAT1 axis Rheumatoid arthritis [90]

BMSC-Exo Mouse bone marrow Mice miR-16, miR-21 Relieves SLE progression Targeting PDCD4 and PTEN Systemic lupus 

erythematosus

[91]

HUC-MSC-Exo Human umbilical cord Mice miR-146a-5p Alleviates SLE-related DAH Inhibits NOTCH1 Systemic lupus 

erythematosus

[92]

BMSC-EV Mouse bone marrow Mice — Reduces SLE Inhibits T cell activation Systemic lupus 

erythematosus

[93]

MSC-Exo Mouse bone marrow Mice miR-196b-5p Reduces SSc Inhibits type I α2 collagen Systemic sclerosis [94]

BMSC-EV Mouse bone marrow Mice miR-21a, miR-143, 

miR-27b, miR-29a, 

let-7

Reduces SSc Reduces TGF-β1 Systemic sclerosis [95]

HUC-MSC-Exo Human umbilical cord Mice — Reduces SSc Down-regulates TGF-β/Smad signaling 

pathway

Systemic sclerosis [96]

MSC-EV Mouse bone marrow Mice miR-29a-3p Improves skin fibrosis Inhibits collagen type I and III levels Systemic sclerosis [97]

MSC-EV Mouse bone marrow Mice — Regulates anti-inflammatory and improves 

pulmonary fibrosis in mic

Up-regulates iNos, IL1ra, IL6 in ssEV, Up- 

regulates PGE2 protein in lsEV

Systemic sclerosis [98]

(Continued)
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Table 2 (Continued). 

EV Types MSC Source Animal 
Model

Encapsulated 
Active Substances

Biological Function Regulatory Mechanism Disease Reference

HUC-MSC-Exo Human umbilical cord Mice — Relieves bleomycin-induced skin fibrosis Balances M1/M2 Systemic sclerosis [99]

BMSC-Exo Human bone marrow Mice miR-214 Relieves bleomycin-induced skin fibrosis Inhibits the IL-33/ST2 axis Systemic sclerosis [100]

MSC-EV Human iPSC Mice miR-125b Reduces salivary gland inflammation Increases M2 and decreases Th17 Sjogren’s syndrome [101]

LG-MSC-Exo Human labial gland Mice — Reduces the inflammation of the exocrine 

gland

Inhibits Th17 cells, increases TGF-β, IL-10 Sjogren’s syndrome [102]

LG-MSC-Exo Human labial gland Mice miR-125b Restores the secretory function of the 

salivary gland

Targeting PRDM1 to inhibit plasma cells Sjogren’s syndrome [103]

MSC-EV Human iPSC Mice — Reduces salivary gland inflammation Reduces lymphocyte infiltration of B/ 

plasma cells

Sjogren’s syndrome [104]

OE-MSC-Exo Mouse nasal cavity Mice — Increases 

saliva flow rate

Secrets IL-6, promotes MDSC expansion 

and inhibits Th1/Th17

Sjogren’s syndrome [105]

OE-MSC-Exo Mouse nasal cavity Mice — Improves saliva flow rate Inhibits the differentiation of Tfh cells, 

naive T cells, and plasma cells

Sjogren’s syndrome [106]

MSC-EV Human iPSC Mice miR-21, miR-125b Reduces salivary gland inflammation Inhibits APC and T cell activation Sjogren’s syndrome [107]

SHED-Exo Human exfoliated 

deciduous teeth

Mice — Inhibits salivary gland cell apoptosis Suppresses p-ERK1/2 Sjogren’s syndrome [108]

SHED-Exo Human exfoliated 

deciduous teeth

Mice — Improves SS Regulates the Akt/GSK-3β/Slug pathway Sjogren’s syndrome [109]

DPSC-Exo Human endodontic 

stem cell

Mice — Improves SS Regulates the cAMP/PKA/CREB pathway Sjogren’s syndrome [110]
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Li’s team discovers that subconjunctival injection of MSC-EV induces the transformation of macrophages into M2, 
which in turn alleviates autoimmune dacryoadenitis.36 It is also very interesting to see how MSC-EVs control SLE 
macrophages, particularly in lupus nephritis. Our previous work has confirmed that hUC-MSC-Exo improved lupus 
nephritis by reshaping macrophage polarization to M2 in MRL/lpr mice.37 Tang et al have reported that MSC-EV 
reduced the expression of CD14 and the pro-inflammatory cytokine IL-1, suppressed M1, and improved OA.38 It is 
evident that MSC-EV inhibits the inflammatory response to illness.

According to more research, MSC-EV controls macrophages’ capacity for repair in trauma-related illnesses. MSC-EVs 
carry miR-139-3p, which inhibits the Stat1 pathway and improves myocardial infarction by encouraging M2 macrophage.39 

Besides, BMSC-Exo-derived indoleamine 2,3-dioxygenase (IDO) participated in the tryptophan metabolism and promoted 
renal repair in acute renal injury by upregulating M2.40 HUMSC-MVs improved renal fibrosis in ischemia partial 
nephrectomy rats by promoting M2 polarization via hepatocyte growth factor (HGF).41 Additionally, MSC-Exos from 
the infrapatellar fat pad are demonstrated to promote tendon-bone repair by regulating M1/M2 polarization.42 As 
a noninvasive strategy, inhalation of MSC-EVs has been documented to ameliorate acute lung injury by exerting anti- 
inflammatory and immunomodulatory effects.43 The study by Li Qet al has implicated that platelet membrane-engineered 
EVs functioned to target immunomodulation of cardiac repair via delivering bioactive miRNAs into the cytoplasm and 
switching M1 polarization towards M2, suggesting the engineered EVs-based membrane fusion way to macrophages.44

Preconditioning MSCs with specific stimulation or gene editing technology may guide the future applications of 
MSC-EVs. Preconditioning MSCs with hypoxia and induction high expression of HIF-1α resulted in MSC-EVs with 
highly immunosuppressive and anti-inflammatory effects in experimental Crohn’s disease.45 Similarly, deferoxamine is 
documented to enhance the functions of MSC-EVs in effectively reprograming macrophage into M2 by activating the 
HIF-1α signaling pathway.111 EVs from TNF-α-preconditioned MSCs can promote bone repair by decreasing M1 and 
boosting M2.46 Engineered cytokine-primed MSC-EVs loaded hexyl 5-aminolevulinate hydrochloride (HAL) can 
regulate the PD-L1/PD-1 signaling pathway to suppress the activation of CD4+T cells and induce the transition of 
macrophages from M1 to M2, thereby alleviating T1D.47 Besides, the antibacterial and self-healing hydrogels loaded 
with BMSC-Exos are found to promote the healing of diabetic wounds by stimulating angiogenesis and transforming 
M2.48 Moreover, melatonin-stimulated MSC-derived Exos enhance diabetic wound healing by inducing M2 polarization 
through the PTEN/AKT pathway.49 Most interestingly, MSC-Exo is documented to improve peripheral neuropathy in 
a diabetic mice model by inducing M2 polarization, indicating that MSC-EVs also have significant advantages in 
regulating M1/M2 bias in treating diabetes-associated nerve injury.50 However, MSC-EVs can accelerate tumor devel-
opment by promoting M2 polarization in a hypoxic environment.51 Accordingly, MSCs may be a double-edged sword. 
Taken together, MSC-EVs have significant impacts on regulating macrophage differentiation, polarization, activation, 
and functions in various inflammatory diseases.

In a brain injury mice model, MSC-EVs are documented to reduce the neuroinflammatory response, promote neural 
cell proliferation, and enhance oligodendrocyte maturation as well as the expressions of M2 markers of YM-1 and TGF- 
β.52 Besides, MSC-Exos treatment is found to promote and inhibit neuroinflammation in the brain and spinal cord by 
inducing M2 polarization via the TLR2/IRAK1/NF-κβ signaling pathway.53 Small EVs derived from four-dimensional- 
cultured MSCs (MSC-sEV) induce the transformation of M1 to M2 and inhibit inflammation in spinal cord injury rats by 
activating the IGFBP2/EGFR signal.54 The cysteinyl leukotrienes (CysLTs) are a family of potent inflammatory 
mediators. MSC-Exos improve acute brain injury and inflammation by inhibiting the M1 polarization of the microglial 
cells via inactivating the CysLT2R-ERK1/2 signaling pathway.55 MSC-Exos overexpressing microRNA-223-3p is 
reported to alleviate cerebral ischemia injury by inhibiting neuroinflammation and the M1 polarization of microglial 
cells.56 As mentioned above, MSC-EVs exert significant effects on neuropathy, and spinal cord injury by regulating the 
M1/M2 balance of macrophage. Overall, by regulating macrophages, EVs, or exosomes from MSCs regulate inflamma-
tion, damage, and immunological disorders (Table 2 and Figure 2).

Regulation of Dendritic Cells (DCs) by MSC-EVs
DCs are also known as antigen-presenting cells.112 DCs in many illnesses are regulated by MSC-EVs (Table 2 and 
Figure 2). TGF-β and IL-6 are critical in inflammatory and immune diseases.113,114 According to a study by Shahir, M.’s 
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group, AD-MSC-Exo promotes the generation of tolerogenic DC, IL-10, and TGF-β generation but reduces IL-6 in mice.57 

Another study has also documented that mature DC treated with MSC-EV resulted in a large rise in TGF-β and a decrease 
in IL-6, which suggests that MSC-EV is critical in limiting DC maturation.115 Furthermore, MSC-EVs are demonstrated to 
alleviate allergic rhinitis by enhancing the generation of IL-10 and Treg cell but reducing Th2 response.116 In addition, 
BMSC-derived microvesicles (BMSC-MVs) can enhance the longevity of transplanted kidneys by increasing the expression 
of micro-146a in DCs.58 As is well known, the complexity of the dendritic structure of DCs reflects their maturation ability. 
It has been implicated that the administration of MSC-EV led to significantly decreased intricacy of DC dendrites in mice 
corneas, slower DC maturation, and reduced dry eye symptoms in mice.59 Consequently, MSCs and MSC-EVs have great 
potential for modulating DC maturation and DC-mediated immunological effects.

Regulation of Natural Killer (NK) Cells by MSC-EVs
Bone marrow lymphocytes give rise to natural killer (NK) cells, which are engaged in immunological and inflammatory 
responses.117 MSC-EVs-derived miRNA-155 and miRNA-146 have been shown to primarily block the G0 and G1 
phases of the NK cell cycle.118 Besides, MSCs-Exos derived from the fetal liver have been well documented to prevent 
NK cell proliferation through the TGF-β/Smad signaling pathway.119 There was an increase in NK cells in the wounded 
kidneys and splenic organs following renal ischemia-reperfusion, according to another study.60 However, reduced 
severity of renal ischemia-reperfusion injury was found due to a significantly decreased proportion of NK cells and 
reduced expressions of TLR-2 and CX3CL1 in kidneys after the intravenous infusion of MSC-EV.60 It has been found 
that the biological effects of bone marrow-derived MSCs (BMSC) were superior to adipose-derived MSCs (ADMSC) in 
rat kidney transplantation.120 However, the study has reported no improvement in renal function from the EVs of either 
source, whereas the ADMSC-EV promoted T cells and NK cells infiltration into the kidneys, accelerating the progression 
of end-stage renal disease.120 Hence, MSC-EVs may control the biological activity of NK cells, thereby compromising 
their immunomodulatory role. Nonetheless, the source of MSC-EVs should be seriously considered before application. 
Table 2 and Figure 2 illustrate how MSC-EV controls NK cells.

Modulation of Adaptive Immune Cells by MSC-EVs
Regulation of T Cells by MSC-EVs
T cells are involved in adaptive immunity.121 According to many studies, MSC-EV can regulate T cells. MSC-EVs are 
reported to inhibit CD4+T cell expansion and Th1 response.122 There are also studies that show MSC-EVs dramatically 
lower T cell activation and improve Treg cell activity.123 In several disorders, MSC-EV can regulate T-cells. For example, 
F. Jenner et al found that Small extracellular vesicles (sEVs) derived from hUC-MSC markedly reduced T-cell proliferation 
in the context of rotator cuff repair.61 MSC-Exo-delivering miR-223 could hinder donor T cell migration in mice of 
aGVH.62 Regulatory cells (Tregs) are necessary to keep the peripheral immunological environment steady. Foxp3 is 
a widely recognized transcription factor responsible for Treg differentiation. Yeganeh, A. and his team have revealed that 
MSC-EVs increased CD4+CD25+FOXP3+ T cells.124 Pro-inflammatory cell subpopulation Th17 causes harm to tissues. 
RORγt is a pivotal transcription factor for pro-inflammatory Th17 cells. MSC-EVs can inhibit Th17 cells by destabilizing 
RORγt.63 As a result, MSC-EVs are essential for controlling T cell differentiation, proliferation, and function.

Multiple research results have revealed that MSC-EVs can be used to treat other autoimmune diseases. Small EVs from 
MSCs are found to alleviate autoimmune uveitis by suppressing Th1 and Th17 cells but promoting Treg activation.64 HUC- 
MSC-EV can reduce T-lymphocytes, while decreasing Th17 cells and increasing Treg cells, thereby ameliorating collagen- 
induced arthritis (CIA).65 Several studies have also shown that MSC-Exo regulated the Th17/Tregs balance and alleviated 
colitis.66–68 sEVs from programmed death receptor (PD-L1)-modified MSCs are demonstrated to foster Tregs differentia-
tion and extend allograft survival.125 MSC-Exo has also been shown to decrease Th1- and Th17-associated cytokines while 
enhancing Tregs in multiple sclerosis.69 Additionally, MSC-EVs attenuate experimental autoimmune encephalomyelitis by 
stimulating Treg cells.70 As previously mentioned, our research team has determined that MSC-Exo improved SLE via Treg 
augmentation.37 Other studies have shown that MSC-EVs suppress the Th17 cell response to modify SLE.126 Accordingly, 
MSC-EVs may improve the condition by balancing Th17/Treg and Th1/Th2 in autoimmune diseases.
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MSC-EVs maintain immune tolerance and immune microenvironment homeostasis by regulating T-cell bioactivity. 
However, not all tissue-derived MSCs and their EVs inherently possess robust anti-inflammatory properties. MSC-EVs 
extracted from the mesenteric tissue of Crohn’s disease patients had diminished capacity to inhibit T cells, unlike MSCs 
and their EVs sourced from subcutaneous adipose tissue (SubQ), which effectively suppressed T-cell, IFN-γ, and IL- 
17a.71 Moreover, miR-503 loaded by MSC-EV is found to facilitate glioma immune escape.72 Therefore, the varying 
disease conditions, diverse tissue sources, and other factors may influence or reshape the action of MSC-EVs. In 
summary, MSC-EVs can control T cell activation, proliferation, and polarization (Table 2 and Figure 2).

Regulation of B Cells by MSC-EVs
B cells develop into a vast quantity of plasma cells, which subsequently generate autoantibodies.127 MSC-EVs have 
a regulatory effect on B cells (Table 2 and Figure 2). There is evidence that MSC-EVs inhibit Tfh’s interaction with 
reproductive center B cells in vivo.73 Additionally, BMSC-derived Exos can inhibit B cells by regulating the expression 
of mRNA genes related to B cell maturation and differentiation.128 MSC-EVs exert immunosuppressive effects by 
suppressing B cell.118 Recent research has revealed that MSC-EV inhibited B cells by regulating the PI3K-AKT signaling 
pathway.129 In addition, BMSC-EV can prevent B cells apoptosis in chronic lymphocytic leukemia.130 However, the 
study by Carreras-Planella, Let al has discovered that MSCs could confer an immunomodulatory effect on B cells 
independent of MSC-EV.131 Future research is required to figure out the precise functions and mechanisms of the various 
MSC-EV subtypes in controlling B cells.

Regulatory Role and Mechanism of MSC-EVs in Rheumatic Diseases
MSC-EVs and RA
The main feature of RA is the presence of multiple joints.132 UC-MSCs have shown good efficacy and tolerance in 
patients with RA.133 When RA patients received intravenous UC-MSC injections, their symptoms and other indications 
improved, according to a domestic clinical trial.133 Liming Wang et al conducted a three-year prospective phase I/II study 
using UC-MSC cells in combination with DMARDs, and most patients showed significant improvement in joint 
symptoms with fewer side effects. Two of these patients, including one elderly male and young female, recovered 
from joint deformities after 3 years of UC-MSC use, suggesting that UC-MSC cells combined with DMARDs may be 
a safe and effective long-term treatment for RA patients.134 Several studies have pointed to the involvement of MSC-EV 
in RA (Table 2 and Figure 3). Fibroblast-like synovial cells (FLSs) are involved in joint lesions. MSC-EVs influence RA 
by interacting with FLSs and promoting joint repair by delivering bioactive molecules to the damaged joints. For 
instance, in a CIA mouse model, miR-205-5p delivered by BMSC-Exos dramatically reduced arthritis by regulating 
double minute 2 (MDM2) in FLSs.74 According to Su. et al, lncRNA HAND2-AS1 loaded via MSC-Exos inhibited RA- 
FLS.135 Besides, miR-34a delivered by BM-MSC-EVs could inhibit RA-FLS and enhance inflammation by targeting 
cyclin I through the ATM/ATR/p53 signaling pathway.75 Meng, H. Y. et al found that miRNA-124a-overexpressed MSC- 
derived EVs prevented RA-FLS by affecting the cell cycle G0/G1 conversion.136 Other bioactive molecules such as 
circFBXW7, microRNA-21, and microRNA-320a loaded by MSC-Exo were also demonstrated to inhibit FLS, suggest-
ing critical roles of non-coding RNAs delivered by MSC-Exo in RA.76–78 High levels of AFT2 expression encouraged 
RA-FLS invasion.137 Exosomes loaded with miR-451a that are generated from hUC-MSC bind to ATF2 to prevent 
FLS.79 Joints can be destroyed by activated synovial fibroblasts. Activation of synovial fibrogenesis and other joint 
deterioration are inhibited by gingival mesenchymal stem cells (GMSC) and their exosomes have been demonstrated by 
the development of a hybrid human/mouse model of synovitis.80 Taken together, MSC-EVs significantly affect the 
development and progression of arthritis and joint damage in RA by delivering bioactive mediators involved in RA-FLS 
proliferation, cell cycle regulation, and inflammation.

Matrix metalloproteinases (MMPs) are crucial enzymes involved in RA that promote synovium invasion and cartilage 
damage by degrading the extracellular matrix. MSC-Exos-miR-150-5p alleviated RA by reducing the expression of targeted 
genes of MMP14 and VEGF.81 Interleukin-27 (IL-27) is overexpressed in RA. According to L. Ma et al, MSC-derived 
exosomes induced by IL-27 exacerbate RA mainly via upregulating MMP3 expression through the miR-206/L3MBTL4 
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axis.138 This provides us with a new target for the treatment of R, which can be performed by inhibiting IL-27. It has been 
well documented that inflammation promotes angiogenesis, which thus aggravates RA. Zhang et al revealed that circEDIL3 
delivered by MSC-Exos from human synovium alleviates RA by inhibiting VEGF production via the miR-485-3p/PIAS3/ 
STAT3 signaling pathway.82 Many investigations conducted in the last few years have discovered that iron death inducers 
can exacerbate synovial angiogenesis and cause RA-FLS, while SMSCs-sEV that overexpresses MiR-433-3p increases 
VEGF expression and lessens the severity of arthritis.83 AMSC-derived EV suppressed inflammation by delivering IL-1ra 
and inhibiting IL-1 and TNF-α secretions in an RA mouse model.84 Exosomes from iMSCs reduce IL-17, IL-10, and IL-1β 
while increasing TGF-β1, polarizing Th2 and M2, and improving RA.85 Small extracellular vesicles derived from MSCs 
decreased inflammatory cytokine IL-6 and increased M2, which reduced joint inflammation in CIA mice. However, the 
researchers did not find any statistically significant differences in the therapeutic effects of MSC-sEVs at low and high 
dosages.86 It is evident that managing inflammation is essential to managing RA.

In RA, MSC-EVs can regulate immune disorders. Gingival MSC-derived exosome (GMSC-Exo) regulated the Th17/ 
Treg balance to alleviate RA.87 Additionally, mouse adipose MSC-Exo-derived miR-146a/miR-155 up-regulated Treg 

Figure 3 Regulatory effects and mechanisms of MSC-EVs in common rheumatic diseases. MSC-EV improves RA by inhibiting inflammation in FLS through some miRNAs. In 
addition to miRNA delivery, MSC-EV also acts on salivary gland bodies through several pathways to improve dry mouth, dry throat, or other symptoms in SS mice models. In 
addition, MSC-EV improves skin sclerosis in SSc or alleviate pulmonary fibrosis by delivering miRNAs. Similarly, in SLE, MSC-EV exerts immunomodulatory and anti- 
inflammatory effects by interacting with immune cells through complicated mechanisms.
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cells and relieved joint inflammation.88 According to Huang et al, miR-223 encapsulated in MSC-Exos could alleviate 
arthritis by suppressing macrophage-induced inflammation via targeting NLRP3.89 T cells are a major factor in RA 
pathogenesis. MSC-EV has shown a more potent inhibitory effect on RA pathogenesis as compared to MSC. This was 
attributed to the MSCs’ IFN-β-induced suppression of CD4 T cells.139 To suppress the IRF1/STAT1 axis and reduce 
inflammation in RA animals, BMSC-EV distributes miR-378a-5p.90 Accordingly, MSC-EVs and the encapsulated 
bioactive molecules can control RA (Table 2 and Figure 3).

MSC-EVs and SLE
Chronic inflammation, autoimmune diseases, and numerous organ damage are the final results of SLE, an autoimmune 
illness marked by excessive immune cell proliferation, activation, and abundance of autoantibodies.140 According to 
recent clinical research, UC-MSCs are safe and effective for lupus patients via significantly increasing GARP-TGFβ 
complexes and reducing CD27IgD double-negative B cells.141 We should continue to monitor the impact of MSC- 
secreted vesicles on the therapy of early SLE as, as per F. Guo et al, hUC-MSC transplantation reduces B-cell 
proliferation in the early peripheral blood of SLE mice, which is useful for the treatment of early SLE.142 Umbilical 
cord blood MSCs (UC-BSC)-derived exosomes exerted immunomodulatory and anti-inflammatory effects in SLE by 
regulating Th17/Treg balance through the miR-19b/KLF13 axis.143 According to our earlier research, hUC-MSC-Exos 
can reduce SLE by modifying M2 polarization and increasing Treg cells.37 Another work has also reported that MSC- 
Exos-derived miR-16 and miR-21 alleviated SLE by regulating macrophage polarization.91 Dou et al have demonstrated 
that tsRNA-21109 encapsulated by MSC-Exo alleviated SLE by inhibiting M1 macrophage polarization.34 Chen et al 
have also pointed out that microRNA-146a-5p delivered by hUC-MSC-EVs significantly improved SLE-related diffuse 
alveolar hemorrhage by promoting anti-inflammatory M2 polarization via targeting the NOTCH1 signal.92 Similarly, 
hUC-MSCs and hUC-MSC-EVs could exert immunoregulatory effects by upregulating Th17 and increasing TGF-β1 in 
SLE.126 UCMSC-Exos can suppress miR-155 in B cells and raise SHIP-1 levels, which encourages B cell death and 
reduces SLE.144 Apoptotic vesicles formed from MSCs, such as EVs, block TCR signaling to prevent T cell activation 
and IL-2 release. Additionally, apoVs have been shown to not harm mice’s organs, which helps to alleviate SLE.93 

Accordingly, MSC-EVs work similarly to MSCs and provide SLE patients with a different kind of biological therapy 
(Table 2 and Figure 3).

MSC-EVs and SSc
SSc manifests as vascular lesions and fibrosis of the skin or organs.145 MSC-EVs can serve as miRNA carriers and exert 
immunomodulatory in SSc (Table 2 and Figure 3), such as MSC-EVs-derived miRNA clusters, miR-196b-5p, and miR- 
29a-3p.94–97 BMSC-EVs-delivering miRNA clusters are documented to suppress SSc by regulating the WNT signal and 
TGF-β signal.95 TGF-β1 is part of the process of tissue fibrosis. MSC-Exo has been demonstrated to improve SSc by 
downregulating the TGF-β/Smad signaling pathway.96 Remarkably, EVs produced from AD-MSC outperformed parental 
cells in terms of enhancing myofibroblasts.146 Additionally, IFNγ-primed MSCs-EVs confer immunoregulatory function 
and improve lung fibrosis by upregulating iNOS, IL1ra, IL6, and PGE2.98 Regulation of M1/M2 macrophage balance is 
another effect of MSC-Exos in treating SSc.99 Interstitial lung disease (ILD) is a manifestation of severe lung involve-
ment by SSc. Patients with SSc were found to benefit from placental MSC-EV, according to a recent clinical case report. 
After undergoing traditional medical treatment, the patient still needed oxygen therapy; however, after utilizing MSC-EV, 
the patient’s symptoms, including dyspnea, dramatically improved, necessitating no longer oxygen therapy. Additionally, 
a lung CT scan revealed a considerable reduction in fibrosis (Table 1).29 In systemic sclerosis (SSc), interleukin (IL)-33 
functions as a pro-inflammatory cytokine and stimulates fibrosis. By delivering miR-214 and inhibiting the IL-33/ST2 
axis, BMSC-Exos reduce cutaneous fibrosis.100 Altogether, MSC-EVs as a whole exhibit a therapeutic impact on SSc.

MSC-EVs and SS
SS is characteristic of loss of exocrine glands structure and function, which results in symptoms such as dry mouth, dry eyes, 
and swallowing difficulty.147 The progression of SS is associated with Th17/Treg.148 In pSS, UCMSC-Exos primarily inhibit 
CD4 T cell growth by blocking the G0/G1 phase and limiting the cells’ ability to enter the S phase, which in turn balances 
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Th17/Treg.149 Salivary gland inflammation was successfully reduced by EV derived from early passaged iMSCs, which also 
reduced Th17 and boosted M2.101 MSC and MSC-Exos derived from the labial gland (LG) can ameliorate murine SS by 
suppressing Th17 but up-regulating Treg.102 Moreover, it has also been found that LG-MSC-Exos-derived miR-125b could 
alleviate SS by inhibiting plasma cell and targeting PRDM1.103 According to reports, EV isolated from human induced 
pluripotent stem cells (IPSCs) can activate APC, suppress Tfh and Th17 cells, and relieve SS.104 Under pathological 
microenvironment, IL-6 is essential for enhancing the suppressive ability of myeloid-derived suppressor cells (MDSC). 
Olfactory MSC-derived exosomes (OE-MSC-Exo) are demonstrated to increase MDSC proliferation and attenuate SS via 
activating the IL-6/Jak2/Stat3 pathway.105 OE-MSC-Exo-derived PD-L1 is documented to alleviate SS by inhibiting Tfh 
response.106 Additionally, the contents of MSC-EVs may vary according to the parent MSCs. In an SS mouse model, Lee 
et al have found that iPSC-MSC-EVs at an earlier stage exhibited higher immunomodulatory potencies than iPSC-MSC-EVs 
at a later stage.107 Salivary secretion was stimulated by exosecreted by human exfoliated deciduous teeth (SHEDs), which 
suppressed p-ERK1/2 activation and glandular cell death.108 According to another study, ZO-1 expression regulated by the 
Akt/GSK-3β/Slug pathway is the primary mechanism by which Exo generated from human deciduous teeth can enhance SS 
and increase paracellular permeability of glandular epithelial cells.109 A transmembrane estrogen receptor is called GPER. 
Exosomes produced from endodontic stem cells (DPSCs) stimulate the cAMP/PKA/CREB pathway via GPER to enhance 
salivary gland epithelial cell activity.110 The regulatory mechanisms of MSC-EVs in SS are summarized in Table 2 and 
Figure 3, which lays a theoretical foundation of MSC-EVs for future clinical applications in SS.

Conclusions
The impacts of MSC-EVs with various origins on controlling both innate and adaptive immune responses are methodically 
covered in this review. In particular, we summarize the underlying mechanisms of MSC-EVs in rheumatic diseases, primarily 
including RA, SLE, and SS. MSC-EVs have exhibited great potentials in inhibiting inflammation and excessive immune 
responses, thereby defending against organ and tissue damage. Compared to MSCs, MSC-derived EVs are less immunogenic, 
safe, and simple to utilize and store. Nevertheless, we need to focus on some issues including quality standards of MSC-EVs, 
intra-batch and inter-batch repeatability, and characterization and standards of MSC-EVs for a clinical-grade reagent. Besides, 
further research on the pharmacokinetics, long-term safety, targeted homing mechanism, and active and nonactive components of 
MSC-EVs needs further exploration.
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