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Review Article

IntroductIon

Epilepsy (also called “Seizures”) is characterized by 
uncontrolled excessive activity of either part or all of the central 
nervous system. Although epilepsy is not a specific disease, it 
is considered as a group of syndromes as a result of chronic 
neurological disorders.[1] Epilepsy can be classified into three 
major types: grand mal epilepsy, petit mal epilepsy, and focal 
epilepsy.[2] Global prevalence of epilepsy is approximately 0.5% 
affecting predominantly early childhood and late adulthood 
resulting in psychological and social consequences.[3] The causes 
and treatment protocols vary widely.[4] In India, over 10 million 
patients suffer from epilepsy, which equates to a prevalence 
rate of 1%.[5] Impairment of cognition is a common condition 
in epilepsy, and the features include mental slowness and 
memory and attention deficits in adults.[6] Learning disabilities, 
poor academic outcome, behavioral problems, and language 
stagnation or deterioration are additional features observed 
in children.[6] Underlying cause of cognition impairment may 
be lesion in particular brain area consequence to seizures or 
epileptic dysfunction,[7] with age‑associated increase in the 
vulnerability.[8] However, seizures in children have reported 
to cause long‑term adverse effects.[9] Further, the extent of 
brain damage also depends on number, duration, and severity 
of seizures.[10] Understanding the microanatomical changes in 
brain structures may lead to innovative therapeutic approaches 

to prevent/delay the cognitive impairment in epilepsy. Hence, 
we aimed to review the microanatomical changes in the brain 
structures related to cognition in epilepsy.

MaterIals and Methods

A detailed literature review was performed between February 
2016 and August 2016, through MEDLINE, Google, PubMed, 
Scopus, British Medical Journal, Medline, Eric, Frontiers, 
and other online journals using the terms “epilepsy,” 
“micro‑anatomical changes,” “basal ganglia,” “cerebellum,” 
“brain volume,” “thalamus,” “hypothalamus,” “limbic 
system,” “locus coeruleus,” and “cerebral cortex.” Article 
selection was based on their relevance to the present topic.

changes In hIppocaMpus In epIlepsy

Hippocampus plays a crucial role in cognition and it is involved 
in minute‑to‑minute cognitive processing.[11] Hippocampus 
and associated areas were reported to be affected critically 
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in epilepsy, especially temporal lobe epilepsy, which is more 
common in adults.[12] It was reported that recurrent seizures 
might cause hippocampus damage throughout the lifetime of 
the patient.[13] Structural (histological) and functional changes 
occur in hippocampus in epilepsy. Histological changes include 
selective and extensive hippocampal neuronal loss in CA1 and 
CA3 regions and around the end folium where the cells of CA2 
region are spared.[14‑18] In other types of epilepsy, neuronal 
loss can be observed in all hippocampal areas. Apart from 
neuronal loss and gliosis, granule cell dispersion in dentate 
gyrus  is also observed in epilepsy.[19] Atrophied hippocampus 
is reported to be responsible for seizures, and surgical removal 
of hippocampus is reported to improve the condition.[20,21]

changes In Basal ganglIa In epIlepsy

The role of basal ganglia in cognitive functions is well 
established.[22] Earlier studies hypothesized that basal ganglia 
functions as a part of a modulatory control system over 
seizures rather than a propagation pathway.[23] Although 
no specific epileptic electroencephalography changes were 
observed in basal ganglia, involvement of basal ganglia in 
distribution of epileptic activity was reported.[24] Dopamine 
is reported to involve in the control of seizures related to 
the type of epilepsy.[25] Sufficiently, sustained seizures cause 
damage of substantia nigra pars reticulate (SNR) and globus 
pallidus.[26] Interestingly, epilepsy has been reported to have 
inverse relationship with Parkinson’s disease as incidence 
of seizures is less in patients with Parkinson’s disease.[27,28] 
Seizures may lead to progressive microanatomical changes 
in putamen of both hemispheres.[29] As the SNR plays a major 
role in the modulation of seizures, the seizures may be treated 
with high‑frequency stimulation of SNR.[30‑32]

changes In pIrIforM cortex In epIlepsy

Cortical, subcortical neuronal networks play a key role in 
generation, maintenance, and spread of epileptic activity. 
The piriform cortex (PC) and amygdala generate seizures 
in response to chemical and electrical stimulation and as an 
amplifier of epileptic activity when seizures are generated 
elsewhere. Structural abnormalities were observed in PC in 
frontal lobe epilepsy.[33]

MR imaging reported that the PC amygdala is extensively 
damaged in chronic temporal lobe epilepsy patients, 
particularly in those with hippocampal atrophy.[34] Changes in 
the PC are responsible for complex partial seizures, i.e., the 
most common type of seizures in human epilepsy.[35‑38]

changes In gray Matter In epIlepsy

It was reported that gray matter volume was associated with 
cognitive functions.[39] Decreased gray matter was observed in 
epileptic patients.[40‑44] Most important area where gray matter 
abnormalities occurs is hippocampus. Other areas include 
thalamus, parietal lobe, and cingulate gyrus. Changes have also 
been described in the parahippocampal gyrus, middle temporal 

gyrus, superior temporal gyrus, inferior temporal gyrus, 
fusiform gyrus, temporal pole, entorhinal cortex, amygdala, 
and perirhinal cortex.[45‑48] It was reported that abnormalities 
of gray matter are essential to produce reductions in episodic 
memory recall.[6] Most commonly seen cognitive dysfunctions 
due to gray matter abnormalities in children are decline in 
verbal intelligence quotient, freedom from distractibility, and 
executive function and mental slowness, memory impairment 
and attention deficits in commonly observed among adults.[49‑51]

changes In glIal cells In epIlepsy

Defects in the glial cells, especially astrocytes, may cause 
epilepsy as they play an important role in regulation of 
transmission and extracellular ions.[52,53] Indeed, alterations 
in distinct astrocyte membrane channels, receptors, and 
transporters have all been associated with the epileptic state.[54]

changes In hypothalaMus In epIlepsy

The relationships between the hypothalamic mass and the 
different types of seizures remain unknown.[55] Sex steroid 
hormone axis abnormalities occur more commonly in people 
with epilepsy. Release of sex steroid hormones is controlled 
by the hypothalamic–pituitary–gonadal axis; the medications 
used to treat epilepsy can have direct effects on regulation of 
these hormonal systems. The changes in the hormone may 
lead to hypogonadism and sexual dysfunction and are linked to 
polycystic ovary syndrome, decrease in fertility and childbirth 
rate, premature menopause, and thyroid disorders. It may 
also cause hormonal contraceptive interaction. Endogenous 
hormones can influence seizure severity and frequency, 
resulting in catamenial patterns of epilepsy.[56,57] Women who are 
taking antiepileptic drugs have increased risk of maternal and 
fetal complication; hence, good planning and effective caring 
is necessary during and after the pregnancy.[58] Epilepsy and 
sleep have reciprocal relationships, lack of sleep may lead to 
seizures, and seizures adversely affect the sleep pattern. Treating 
sleep disorders, which are potentially caused by or contributed 
to by autism, may impact favorably on seizure control and 
on daytime behavior.[59] In nearly one‑third of patients, the 
occurrence of seizures was during the sleep state. This is 
caused by an intimate relationship between the physiological 
state of sleep and the pathological process underlying epileptic 
seizures. Hence, control of seizure can improve sleep. Seizures, 
antiepileptic drugs, and vagus nerve stimulation all influence 
sleep quality, daytime alertness, and neurocognitive function.[60] 
Cold and shiver and piloerection are rare ictal signs in focal 
epilepsies and are often associated with an epileptic seizure 
focus within the temporal lobe. Hypothalamic lesions can 
impact thermoregulation; hence, temperature dysregulation is 
commonly observed during epileptic condition.[61]

changes In thalaMus In epIlepsy

Anterior thalamus influences memory processing and spatial 
navigation through its interactions with hippocampus and 
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cortex.[60] Other studies reported that intralaminar thalamic 
nucleus, the parafascicular thalamus, also contributes to 
behavioral flexibility, whereas the mediodorsal thalamic 
nucleus plays a key role in acquiring goal‑directed 
behavior.[61] Thalamic lesions in patients with seizure disorders 
are wider and are associated with atrophy of limbic system.[62] 
Prolonged partial status epilepticus may lead to thalamic 
diffusion‑weighted imaging hyperintense lesions, and thalamus 
is likely to participate in the evolution and propagation of 
partial seizures.[63] Further, it was observed that selective 
reductions in gamma‑aminobutyric acid receptor subunits 
in thalamus may play a role in pathophysiology of absence 
epilepsy.[64]

changes In cereBelluM In epIlepsy

Role of cerebellum in cognition and behavior is well 
documented.[65] Cerebellar atrophy was reported in patients 
with epilepsy.[66] Although peri‑ictal changes in cerebellar 
perfusion was observed in epilepsy, its contribution to 
cerebellar atrophy was minimum.[67] Cerebellar stimulation 
especially in anterior lobe and thalamic region is reported to 
be effective in patients with seizures.[68,69]

changes In olfactory cortex In epIlepsy

Primary olfactory cortex (piriform cortex) is central to olfactory 
identification and is an epileptogenic structure.[70] Epilepsy 
appears to cause a generalized decrease in olfactory functioning 
although increased sensitivity may occur in some epileptic 
patients at some time in the pre‑ictal period. Other sensory 
modalities are also affected by the epileptic process which, in 
some cases, involve limbic‑related temporal lobe structures. 
Many of the olfactory deficits previously attributed to temporal 
lobe resection actually exist preoperatively. Confusions in taste 
and unpleasant auras are associated with hyperresponsiveness 
of neurons, which may explain why most epilepsy‑related 
olfactory auras are described as bad. Interesting parallels exist 
between the effects of the neuroendocrine system on seizure 
activity and olfactory function.[71]

changes In aMygdala In epIlepsy

Following stimulation of amygdale, a full spectrum of 
experiential symptoms is observed in patients with temporal 
lobe epilepsy. Selective amygdalotomy has proved to be an 
effective treatment for temporal lobe epilepsy. Lateral amygdala 
is a nucleus of the amygdala that projects to the temporal 
neocortex and hippocampus. Rodent studies have shown 
that spontaneous discharges occur in the lateral amygdala of 
epileptics. In two patients, interictal spikes, spike‑wave, and 
polyspike complexes were observed intraoperatively in the 
amygdala; however, evidence of its origin from the amygdale 
is lacking.[72] Recent research in humans have indicated that 
amygdala lesions may impair selective domains of affect and 
cognition, which are related to the appraisal of emotional and 
social significance of sensory events. Damage to the amygdala 

may cause a wide range of deficits in the appraisal of emotional 
and social significance of sensory events although these deficits 
are often variable and still poorly understood.[73]

conclusIon

We have presented the gross changes in major brain structures 
related to cognition deficits associated with epilepsy, which 
we hope will help the clinicians and biomedical researcher to 
further understand the epilepsy.
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