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Normal and Tumor Cells Secrete Nanosized Vesicles 
Called Exosomes

In response to physiological and/or pathological cues all cells 
in the body communicate with each other via secretion of a 
heterogeneous mixture of vesicles differing in size and compo-
sition, including apoptotic bodies, microparticles, shed micro-
villi, ectosomes and exosomes.1 Exosomes, the focus of our 
studies, are small membrane vesicles of endocytic origin with a 
size range of 30 to 150 nm.2 Exosomes are released by a variety 
of “normal” cells including mast cells (MC),3 dendritic cells4,5 
reticulocytes,6 epithelial cells,7 B-cells,8 trophoblastic cells,9,10 
and neural cells,11 as well as a variety of tumor cells.12–14 In addi-
tion, exosomes are found in various biological f luids including 
bronchoalveolar lavage,15 blood,16 ascites,17,18 urine,19 pregnancy 

associated sera,20 breast milk,21 saliva,22 and malignant effu-
sions.17,23 Because of their endosomal origin, exosomes contain 
several proteins involved in the Endosomal Soritng Complexes 
Required for Transport (ESCRT) complex (e.g, TSG101, Alix) 
and in transport and fusion (e.g., Rab11, Rab7, Rab2 and vari-
ous annexins). Further markers expressed in or on exosomes 
include tetraspanins (CD81, CD63, CD9), heat shock proteins 
(HSC70 and HSP90), and cytoskeletal proteins (actin, tubulin 
and moesin).24–26 In addition, the molecular characterization 
of various healthy cell type-derived and tumor-derived exo-
somes revealed enhanced expression of cell-specific and tumor-
associated antigens on the exosomal surface. In fact, exosomes 
isolated from antigen presenting cells harbor MHCII on their 
surface,8 those from urine possess surface aquaporin-2,19 from 
reticulocytes contain the transferrin receptor,6 and from T-cells 
carry the TCR/CD3/zeta complex.27 These cell-specific pro-
teins are thought to represent a means by which exosomes can 
specifically target various recipient cells by either interaction 
with cell surface adhesion molecules or through interaction 
with cell-surface heparan sulfate proteoglycans. Alternatively, 
exosomes can enter another cell via lipid-dependent endocy-
tosis, in which a high content of sphingomyelin/ganglioside 
GM3 in the exosomal membranes enhances the fusion effi-
ciency with the plasma membrane of target cells.28 Therefore, 
exosome internalization by recipient cells appears to be a cell 
type dependent process, and the extent of exosome internaliza-
tion likely depends upon the phagocytic abilities of the recipi-
ent cell.29 As such, we and others are exploiting this information 
to isolate specific populations of exosomes from heterogeneous 
biological f luids for use in early detection and disease monitor-
ing. Proteomic analysis of malignant effusion-derived exosomes 
from various sources has increased our knowledge of exosome 
protein composition and likewise, our understanding of the 
role of exosomes in biological processes.30–33 Proteome analyses 
have been conducted in a number of cancer-derived exosomes 
including, mesothelioma,34 melanoma,14 gastric carcinoma,35 
breast carcinoma,36 ovarian,18,37 prostate,38 malignant pleural 
effusions,17,23 brain,24 and colorectal.26,39 These isolated exo-
somal proteins constitute a “cancer signature” which may help 
in improving the diagnosis and treatment of cancer patients.
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intercellular communication is a key process in the devel-
opment and progression of cancer. The dynamic and recipro-
cal interplays between the tumor and its microenvironment 
orchestrate events critical to the establishment of primary 
and metastatic niches and maintenance of a permissive envi-
ronment at the tumor-stroma interface. Atay and colleagues 
found that gastrointestinal stromal tumor cells secrete vesi-
cles known as exosomes. These exosomes contain oncogenic 
KiT and their transfer and uptake by surrounding smooth 
muscle cells lead to enhanced AKT and MAPK signaling and 
phenotypic modulation of several cellular processes, includ-
ing morphological changes, expression of tumor-associ-
ated markers, secretion of matrix metalloproteinases, and 
enhanced tumor cell invasion. This provocative study empha-
sizes that exosome-mediated signaling within the tumor 
microenvironment acts as a positive feedback loop that con-
tributes to invasiveness and that interfering with this mes-
sage delivery system may represent promising therapeutic 
approaches, not only for GiST, but for other types of cancer.
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Tumor-Derived Exosomes as Mediators of 
Intercellular Communication During Tumor 

Progression

Cellular communication is key to the regulation of physi-
ological and pathological processes.40 During the develop-
ment and progression of cancer, the cellular composition of 
the tumor microenvironment is influenced by the activity of 
the tumor cell41 which recruit and educate host stromal cells 
into tumor supportive cells that actively participate in tumor 
progression.42 One way that tumor cells can communicate and 
alter the microenvironment is by the constitutive release of exo-
somes.13,43 Recent studies have shown that exosomes produced 
by tumor cells can interact with target cells by a number of 
mechanisms, including i) direct stimulation of the target by 
surface-expressed ligands;44 ii) receptor transfer between the 
tumor cell and the target;44 iii) horizontal transfer of genetic 
information to the target,44 and iv) direct stimulation of the 
target cell by endocytic-expressed surface receptors.45 Growing 
evidence supports the view that tumors constitutively shed exo-
somes with pleiotropic immunosuppressive effects46,47 that are 
protective and supportive of the tumor with effects that range 
from regulation of tumor growth, to invasion, and to angiogen-
esis and metastasis.41,46,48 Recently, Al-Nedawi and colleagues 
demonstrated that exosome mediated transfer of an oncogenic 
epidermal growth factor variant 3 (EGFRvIII) from human gli-
oma cells to glioma cells lacking the mutant receptor induced 
expression of EGFRvIII-regulated genes (such as VEGF, Bcl-x

L
, 

p27).49 In a subsequent study, oncogenic EGFR from human 
squamous cell carcinoma taken up by tumor-associated endo-
thelial cells activated MAPK and AKT cell signaling pathways 
and promoted endothelial VEGF expression.50 Therefore, the 
regulatory properties attributed to tumor-derived exosomes are 
essential in shaping the tumor microenvironment and promot-
ing tumor growth.32 Collectively, these studies support a role 
for exosomes in remodeling the tumor microenvironment into a 
tumor supportive milieu and thereby contribute to tumor pro-
gression via enhanced angiogenesis and metastasis.51,52 In fact, 
melanoma-associated exosomes have recently been shown to 
promote metastasis through the preparation of the metastatic 
niche via crosstalk between the released exosomes and bone 
marrow progenitor cells.53

GIST Tumor Microenvironment and Tumor-Derived 
Exosomes

GISTs are the most common mesenchymal tumor of the 
gastrointestinal tract and are thought to arise from Interstitial 
Cells of Cajal (ICC),54 named after Santiago Ramón y Cajal, a 
Spanish pathologist and Nobel laureate. ICCs are found in spe-
cific locations within the tunica muscularis of the gastrointes-
tinal tract, and serve as electrical pacemakers and mediators of 
enteric neurotransmission. Alternatively, GISTs may also arise 
from interstitial mesenchymal precursor stem cells.55 The major-
ity of GISTs develop in the sub-mucosal layer of the stomach 
surrounded by smooth muscle cells and interstitial extracellular 

matrix (ECM) rich in collagen and invade the mucosa in a regu-
lated fashion.56 Nearly 90% of GISTs have a mutation in a tyro-
sine kinase receptors encoded either by c-KIT or PDGFRA.57 
Imatinib mesylate (Gleevec™) is a specific molecular inhibitor 
of KIT/PDGFRA and is used as the first-line therapy in the 
treatments of GIST patients.58–62 Although the use of imatinib 
has drastically changed the outcome of patients with metastatic 
GIST, additional therapeutic strategies are needed since the vast 
majority of patients eventually develop resistance to imatinib 
treatment, leading to disease progression and posing a signifi-
cant challenge in the clinical management of these tumors.63 
Importantly, once a GIST becomes metastatic, the median dis-
ease-specific survival of patients is only ~19 months with sec-
ond- and third-line therapies. Although many studies focused 
on molecularly defining these tumors,64–66 the importance of 
the stromal microenvironment during metastasis remains an 
understudied area of research and clearly needed to be better 
defined in order to design novel targeted therapeutics.

It is becoming apparent that the tumor microenvironment 
– non-malignant (stroma) cells, soluble molecules, extracellular 
matrix components, and exosomes – plays an important role in 
modulating metastatic properties and sensitivity of tumor cells to 
therapy. Several studies have shown that ascites-derived exosomes 
from ovarian cancer patients carry extracellular matrix-remod-
eling enzymes such as metalloproteinases 2 and 9 (MMP-2, 
MMP-9),67,68 and urokinase plasminogen activator69,70 leading to 
an increase in extracellular matrix degradation, which has been 
shown to increase the invasive phenotype of tumor cells and pro-
mote metastasis.71 We believe that by better understanding the 
myriad of interactions that exist between tumor cells and host 
cells present in the tumor microenvironment, new insights into 
the pathogenesis of cancer will be uncovered that will ultimately 
have profound therapeutic implications.

Epithelial cells require mesenchymal transition (EMT) to 
metastasize; during this process tumor cells dissociate from 
each other and the ECM and become more motile and able 
to invade the surrounding stroma.72 In contrast, mesenchymal 
cells are generally more motile than epithelial cells,73 thus GIST 
cells have been reported to grow in an endophytic manner par-
allel to the organ lumen, between the muscularis mucosa and 
muscularis propria. This finding suggests that a tight regula-
tion exists between the growing tumor and the surrounding 
stroma.74,75 Matrix metalloproteinases, particularly MMP1, 
actively shape the stromal microenvironment during sarcoma 
development.76–78 In fact, a recent study reported that chon-
drosarcoma cell invasion correlates with MMP1 expression 
in tumor cells and that a transient downregulation of MMP1 
expression decreases invasion in vitro.79,80 In our recent study, 
we found that GIST cells not only constitutively released low 
levels of MMP1, but that challenging myometrial smooth mus-
cle cells with GIST patient-derived exosomes (but not exosomes 
from healthy donors) significantly increased MMP1 produc-
tion, which in turn enhanced GIST cell invasion.81 We assessed 
direct/indirect exosome-mediated MMP1 induction using 
siRNA and inhibitory drug strategies to reduce MMP1 pro-
duction by myometrial cells and were able to mimic, in vitro, 
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the exosome−MMP1 expression feedback loop (Fig. 1). In par-
ticular, in vivo-derived exosomes appeared to be a potent exog-
enous source of MMP induction in stromal cells, which in turn 
acted as a pro-invasion factor for GIST cells. It is known that 
tumor cells acquire some of the required properties for growth 
and invasion by the specific modification of the tumor micro-
environment.79 However, due to the complex nature of these 
interactions, it is only by altering specific components of this 
network that it will be possible to identify molecules with pro-
tumorigenic and anti-tumorigenic functions. Our study reveals 
a complex interplay between tumor-derived exosomes and fac-
tors produced in response to their internalization by tumor-
associated stromal cells. The release of tumor-derived exosomes 
appears to represent a novel pathway enabling GIST cells to 
modulate the host microenvironment and thereby promote 
their ability to invade and spread (Fig. 1). Further studies aim-
ing to elucidate the exact mechanism leading to MMP1 pro-
duction by smooth muscle cells in response to exosome uptake 
are ongoing. In fact, a more complete understanding of the 
mechanisms used by tumor-derived exosomes in the induction 
of MMPs might permit the development of a successful clinical 
strategy for novel MMP inhibitors.82,83

Another important aspect of tumorigenesis is the epigenetic 
regulation of gene transcription that mediates cell proliferation, 

differentiation, and survival which represent additional targets 
in tumor progression,84 resulting in genomic instability.85 Skog 
et al. (2008) have demonstrated that glioblastoma-derived 
microvesicles tRNA to endothelial cells, resulting in the pro-
duction of pro-angiogenic proteins which promote tumor 
progression.86 Studies of lung and adenocarcinoma–derived 
microvesicles (pancreatic and colorectal) indicated a transfer of 
growth factor encoding mRNA (VEGF, HGF, IL-8, CD44H) 
to tumor-associated monocytes which enhanced their anti-
apoptotic effect and activated the AKT signaling pathway.87 In 
our recent study, we reported that mutant KIT carrying exo-
somes modified the transcriptomic, proteomic and secretomic 
profile of smooth muscle cells via induction of new transcripts 
within the recipient cells. In addition, we provide the first evi-
dence that large numbers of oncogenic KIT-bearing exosomes 
are released into the circulation of GIST patients and that these 
extracellular vesicles represent potent phenotypic modifiers 
of the tumor microenvironment. Our results indicated that 
recipient cells that take up these vesicles assume many of the 
characteristics of ICC cells which in turn secrete significant 
amounts of interstitial collagenase MMP-1, which is important 
to enhance invasion of tumor cells in the interstitial stroma. 
Furthermore, our results confirmed that the resulting cells dis-
played activation of downstream signaling pathways of KIT, 

Figure 1. Proposed model of tumor-stromal positive feed-back loop mediated by oncogenic KiT-bearing tumor exosomes in the regulation of tumor 
invasion. GiST cells secrete a gradient of exosomes carrying mutant KiT, which after internalization by surrounding smooth muscle cells activate 
downstream signaling pathways of KiT (e.g., AKT and MAPK pathways) and induce an enhanced expression of endoglin, vimentin (viM), smooth 
muscle actin (SMA), and plasminogen activator inhibitor-1 (PAi-1) in the recipient cells, resembling an iCC-like phenotype. This tumor-stromal inter-
action creates a positive feed-back loop in which tumor-derived exosome-mediated signaling in stromal cells increases MMP1 secretion. in turn, 
tumor cells utilized MMP1 to invade the submucosa. This model describes a previously unreported mechanism by which tumor-derived exosomes 
can modulate their host microenvironment and promote local invasion and potentially distant metastasis.
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namely AKT and MAPK pathways, and enhanced adhesion to 
fibronectin and type I collagen. Hence, these data suggest that 
the release of exosomes may represent a novel pathway enabling 
tumor cells to modulate the host microenvironment to support 
tumor invasion.

In summary, although several tumor-stromal commu-
nication based on an exosome mediated exchange has been 
reported,88–91 our recent study provides the first evidence of 
tumor-stromal communication based on an exosome mediated 
exchange in GIST. This tumor-stromal feedback loop in which 
tumor-derived exosome-mediated signaling in host stromal 
cells increases MMP1 secretion, which in turn enhances tumor 
cell invasion and further suggests that exosomes released by pri-
mary GISTs progressively remodel the host environment, which 
in turn aids in the tumor’s survival (Fig. 1). In addition, our 
study demonstrated a positive feedback loop that enable the cre-
ation of “space” for growing tumors: this is achieved via active 
release of exosomes, leading to a continual release of exogenous 
matrix metalloproteinases, such as MMP-1. Although further 
studies are needed to identify the receptors involved in uptake 

of tumor-derived exosomes and the molecular mechanisms 
involved in the production of MMP-1, our study offers novel 
insights into the pathogenesis of GIST and provide new thera-
peutic goals aimed to help improve the survival of patients by 
reducing the development of metastatic disease.
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