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Abstract

Background: Termination of translation in eukaryotes is controlled by two interacting
polypeptide chain release factors, eRF| and eRF3. While eRFI recognizes nonsense codons, eRF3
facilitates polypeptide chain release from the ribosome in a GTP-dependent manner. Besides
termination, both release factors have essential, but poorly characterized functions outside of
translation.

Results: To characterize further the functions of yeast eRF| and eRF3, a genetic screen for their
novel partner proteins was performed. As a result, the genes for y (TEF4 and TEF3/CAMI) and o
(TEF5/EFBI) subunits of the translation elongation factor eEFIB, known to catalyze the exchange
of bound GDP for GTP on eEFIA, were revealed. These genes act as dosage suppressors of a
synthetic growth defect caused by some mutations in the SUP45 and SUP35 genes encoding eRFI
and eRF3, respectively. Extra copies of TEF5 and TEF3 can also suppress the temperature sensitivity
of some sup45 and sup35 mutants and reduce nonsense codon readthrough caused by these
omnipotent suppressors. Besides, overproduction of eEFIBa reduces nonsense codon
readthrough in the strain carrying suppressor tRNA. Such effects were not shown for extra copies
of TEF2, which encodes eEFI A, thus indicating that they were not due to eEFIA activation.

Conclusion: The data obtained demonstrate involvement of the translation elongation factor
eEFIB in modulating the functions of translation termination factors and suggest its possible role in
GDP for GTP exchange on eRF3.

Background

Termination of translation of mRNA is governed by stop
codons in the ribosomal A-site and polypeptide chain
release factors of two classes. Class I release factors RF1
and RF2 in bacteria recognize UAA/UAG and UAA/UGA
stop codons, respectively, whereas eukaryotes employ
only one such factor, eRF1, which is able to decode all

three nonsense codons [1]. The release factors of class I
bind to the ribosomal A site, recognize the stop codon,
and promote hydrolysis of the P-site peptidyl-tRNA to
release completed polypeptide chain from the ribosome.
Translation termination is stimulated by class II release
factors, RF3 in bacteria, and eRF3 in eukaryotes. Both class
IT factors are GTPases enhancing the termination effi-
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ciency by stimulating activity of class I release factors in a
GTP-dependent manner [2-4].

Determination of the crystal structure of human eRF1 has
shown that it is composed of three domains and resem-
bles by overall shape and dimensions a tRNA molecule
with the N-terminal and middle domains corresponding
to the tRNA's anticodon stem and aminoacyl acceptor
stem, respectively [5]. eRF3 also has a complex structure
and can be divided into at least two regions: a non-con-
served N-terminal region and a conserved C-terminal
region (domain C), showing a considerable sequence sim-
ilarity to the translation elongation factor eEF1A, which
brings aminoacyl-tRNAs to the ribosomal A site [6,7]. In
the yeast Saccharomyces cerevisiae eRF1 and eRF3 are
encoded by the essential SUP45 and SUP35 genes.

According to recent data, eRF3 functions in termination
by applying its GTPase activity to assist eRF1 with stop
codon recognition and ensures efficient hydrolysis of pep-
tidyl tRNA [8,9]. Binding of eRF1 and eRF3-GTP to the
pretermination ribosome forms a complex that is not
active in peptide release, and further rearrangement,
induced by GTP hydrolysis, is required for proper posi-
tioning of the GGQ loop of eRF1 in the peptidyl trans-
ferase center and triggering peptidyl-tRNA hydrolysis
[9,10].

It is known that bacterial ribosomes can accelerate GDP
for GTP exchange on RF3 [11]. In contrast, 80S ribosomes
do not noticeably influence either binding of guanine
nucleotides to the eRF1-eRF3 complex or GDP for GTP
exchange on it [12]. In vitro studies have shown that while
free eRF3 binds GDP, it binds GTP only in the presence of
eRF1 [12-14]. However, kinetic analysis of interaction of
eRF3 with guanine nucleotides demonstrated that eRF1
does not act like a classical guanine nucleotide exchange
factor (GEF), which increases the dissociation of GDP
from a GTPase, but rather as a GTP dissociation inhibitor
for eRF3, promoting efficient ribosomal recruitment of its
GTP-bound form [12].

Importantly, our knowledge of the mechanism of transla-
tion termination is mostly based on in vitro studies. How-
ever, genetic approaches allowed to reveal new molecular
partners of both eRF1 and eRF3 in yeast [15-18] as well, as
their functions unrelated to translation termination
[17,19,20]. Here, we present results of the search for addi-
tional proteins functionally interacting with yeast eRF1
and eRF3. We found that extra copies of genes which
encode the y (TEF3/CAM1 and TEF4) and o (TEF5/EFB1)
subunits of the translation elongation factor eEF1B,
known to catalyze the exchange of bound GDP for GTP on
eEF1A, suppressed synthetic lethal interaction between
some mutant SUP45 and SUP35 alleles. Besides, extra
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copies of TEF3 and TEF5 relieved temperature sensitivity
of some mutants in these genes and reduced nonsense
readthrough in one of the sup45 mutants. Overproduction
of eEF1Ba also reduced nonsense readthrough in the
sup35 mutant and in the strain carrying ochre suppressor
tRNA. The described effects most likely were not mediated
by an increase of eEF1A activity. Obtained results allowed
us to suggest that the observed effects are mediated by the
ability of yeast eEF1B to stimulate guanine-nucleotide
exchange on eRF3.

Methods

Strains, media, growth conditions and genetic methods
Yeast strains were grown in either YEPD (1% Bacto yeast
extract, 2% peptone, 2% dextrose) or defined synthetic
complete media (C or C-) supplemented with 2% dex-
trose as a carbon source. The 5-fluoroorotic acid (5FOA)
medium was prepared as described [21]. The final concen-
tration of 5FOA was 0.9 mg/ml. The expression of the
tetO,-controlled SUP45 was repressed by incubation of
corresponding strains on medium selective for the
pCM183-SUP45 plasmid which contained 20 pg/ml dox-
ycycline. LB and 2x YT media were used for bacteria [22].
Appropriate amounts of antibiotics, amino acids, and
bases were added when necessary. Yeast cells were grown
at 30°C, if not indicated otherwise, and bacteria at 37°C.
DNA transformation of lithium acetate-treated yeast cells
was performed as described previously [23]. Escherichia
coli cells were transformed by the method described in
[24]. E. coli strain DH5a [supE44 Alac U169 (¢ 80
lacZAM15) hsdR17 recAl endAl gyrA96 thi-1 relA1] was
used in cloning experiments [22]. The yeast strains used
are listed along with their genotypes in Table 1. To con-
struct the strain BY4741-ASUP35, the SUP35 gene was
deleted in the strain BY4741, with the use of the Eco321-
Notl fragment of pBSS35::H3 as a disruption cassette. PCR
was used to prove correct integration of the disruption
cassettes.

Plasmids and nucleic acid manipulation

All DNA manipulations were carried out by standard pro-
tocols [22]. The plasmids used are listed along with their
essential characteristics in Table 2. The plasmid
YEplac195-SUP45 was constructed by inserting the
SUP45-containing Xbal-Pvull fragment of the pRG415-
SUP45 plasmid into the Xbal and Smal sites of YEplac195.
The mutant alleles of SUP35, namely sup35-168% and
sup35-196%, were amplified by PCR (primers SUP35prod
and SUP35terr; Table 3) using genomic DNA of the strains
8V-HB80-168 (sup35-168+) and 8V-H80-196 (sup35-196%)
as a template. The amplification products were digested
with Xbal and Sacl and inserted into the same sites of
pRS315, thus creating the pRS315-sup35-168 or pRS315-
sup35-196 plasmids. The plasmid mutant alleles were
sequenced. To construct YEplac181-SUP35C, the EcoRI-
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Table I: S. cerevisiae strains

Strain Genotype Source
33G-D373 MAT ura3-52 leu2-3,112 trp1-289 his7-1 lys9-A2| ade2-144,717 pheA-1| [25]
33G-D373-rSL23 MAT ura3-52 leu2-3,112 trp1-289 his7-1 lys9-A2| ade2-144,717 pheA-1| sup45-sl23t [20]
33G-D373-r36 MAT o ura3-52 leu2-3,112 trp1-289 his7-1 lys9-A2 | ade2-144,717 pheA-1| sup45-36t [20]
33G-D373-rSL23-r35C  MATa ura3-52 leu2-3,112 trp1-289 his7-1 lys9-A2 | ade2-144,717 pheA-1 1 sup45-s123sSUP35-C [20]
33G-D373-r36-r35C MAT ura3-52 leu2-3,112 trp1-289 his7-1 lys9-A21 ade2-144,717 pheA-1| sup45-365SUP35-C [20]
8V-H80 MAT o adel-14 his7-1 leu2-3,112 ura3-52 trp1-289 lys2-Al 2 This work
8V-H80-168 MAT« adel-14 his7-1 leu2-3,112 ura3-52 trp 1-289 lys2-Al 2 sup35-168 This work
8V-H80-196 MAT adel-14 his7-1 leu2-3,112 ura3-52 trp1-289 lys2-Al2 sup35-196 This work
BY4741| MATa his3Al leu2A0 met!540 ura340 Open Biosystems
BY4741-ASUP35 MATa his3A1 leu2A40 met! 540 ura3A0 sup35:HIS3 [pRG416-SUP35C] This work
50V-H78 MAT ¢ adel-14 ura3-52 leu2-3,1 12 his3-D200 his5-2 lys|-1 met8-1 ilvI-1 SUP4 This work

Plasmid that supports viability of the BY4741-ASUP35 strain is indicated in square brackets.

Xbal fragment carrying SUP35-C of the pRS315-SUP35C
plasmid [20] was inserted between the same sites of
YEplac181.

To obtain a yeast genomic library, chromosomal DNA of
the 5V-H19 strain [28] was partially digested with Sau3A,
fractionated on agarose gel and DNA fragments ranging
from 4 to 12 kb were isolated. The ends of chromosomal
DNA fragments were partially filled in with Klenow
enzyme and ligated to the partially filled in Sall site of the
YEplac195 plasmid. A plasmid with the 4.5 kb chromo-
somal DNA fragment containing TEF4 and RRP14 was
isolated from the genomic library. The EcoRI-Smal TEF4-
containing fragment of this plasmid was inserted into the
same sites of YEplac195, thus resulting in YEplac195-

Table 2: Plasmids

TEF4. The intronless variant of TEF4 (TEF4-4i) was
obtained as follows. The TEF4-containing PstI-EcoRI DNA
fragment of YEplac195-TEF4 was inserted between the
same sites of pUC18 [29]. The obtained plasmid was used
as a template for PCR with the primers TEF4E1lr and
TEF4E2d (Table 3). Amplified DNA fragment, represent-
ing the plasmid lacking TEF4 intron sequence, was self
ligated, resulting in the plasmid bearing TEF4-4i. The
TEF4- Ai-containing Pstl-EcoRI DNA fragment of this plas-
mid was inserted between the same sites of YEplac181
resulting in the plasmid YEplac181-TEF4Ai.

The TEF3 gene was amplified by PCR (primers CAM1r and
CAM1d; Table 3) using genomic DNA of the strain 33G-
D373 as a template. The amplification product was

Plasmid Characteristics Source
pCMI83-SUP45 Centromeric TRP/ vector containing SUP45 under the control of regulatable tetO, promoter [20]
YEplacl95 Multicopy URA3 vector [26]
YEplacl95-SUP45 Same as YEplacl95, but with SUP45 This work
YEplacl95-TEF2 Same as YEplac195, but with TEF2 This work
YEplacl95-TEF4 Same as YEplacl95, but with wild type TEF4 This work
YEplacl95-TEF5 Same as YEplacl95, but with wild type TEF5 This work
YEplacl95-TEF5Ai Same as YEplacl95, but with TEF5 without intron (TEF5-4i) This work
YEplac18l Multicopy LEU2 vector [26]
YEplacl|8I-TEF2 Same as YEplacl8l, but with TEF2 This work
YEplac|8I-TEF5Ai Same as YEplacl8l, but with TEF5 without intron (TEF5-4i) This work
YEplacl8I-TEF3 Same as YEplac18l, but with TEF3 This work
YEplac|8I-TEF4Ai Same as YEplacI8I, but with TEF4 without intron (TEF4-Ai) This work
YEplacl81-SUP35C Same as YEplacl8l, but with SUP35-C This work
pRS315 Centromeric LEU2 vector [27]
pRS315-SUP35 Same as pRS315, but with SUP35 [20]
pRS315-sup35-168 Same as pRS315, but with the sup35-168tallele This work
pRS315-sup35-196 Same as pRS315, but with the sup35-196t allele This work
pRS315-SUP45 Same as pRS3 15, but with SUP45 [17]
pRS315-sup45-s123 Same as pRS315, but with the sup45-s123tallele [17]
pRG416-SUP35C Centromeric URA3 vector containing SUP35-C [7]
pRG415-SUP45 Centromeric URA3 vector containing SUP45 [19]
pBSS35:H3 Bacterial vector containing the sup35::HIS3 disruption allele This work
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Table 3: Oligonucleotides
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Oligonucleotide Sequence

EFBIElrev 5'-CCTTCAATGTATGACTTGT-3'

EFBIE2dir 5-TACTGCTGTTTCTCAAGCTGA-3'

TEF4EIr 5'-ATAAAATTGGATAGCCAAAGC-3'

TEF4E2d 5'-GTGGCTAATCAAGTTGCCGA-3'

CAMIr 5'-CTGCTCTGCTCAACGGAA-3'

CAMId 5'-TGCTCTAGACGGGCTGATACGGCCATT-3'
TEF2r 5'-GAGGCCGTCTTTTGTTGA-3'

TEF2d 5'-CGTGGATCCTAGGCGCTTCCCCTGCCG-3'
SUP35prod 5'-ACGAGCTCAAATTATTATTTTTTACTAAG-3'
SUP35terr 5'-AATTCTAGATATATTGAGAGGTGA-3'

digested with Xbal and inserted into the Xbal and Smal
sites of YEplac181, thus generating YEplac181-TEF3. The
TEF5 gene was amplified by PCR (primers EFB1r and
EFB1d; Table 3) using genomic DNA of 33G-D373 as a
template. The amplification product was digested with
BamHI and inserted into the BamHI and Ecl1361I sites of
YEplac195, thus generating YEplac195-TEF5. The intron-
less variant of TEF5 (TEF5-4i) was obtained as follows.
The TEF5-containing BamHI-Sacl fragment of YEplac195-
TEF5 was inserted between the same sites of the pUC18
plasmid [29]. The obtained plasmid was used as a tem-
plate for PCR with primers EFB1Elrev and EFB1E2dir
(Table 3). Amplified DNA fragment with TEF5 lacking
intron sequence, was self ligated to obtain the plasmid
bearing TEF5-4i. The TEF5-Ai-containing BamHI-Ecl13611
DNA fragment of this plasmid was inserted between the
same sites of YEplac181 and YEplac195, thus resulting in
the plasmids YEplac181-TEF5Ai and YEplac195-TEF5AI,
respectively. The presence of the multicopy plasmid
YEplac181-TEF5Ai in yeast cells caused approximately 6-
fold overproduction of eEF1Ba, as was shown by probing
appropriately diluted cell lysates with the mouse polyclo-
nal antibody against eEF1Ba. The TEF2 gene was ampli-
fied by PCR (primers TEF2r and TEF2d; Table 3) using
genomic DNA of 33G-D373 as a template. The amplifica-
tion product was digested with BamHI and inserted into
the BamHI and Ecl13611 sites of YEplac195, thus generat-
ing YEplac195-TEF2. The plasmid YEplac181-TEF2 was
constructed by inserting the BamHI-SnaBI fragment of
YEplac195-TEF2 containing TEF2 into the same sites of
YEplac181. To construct the SUP35 disruption cassette
(plasmid pBSS35::H3), the Ecol05I-Munl internal frag-
ment of the SUP35 gene was replaced with the HIS3
selectable marker.

Determination of the efficiency of nonsense codon
readthrough

Following plasmids carrying tandem Renilla and firefly
luciferase genes separated by a single in-frame stop codon
or a corresponding sense codon control were used to
measure the efficiency of nonsense codon readthrough:

pDB691 (UGAC), pDB690 (CGAC), pDB723 (UAAC),
pDB722 (CAAC), pDB720 (UAGC) and pDB721 (CAGC)
[30]. Luciferase assays were performed with a dual luci-
ferase reporter assay system (Promega). Assays were per-
formed as described [31] with minimal modifications
using Glomax 20/20 luminometer (Promega). Assays
were done in triplicate, and the data are expressed as the
means + the standard errors. The percent readthrough in
each strain is expressed as the ratio of Renilla luciferase
activity/firefly luciferase activity (nonsense) divided by
the ratio of Renilla luciferase activity/firefly luciferase
activity (sense) multiplied by 100. For other details, see
[32].

Results

TEF3, TEF4 and TEF5 extra copies suppress synthetic
lethal interaction between the sup45-si23tsand SUP35-C
mutant alleles

Earlier, we have identified mutations in the SUP45 gene
which manifest lethality in combination with the SUP35-
C allele, which encodes eRF3 lacking the inessential N-ter-
minal region. The study of these mutations and their
lethal interaction with SUP35-C indicated the role of N-
terminal region of yeast eRF3 in uncharacterized non-
translational function of the eRF1-eRF3 termination
complex [20]. To clarify the non-translational mecha-
nisms associated with the eRF1-eRF3 complex we per-
formed a screen for dosage suppressors of this synthetic
lethality. To isolate such suppressors, we used the strain
33G-D373-1SL23-r135C which carried the sup45-s123t
mutation and the SUP35-C allele, as well as the centro-
meric pCM183-SUP45 plasmid with the TRP1 selectable
marker and SUP45 under the control of regulatable tetO,
promoter [20]. This strain, which was unable to grow on
medium containing 20 pg/ml doxycycline due to repres-
sion of the plasmid wild type SUP45 gene, was trans-
formed with a S. cerevisiae genomic library based on the
multicopy plasmid YEplac195, carrying the URA3 selecta-
ble marker. The transformants were selected on uracil
omission medium, which contained doxycycline. From
about one hundred of transformants selected only two
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were unable to grow on medium containing doxycycline
after the loss of the library plasmid on 5FOA medium.
Restriction analysis showed that these transformants con-
tained plasmids with identical 4.5 kb inserts of genomic
DNA. Both plasmids carried a DNA fragment with the
TEF4 and RRP14 genes encoding a subunit of the transla-
tion elongation factor eEF1B [33] and the Rrp14 protein
involved in ribosome synthesis and positioning of the
mitotic spindle [34], respectively, but subsequent deletion
analysis indicated that suppression required the presence
of TEF4 alone (Figure 1A).

eEF1B serves as a GEF for eEF1A, accelerating dissociation
of its complex with GDP. In contrast to mammals, in
which eEF1B is composed of three subunits, o, B and y,
yeast eEF1B contains only two of them, o and y. Yeast
eEF1By is encoded by two inessential genes, TEF3 and
TEF4 [33,35], and probably serves as a positive regulator
of the catalytic eEF1Ba subunit [36-38], which is encoded
by a single essential gene TEF5 [39]. We isolated the
genomic TEF3 and TEF5 genes to study the ability of their
extra copies to suppress synthetic lethal interaction
between sup45-si23t and SUP35-C. The TEF4 and TEF5
genes contain intervening sequences encoding the small
nucleolar RNAs snR38 and snR18, respectively. The latter
RNA was shown to be involved in fine tuning of transla-
tion termination in yeast [40]. To determine, whether the
overproduction of the TEF4- and TEF5-encoded proteins
themselves was responsible for suppression of synthetic
lethality, we constructed multicopy plasmids carrying the
TEF4 or TEF5 genes without introns (TEF4-4i and TEF5-
Ai, respectively). Surprisingly, a spot test did not reveal
any noticeable suppressor effect for TEF4-4i extra copies,
while high dosage of TEF3 and TEF5-4i suppressed syn-
thetic lethality (Figure 1B). It is noteworthy that the
absence of suppression for the TEF4-Ai extra copies was
not due to the lack of an intron, since no suppression in a
spot test was observed in transformants carrying the plas-
mid with wild type TEF4 (data not shown). This discrep-
ancy indicates that TEF4 extra copies suppress synthetic
lethality less efficiently than extra copies of either TEF3 or
TEF5.

The sup45-si23% mutation is not the only mutation in the
SUP45 gene manifesting synthetic lethality with SUP35-C;
the same effect was found for the sup45-36% mutation
[20]. Both mutations altered the N domain of eRF1 and
caused substitutions of amino acids located in proximity
to each other, Ser30 to Phe replacement in the sup45-s123%
mutant [20] and Leu34 to Ser in sup45-36% .[41]. How-
ever, TEF5-Ai was unable to act as a dosage suppressor of
the lethal interaction between sup45-36% and SUP35-C
indicating the sup45 allele specificity of the suppressor
effect.

http://www.biomedcentral.com/1471-2199/10/60

Temperature sensitivity of sup45 and sup35 mutants can

be suppressed by overproduction of eEFIB subunits

The data obtained indicated a role of eEF1B in functioning
of the eRF1-eRF3 complex. This raised a question,
whether eEF1B overproduction can suppress mutational
defects of the individual components of this complex? To
address this question, we examined, if temperature sensi-
tivity of the sup45-s123% and sup45-36% mutants and some
sup35 mutants can be alleviated by the identified dosage
suppressors. Efficient suppression of temperature sensitiv-
ity of the strain 33G-D373-rSL23, carrying the sup45-s123'
mutation, was revealed only for extra copies of the TEF5-
Ai gene. Extra copies of the TEF3 but not of the TEF4 gene
caused weak but reproducible alleviation of the sup45-
51235 temperature sensitivity (Figure 2A). This difference
in the suppression efficiency can be expected, since
eEFB1y, encoded by TEF3, is a regulatory subunit which
stimulates activity of the TEF5-encoded eEFB1a [36-38].
Importantly, extra copies of TEF5-4i did not suppress tem-
perature sensitivity of the sup45-36% mutant 33G-D373-
r36, which agrees with the sup45 allele specific suppres-
sion of synthetic lethality (data not shown).

Since TEF5 was found to be the most efficient dosage sup-
pressor of temperature sensitivity of the sup45-s123t
mutant, effects of its extra copies on growth of sup35
mutants were studied further. Examination of 21 sup35%
mutants of the strain 8V-H80 revealed two mutants with
phenotypes that depended on the presence of the TEF5-A4i
multicopy plasmid: temperature sensitivity of the sup35-
168 mutant was suppressed, while growth of the sup35-
196" was inhibited even at permissive temperature (data
not shown). The ability of TEF5-4i extra copies to sup-
press temperature sensitivity of sup35-168' was repro-
duced in the BY4741-ASUP35 strain. Interestingly, extra
copies of SUP45 also alleviated temperature sensitivity of
the sup35-168* mutant (Figure 2B). Similar effect of
SUP45 overdose was earlier shown for other sup35%
mutants [42].

Sequencing of the sup35" mutant alleles, manifestation of
which depended on TEF5-A4i extra copies, revealed that the
mutations altered the C-terminal region of eRF3 located
downstream of its GTP-binding domain: sup35-168%
caused replacement of Leu553 to Pro, while nucleotide
substitution in the sup35-196% allele corresponded to
change of Thr667 to Pro.

Extra copies of TEF5 and TEF3 reduce efficiency of
nonsense codon readthrough

Genetic interactions described above show that eEF1B is
functionally related to the yeast release factors, but do not
indicate its involvement in translation termination. To
test the latter possibility we investigated the influence of a
high dosage of the genes for eEF1B subunits on nonsense
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Figure |

Extra copies of TEF3, TEF4 and TEFS5 suppress synthetic lethality between sup45-si23tsand SUP35-C. (A) The mult-
icopy plasmids YEplac|95-TEF4 (TEF4T), YEplac|95-SUP45 (SUP45T), with the TEF4 and SUP45 genes, respectively, or the mul-
ticopy empty vector YEplacl95 were introduced into the strain 33G-D373-rSL23-r35C with the sup45-s23% and SUP35-C
alleles, bearing the centromeric plasmid pCM183-SUP45. Obtained transformants were streaked on C-Ura medium containing
doxycycline and incubated at 30°C for 2 days. (B) Transformants of the strain 33G-D373-rSL23-r35C containing the pCM|83-
SUP45 plasmid along with the empty multicopy YEplacl81 (M-empty) or centromeric pRS315 (C-empty) vectors were used as
negative control. Transformants with the centromeric plasmids pRS315-SUP35C (SUP35-CEN) and pRS315-SUP45 (SUP45-
CEN) bearing the SUP35 and SUP45 genes, respectively, represented positive control, since a single copy of either one of these
genes abolished synthetic lethality [20]. Growth of the control transformants was compared with that of the transformants
bearing one of the multicopy plasmids YEplac|81-TEF2 (TEF2 /), YEplac|81-TEF4Ai (TEF4-Ai ), YEplac|81-TEF3 (TEF37) or
YEplac|81-TEF5Ai (TEF5-4i 7). Transformants were grown in liquid C-Leu medium at 30°C and diluted to an OD,, of 1.0. Ten-
fold serial dilutions were spotted onto C-Leu medium which contained (Dox+) or did not contain (Dox-) doxycycline and
grown at 30°C for 3 days.
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Figure 2 (see previous page)

Effects of extra copies of the TEF3, TEF4 and TEF5 genes on temperature sensitivity of the sup45-si23t and
sup35-168t mutants. (A) Growth of transformants of the 33G-D373-sI23 strain with the sup45-s23t mutation, bearing the
centromeric or multicopy empty vectors pRS315 (C-empty) or YEplacl181 (M-empty), respectively (negative controls), or cen-
tromeric plasmid pRS315-SUP45 (SUP45-CEN) (positive control), was compared with growth of transformants, bearing one of
the multicopy plasmids: YEplac|81-TEF2 (TEF2 7), YEplac|81-TEF3 (TEF37), YEplac|81-TEF4Ai (TEF4-4i7) or YEplac|8I-
TEF5Ai (TEF5-Ai 7). Transformants were grown as described in legend to Figure B, except cell suspensions were spotted on
C-Leu without doxycycline and incubated at 30°C or 35°C. (B) The strain BY4741-ASUP35 with disrupted SUP35 contained
the URA3 SUP35-C centromeric plasmid pRG416-SUP35C, which was shuffled for either the centromeric LEU2 pRS315-SUP35
or pRS315-sup35-168 plasmids bearing the wild type SUP35 or mutant sup35-168% alleles, respectively. Shuffling for the sup35-
| 68t plasmid produced transformants unable to grow at 37°C. Then, the strains with either the SUP35 or sup35-168 plasmids
were transformed with one of the multicopy plasmids YEplac195 (M-empty), YEplac|95-TEF2 (TEF2 7), YEplac|95-TEF5Ai
(TEF5-4i 7) or YEplac195-SUP45 (SUP45 7). The transformants were grown in liquid C-Ura medium and diluted to OD,y, of 1.0.
Ten-fold serial dilutions were spotted onto C-Ura medium and grown at 30°C or 37°C for 4 days.
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Figure 3

High dosage of TEF5 reduces UAA and UGA readthrough levels in the sup45-si123t* mutant. The 33G-D373-rSL23
strain with the sup45-s/23t mutation was transformed with one of the following plasmids: multicopy plasmids YEplac|81-
TEF5Ai (TEF5-4i 7§ or YEplacl81 (M-empty), and centromeric plasmids pRS3 15-SUP45 (SUP45-CEN) or pRS315 (C-empty). The
appropriate dual luciferase reporter plasmids were introduced into cells of obtained transformants. The transformants carrying
plasmid pairs were grown in liquid C-Leu, Ura medium at 30°C and then readthrough levels were measured as described in
Methods. The plasmid YEplacI8I-TEF5Ai causes a statistically significant decrease of UAA and UGA readthrough levels (P <
0.02 and P < 0.01, respectively) compared to those in transformants carrying YEplac|81. Comparison of transformants bearing
pRS315-SUP45 and pRS315 revealed statistically significant difference in readthrough of all stop codons: P < 0.1, P < 0.001 and
P <0.05 for UAA, UGA and UAG codons, respectively.
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sup35-196ts

High dosage of TEF5 reduces efficiency of UAA readthrough in the sup35 mutants. The strains 8V-H80-168 (sup35-
168t) and 8V-H80-196 (sup35-196t%) were transformed with one of the multicopy plasmids YEplac|81-TEF5Ai (TEF5-4i7),
YEplac181-SUP35C (SUP35C7) or YEplacl81 (empty vector) and then with the appropriate dual luciferase reporter plasmids.
The transformants with plasmid pairs were grown and readthrough measured as described in legend to Figure 3 and in Meth-
ods. The difference in UAA readthrough in the mutant sup35-1 96t strain with the YEplacI81-TEF5Ai and YEplacI81 plasmids is

statistically significant (P < 0.1).

readthrough in the sup45 and sup35 omnipotent suppres-
sor mutants. Extra copies of TEF5-A4i decreased the levels
of UAA UGA readthrough in the sup45-s123% mutant
almost to the levels observed in this strain in the presence
of wild type SUP45, but did not affect readthrough of
UAG (Figure 3). A smaller decrease of UAA readthrough
due to eEF1Ba overproduction was found in the strain
carrying the sup35-196% mutation, though this effect was
statistically insignificant in the sup35-168% mutant (Figure
4). The observed effects agree with the fact that extra cop-
ies of TEF5 weakened suppression of the his7-1 UAA
mutation in the strain with the sup35-25 omnipotent sup-
pressor [43]. However, other results demonstrated that
overproduction of eEF1Ba could increase the levels of
nonsense readthrough in strains lacking suppressor muta-
tions [44,45].

In addition to TEF5-4i, a decrease of UAA readthrough in
the sup45-s123% mutant was also observed for a high dos-
age of TEF3, but not of TEF4-Ai (Figure 5). At last, over-
production of eEF1Ba manifested an antisuppressor effect
not only in the sup35 and sup45 suppressor mutants, since
it reduced the levels of nonsense readthrough caused by
the ochre tRNA suppressor SUP4 in the strain 50V-H78.
Remarkably, SUP35-C overdose caused in this strain just a
slightly stronger antisuppressor effect than extra copies of
TEF5-4i (Figure 6).

Effects of eEF I B overproduction are not mediated by an
increase of eEFIA activity

Translation elongation factor eEF1A is a classic G protein
involved in the GTP-dependent binding of amino-
acylated tRNA, and the eEF1B a subunit, associated with
its y subunit, functions as a GEF for eEF1A [46,47]. This
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Figure 5

Extra copies of TEF3, but not of TEF4 reduce efficiency of UAA readthrough in the sup45-si123t mutant. The 33G-
D373-rSL23 strain was transformed with one of the multicopy plasmids YEplac|81-TEF2 (TEF2 7? YEplac|81-TEF3 (TEF37),
YEplac|81-TEF4Ai (TEF4-4i 7), YEplac|81-TEF5Ai (TEF5-4i7), YEplac181 (M-empty) or centromeric plasmids pRS315-SUP45
(SUP45-CEN) or pRS315 (C-empty). The appropriate dual luciferase reporter plasmids were then introduced into cells of
obtained transformants. The transformants with plasmid pairs were grown and readthrough measured as described in legend
to Figure 3 and in Methods. The plasmids YEplacI81-TEF3, YEplacI8I-TEF5Ai and pRS315-SUP45 cause a statistically significant
(P<0.02, P <0.002 and P < 0.01, respectively) decrease of UAA readthrough levels compared to those in transformants carry-
ing corresponding empty vectors. The levels of UAA readthrough are increased in transformants with YEplac181-TEF2 as com-

pared with that in transformants with YEplacI81 (P < 0.01).

suggests that the effects of overproduction of eEF1B subu-
nits, observed in our work, are mediated by an increased
activity of its target protein, eEF1A. However, extra copies
of TEF2, one of the two yeast genes encoding eEF1A, nei-
ther suppressed synthetic lethality between sup45-si23t
and SUP35-C (Figure 1), nor alleviated temperature sensi-
tivity of the sup35-168* or sup45-si23= mutants (Figure 2),
thus ruling out this possibility. In contrast, extra copies of
TEF2 could even inhibit growth of the sup35-168= and
sup45-s123t mutants, though in these experiments growth
inhibition was not observed when the strains expressed
wild type SUP45 (Figure 1B, Dox- panel) or SUP35 (Figure
2B).

Measurement of nonsense readthrough levels confirmed
this conclusion: in contrast to TEF5-4i and TEF3, the over-
dose of which caused an antisuppressor effect, extra copies
of TEF2 either did not reduce UAA readthrough in the
SUP4 ochre suppressor-carrying strain (Figure 6), or even

stimulated it in the sup45-s123% mutant (Figure 5). Itis also
necessary to stress that in contrast to TEF2, extra copies of
SUP35-C caused a decrease of UAA readthrough in the
SUP4 strain (Figure 6).

Discussion

In eukaryotes a GTP-bound form of eRF3 is active in ter-
mination, because GTP hydrolysis by eRF3 on the ribos-
ome is required for the efficient translation termination
[2,4,8,9]. However, in vivo eRF3 should mostly be present
in its GDP-bound form, since (i) when termination is
completed it is released from the ribosome in a complex
with GDP, and (ii) newly synthesized eRF3 has a high
affinity to GDP, being able to bind GTP only upon inter-
action with eRF1 [12-14]. It is also important that though
eRF1 is able to enhance the levels of the GTP-bound form
of eRF3, it does not act like classic GEFs, which increase
the dissociation of GDP from a GTPase [12]. Since no GEF
was identified for eRF3, it could be that it is able to disso-
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Extra copies of TEF5 manifest an antisuppressor
effect in the strain with the ochre tRNA SUP4 sup-
pressor. The strain 50V-H78 (SUP4), was transformed with
one of the multicopy plasmids YEplac|81-TEF5Ai (TEF5-4i7),
YEplac|81-TEF2 (TEF2 7), YEplac181-SUP35C (SUP35C7) or
YEplac18I (empty vector). The appropriate dual luciferase
reporter plasmids were then introduced into cells of
obtained transformants. The transformants with plasmid
pairs were grown and readthrough measured as described in
legend to Figure 3 and in Methods. The plasmids YEplacI81-
TEF5Ai and YEplacI81-SUP35C cause a statistically significant
(P <0.0l and P < 0.002, respectively) decrease of UAA
readthrough levels compared to those in transformants car-
rying YEplacI8l.

ciate GDP spontaneously similarly to eEF1A which can do
this, although with a 700-fold slower rate than with the
assistance of eEFB1 [48]. However, despite this, the results
of our work suggest that eEFB1 acts as a GEF for eRF3. This
suggestion is based on (i) the functional interaction of the
o and y subunits of eEF1B with the release factors and (ii)
the reduced nonsense readthrough caused by overproduc-
tion of eEF1B subunits. It is also necessary to stress that
eEF1By and eEF1Ba are structurally different proteins and
the former can stimulate in vitro the nucleotide exchange
activity of the latter [36-38]. This additionally relates the
observed effects of their overproduction to the role of the
eEF1B factor in GDP/GTP exchange on eRF3. It is note-
worthy that the effects of an overdose of the TEF3- and
TEF4-encoded y subunit of eEF1B were different. While
extra copies of either gene can suppress synthetic lethal
interaction between the sup45-s123t and SUP35-C mutant
alleles, only TEF3 extra copies reduce nonsense
readthrough in the sup45-s123% mutant and alleviate its
growth at restrictive temperature. This indicates a func-
tional difference between TEF3- and TEF4-encoded pro-
teins, which agrees with earlier findings [33]. It may be
suggested that the complex of eEF1Ba with the TEF3-
encoded protein preferentially stimulates guanine-nucle-
otide exchange on eRF3, while its complex with the TEF4-
encoded eEF1By has a preference for eEF1A.

http://www.biomedcentral.com/1471-2199/10/60

Since eEF1B acts as GEF for eEF1A, its overproduction
should increase the concentration of active (GTP-bound)
eEF1A. However, it is unlikely that the effects of eEF1B
overproduction observed in this work were mediated by
activation of eEF1A, because extra copies of TEF2 did not
suppress synthetic lethality between sup45-s123% and
SUP35-C, as well as temperature sensitivity of the sup35-
168t and sup45-si23 mutants and even could inhibit
growth of these mutants. It is known that, besides transla-
tion, overexpression of eEF1A in yeast also affects actin
cytoskeleton which may be the cause of growth inhibition
[45]. However, we observed that extra copies of TEF2
caused a noticeable growth inhibition only when mutant
sup35 or sup45 alleles were expressed. Similarly to eEF1A,
yeast eRF1 and eRF3 have nontranslational functions and
their deficiency, as well as mutational inactivation, may
inhibit yeast cell growth via perturbations of the cytoskel-
eton organization [17,19]. Therefore, one can suggest that
TEF2 extra copies and sup35 or sup45 mutations act syner-
gistically to affect cytoskeleton. It is also important that
extra copies of TEF2 did not influence nonsense
readthrough in the strain with the SUP4 tRNA ochre sup-
pressor and even increased it in the sup45-s123% mutant. At
the same time, in contrast to TEF2, extra copies of SUP35-
C, encoding the C domain of eRF3 caused a decrease of
UAA readthrough in the SUP4 strain, which also makes
eRF3 an appropriate target for the eEF1B action.

It is noteworthy that an overproduction of eEF1Ba sup-
pressed temperature sensitivity of the sup35-168% mutant,
but did not noticeably reduce nonsense codon
readthrough indicating that temperature sensitivity of this
mutant is not due to a defect of translation termination.
This suggests that even slight stimulation of GDP for GTP
exchange on eRF3, which did not restore translation ter-
mination in the sup35-168% mutant, could repair defect of
the non-translational function of mutant eRF3. Tempera-
ture sensitivity of sup45-s123% is also unrelated to a high
level of nonsense readthrough [20], though in this mutant
overproduction of eEF1Ba alleviated the growth defect
and decreased UAA and UGA readthrough. Importantly,
overproduction of eEF1Ba did not suppress temperature
sensitivity of the sup45-36% mutant. It was shown that at
restrictive temperature the sup45-36" mutation affects
cytokinesis due to a defect of the non-translational func-
tion of eRF1 mediated by its interaction with the myosin
light chain Mlc1. Since the eRF1 - Mlc1 complex, does not
contain eRF3 [17], it is logical that temperature sensitivity
of this mutant did not depend on the levels of eEF1Ba.

Taken together, these data suggest that the guanine-nucle-
otide exchange activity of eEF1B plays a role in the func-
tioning of release factors in translation termination as
well as in their functions outside of termination. Though
the mechanisms which underlie suppression of muta-
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tional defects of eRF1 and eRF3 by overproduction of the
eEF1B subunits are unknown, this suggestion looks natu-
ral for the sup35 mutants, since it presumes that eEF1B
acts as a GEF for eRF3. However, an overdose of the
eEF1Ba can also suppress the mutational defect of eRF1.
The suppressible sup45-s123 mutation causes amino acid
replacement in the eRF1 N-terminal domain which is not
implicated in interaction with eRF3. In agreement with
this, sup45-s123 did not noticeably influence interaction
between eRF1 and eRF3 [20]. Therefore, one can suggest
that this mutation interferes with the ability of eRF1 to
inhibit dissociation of the eRF3-GTP complex. This
should decrease the overall levels of the ternary
eRF1 - eRF3 - GTP complex, the abundance of which could
be restored by the eEF1B-mediated intensification of
exchange of GDP for GTP on eRF3.

Conclusion

The data presented suggest that eEF1B, the nucleotide
exchange factor of eEF1A, also catalyzes GDP for GTP
exchange on eRF3, a GTPase, the C domain of which is
structurally similar to eEF1A [2,3,7]. This reaction is
required for eRF3 function both in translation termina-
tion and outside of termination. However, it is obvious
that in yeast the eEF1B-mediated exchange of nucleotides
is more critical for eEF1A than for eRF3. This follows from
the observations that while eEF1Ba is normally essential
for viability, cells can survive without the protein in the
presence of excess eEF1A [49]. One can suppose that the
requirement for GEF is less pronounced for eRF3 than for
eEF1A, because of a unique property of eRF1 to increase
affinity of eRF3 to GTP. Indeed, interaction with eRF1 sta-
bilizes eRF3 in a GTP-bound form after spontaneous
exchange of GDP for GTP [12-14]. No such inhibitor of
GTP dissociation is known for eEF1A.

Structural similarity suggests that eRF3 has evolved from
eEF1A. Our genetic data suggest that the accessory protein,
eEF1B, stimulating the activity of elongation factor eEF1A
preserved this ability for the termination factor eRF3 as
well. Direct biochemical studies are necessary to confirm
the role of eEF1B in nucleotide exchange on eRF3.
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