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In a crowded emergency department (ED), several crucial decisions must be made to provide ef-
fective patient care.1,2 Prehospital decision-making, such as transport location and timing deci-
sions, are crucial for continuity of care from prehospital to hospital levels.3-5 Appropriate triage 
is required for selective and targeted care of critically ill patients.6 To improve patient outcomes, 
a prompt investigation and intervention decision should be achieved.7,8 The final disposition choice 
must consider patient safety.9 Management of the overall process and the allocation of resourc-
es are also essential for ED operation.10 Overall, the decision-making points should be considered 
based on patient state and ED situation.
  Clinical decision support (CDS) based on artificial intelligence (AI) has recently been intro-
duced into numerous medical fields, including emergency care. Increased data sources such as 
wearable devices and electronic medical records, higher computing power, and increased storage 
locations such as online cloud databases have contributed to the expansion of AI technology. As 
a result, several AI-based algorithms have been introduced for use in the ED journey.
  AI-CDS can be categorized according to the decision phase of the ED journey. From the 
standpoint of patient care and based on a previous study, the ED journey can be classified into 
phases of prehospital phase, triage, investigation, intervention, and final disposition.11 Each stage 
has its own decision objective and may be repeated based on the situation in the ED and the pa-
tient condition (Fig. 1).
  During the prehospital period, decisions are based on the experience of the medical staff at 
the scene and the protocols of the local emergency medical service. However, it is difficult to 
make decisions with limited resources and patient information. With AI-CDS, efforts have been 
made to improve the accuracy of initial diagnoses based on prehospital information and data. 
Dispatching could also be aided by AI-CDS; for example, when the conversation between callers 
and bystanders shows certain context or words for critical conditions, systems would suggest 
higher-level providers to be dispatched. With prehospital data, a machine-learning-based predic-
tion of hospital admission was attempted in a previous study to inform prehospital providers of 
patient prognosis after ED care.12 Natural language processing techniques were implemented in 
prehospital paramedic reports for diagnosis of stroke.13 A previous study predicted early sepsis 
using prehospital data.14

  Nations and institutions have their own triage system for proper early care of a critical patient 
and effective resource distribution.7,15 Underestimation or overestimation of triage can result in 
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resource loss or deterioration of critically ill patients due to de-
layed care.6 For triage, several AI-CDS system or novel AI-based 
methods have been introduced. There have been attempts to pre-
dict outcomes such as mortality or admission, including develop-
ment of certain clinical conditions such as sepsis.16-18 However, 
few studies demonstrate prospective AI-based triage research or 
implementation.19,20 Attempts should be sought to match ED tri-
age with ED resource allocation, including staff, beds, and inves-
tigatory efforts.
  Prescription and interpretation of diagnostic tests are included 
in the investigation phase. The intervention phase consists of in-
terventions and medication to improve patient conditions. Inves-
tigations and interventions that are time consuming and equip-
ment restrictive should be limited. AI can assist in allocation of 
investigatory and treatment options or to plan expert consulta-
tions.
  Investigation and intervention tools can be inputs or outputs 
of an AI algorithm. Some research has attempted to predict the 
need for computed tomography in the evaluation of disease.21 
Selected interventions can be a result of a prediction.22 The ma-
jority of investigational studies are concerned with interpretation 
of diagnostic tests in relation to final diagnosis and outcome.23-25

  In an ED, the decision for further management should be made 
carefully and appropriately. A patient-specific disposition, such as 
intensive care unit admission, is a frequently targeted outcome.25-27 
Predicting the readmission or return of a discharged patient is 
also essential.28,29 Before making a final determination, these al-
gorithms can help physicians reconsider the conditions of their 
patients.
  Several barriers exist regarding the nature of AI. The first issue 
involves the data. Due to the nature of AI-based algorithms, data 
quality is as important as data quantity. Using low-quality data 
as input renders the algorithm less effective. However, unlike that 
from the intensive care unit, ED data collection is challenging due 
to rapid patient turnover and the complex environment. Addition-
ally, patient information is easily lost along the path from injury 
to ward admission. Data collection should be encouraged, and 
data quality must be maintained.
  It is well known that AI-based algorithms have a “black box” 
nature.30,31 Therefore, it is difficult to determine the decision’s 
cause or the decision-making process. To overcome the uncer-
tainty of AI, explainable AI has recently been introduced, such as 
modified scoring systems or showing feature importance.32,33 It is 
anticipated that explainable artificial intelligence-based predic-

Fig. 1. Artificial intelligence-based clinical decision support points during emergency department (ED) phases. There are four points at which emergency 
physicians must make important decisions, where artificial intelligence can produce substantial effects. 
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tive models will be applicable to emergency medicine as they are 
implemented throughout the medical field.34

  Recent review articles revealed that only a small number of AI-
based models are utilized in actual practice, despite the develop-
ment of numerous AI-based models for diverse decision phas-
es.35-37 The health care field is strictly managed by regulations, 
which is considered as the most important factor for delayed im-
plementation of AI-CDS. For example, a randomized controlled 
trial is an important strategy to analyze the regulatory process, 
which is often difficult or impractical for AI-CDS. With these rea-
sons, we do not frequently witness AI-CDS in practice.
  Several AI-CDSs have been developed to cope with ED prob-
lems and can be categorized by the decision point in an ED: pre-
hospital, triage, investigation, intervention, and disposition phas-
es. Recently, only few of AI-CDS had been implemented and used 
in actual practice. These obstacles should be evaluated from the 
aspects of data, algorithm, and application. AI implementation is 
a practical decision that involves continuous and harmonized ef-
forts by the ED, information technology, and data science.
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