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Abstract

Insects may develop different behavioral phenotypes in response to heterogeneous envi-

ronments (e.g., host plants), but the plasticity of their feeding behaviors has been rarely

explored. In order to address the issue, clones of the English grain aphid, Sitobion avenae

(Fabricius), were collected from wheat, and their probing behaviors were recorded on three

plants. Our results demonstrated that S. avenae individuals on the alternative plants (i.e.,

barley and oat) tended to have higher frequency of non-probing (Np), increased duration of

the pathway phase, increased phloem salivation, and decreased phloem ingestion (E2),

compared to those on the source plant (i.e., wheat), showing the resistance of barley and

oat to this aphid’s feeding. This aphid showed apparently high extents of plasticity for all

test probing behaviors on barley or oat. Positive selection for higher extents of plasticity in

E2 duration was identified on barley and oat. The factor ‘clone’ alone explained 30.6% to

70.1% of the total variance for each behavioral plasticity, suggesting that the divergence of

probing behavior plasticity in S. avenae had a genetic basis. This aphid’s fitness correlated

positively with the plasticity of Np frequency and E2 frequency. Some behaviors and their

corresponding plasticities (e.g., the frequency of xylem ingestion and its plasticity) were

found to be correlated characters, probably reflecting the limits for the evolution of higher

extents of behavioral plasticity in this aphid. The differential probing behaviors and their

plasticity in S. avenae can have significant implications for the adaptation and management

of aphids on different plants.

Introduction

Insect behaviors such as foraging are highly responsive to various environments, which allows

insects to rapidly acclimate to unfavorable conditions (e.g., resistant plants) [1]. Indeed, aphids

(as major insect pests on various crops) can show modified feeding behaviors on host plants

with variable nutrient and secondary metabolite contents. For example, the corn leaf aphid,

Rhopalosiphum maidis (Fitch), showed prolonged probing behaviors, increased phloem saliva-

tion, and reduced xylem sap ingestion on barley than on miscanthus [2]. The soybean aphid
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(Aphis glycinesMatsumura) initiated less probes and sieve element phases on soybean cultivars

with Rag resistant genes than on susceptible cultivars [3–4]. Such behavioral changes were also

well illustrated in studies on Diuraphis noxia (Mordvilko), Acyrthosiphon kondoi (Shinji),

Myzus persicae (Sulzer), Rhopalosiphum padi (L.) and Aphis gossypii (Glover) [5–11]. In addi-

tion, transition schemes of waveform events for feeding aphids varied between susceptible and

resistant plants [2,12]. These studies indicate that aphids can show phenotypic plasticity (i.e.,

the ability of an individual to alter its phenotype in response to changes in environmental con-

ditions [13]) in various feeding behaviors in order to enhance their fitness on unfavorable host

plants (i.e., alternative environments). Following Gorur et al. [13], and Kelly et al. [14], behav-

ioral plasticity is defined as variation in behavioral expression of a genotype that occurs in

response to particular (including both original and alternative) environmental conditions.

Behavioral plasticity has been well characterized in some social insects such as the harvester

ant (Pogonomyrmex occidentalis), honeybee (Apis mellifera), and bumblebee (Bombus terres-
tris) [15–18]. In the fruit fly Drosophila melanogaster and parasitoid waspHyposoter horticola,

behavioral plasticity was also identified [19–20]. Similarly, the black bean aphid (Aphis fabae)
showed high plasticity in host choice behaviors [13]. High behavioral variability was observed

for the melon aphid (A. gossypii) on melon with Vat gene [21], and for the black currant-let-

tuce aphid [Nasonovia ribisnigri (Mosely)] on Nr -carrying lettuce [22]. Therefore, behavioral

plasticity might play a critical role in aphid adaptation to resistant host plants [22]. Studies in

this respect have been rare, although phenotypic plasticity has been considered as a powerful

means of adaption to fluctuating environments, and received increasing attention in ecological

and evolutionary studies [23–26].

As a worldwide cereal pest, the English grain aphid [Sitobion avenae (Fabricius)] survives

on many plants in the Poaceae and shows a certain degree of specialization on some cereals

(i.e., wheat, barley and oat) [27–29]. A few studies have showed modified feeding behaviors

(e.g., increased time of xylem sap ingestion and reduced duration of phloem sap ingestion) of

S. avenae on some resistant wheat lines by using the EPG (electrical penetration graph) tech-

nique (EPG waveforms can reflect different feeding behaviors of herbivorous insects with

piercing mouthparts) [30–33]. Hence, this aphid provides a good model to examine behavioral

plasticity and its relationships with fitness and adaptation of aphids on different plants. To our

knowledge, this is the first extensive study on behavioral trait plasticity of the important cereal

aphid (S. avenae). In the present study, we tested S. avenae clones on wheat, barley and oat,

and recorded their probing behaviors using the EPG (electrical penetration graph) technique.

Specifically, the aims of this study were to: 1) identify differences in S. avenae’s probing behav-

iors and their plasticity using three cereal plants (i.e., wheat, barley and oat); 2) evaluate if

probing behaviors (e.g., pathway phase and phloem salivation) and their plasticity are corre-

lated characters; and 3) explore the relationships between probing behavioral plasticity and the

fitness (i.e., lifetime fecundity) of S. avenae.

Materials and methods

Aphid clones and plants

Aphid clones of S. avenae were sampled from wheat fields near the campus of Northwest A&F

University (Yangling, Shaanxi Province, China) in May 2014. No particular permits were

required for aphid collection at the above-mentioned sites, and our target insect (i.e., S. ave-
nae) is not endangered or protected. Collected S. avenae clones were enclosed separately on

wheat (Triticum aestivum L. cv. Aikang 58) seedlings to establish lab colonies following the

method of Dai et al. [24]. Wheat seedlings were planted in plastic pots (diameter: 6 cm) filled

with turfy soil, vermiculite and perlite (4:3:1, v / v / v). Aphid clones were genotyped by using
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six microsatellite loci (S 4∑, S 5.L, Sm10, Sm12, Sm17, Sm17b) following the method of Huang

et al. [34]. Through this approach, seven genetically distinct clones of S. avenae were identified

and used in this study. In order to conduct reciprocal experiments (under both original and

alternative environments) and analyze plastic changes in behavior after they were transferred

to alternative environments (i.e., barley and oat), test S. avenae clones were reared on the

wheat cultivar Aikang 58 (i.e., the original environment) in common laboratory conditions for

at least three generations before the initiation of the experiment. This is also a common prac-

tice to minimize or eliminate confounding effects from different original environments (e.g.,

different wheat cultivars and variable microclimates) [29].

Life history bioassays

The life-history test with seven S. avenae clones was conducted as described previously in

[35]. Briefly, when reaching one- or two-leaf stage, single seedlings of wheat (T. aestivum cv.

Aikang 58), barley (Hordeum vulgare L. cv. Xian 91–2), and oat (Avena sativa L. cv. Sandle)

received one new-borne, age-synchronized first instar nymph that was transferred from

wheat. In order to prevent aphid escape, each pot of seedlings was enclosed in a plastic con-

tainer (diameter: height = 6: 15 cm). Test plants were placed in environmental growth cham-

bers with temperature 22 ± 1˚C, photoperiod 16: 8 (L: D), and relative humidity 65 ± 2%. The

developmental instars of test aphid nymphs were determined by checking twice daily for the

occurrence of molting and existence of exuviae. We monitored each aphid individual daily

until its death, and molting, birth and mortality events were recorded with offspring removed

at the same time. The bioassay on S. avenae clones was replicated three or four times under

each treatment.

Electrical penetration graph (EPG) assays

The EPG technique was used to monitor feeding behaviors of S. avenae on the above-men-

tioned cultivars of wheat, barley, and oat. The EPG assays were conducted according to the

methods described in [2] using a Giga-8 DC EPG System (EPG Systems, Wageningen, Nether-

lands). Briefly, a copper electrode was attached to the dorsum of test aphid individuals by con-

ductive silver glue (EPG systems, Wageningen, The Netherlands), and another electrode was

inserted into the pot. The probing signals were recorded by the amplifier of the EPG system.

In this study, first-instar nymphs fed separately on wheat, barley, and oat as described earlier

until they reached the adult stage. After being starved for 1 h, one- to two-days old wingless

adults were tested on 7-d old intact plants in a climate-controlled room with the aforemen-

tioned environmental conditions. EPG waveforms were recorded for 8 h for each aphid indi-

vidual. Four to six replications of each aphid clone were performed. The EPG assays were

conducted from 8:00 to 16:00 o’clock each day, and same numbers of replicates were con-

ducted on each plant at each time slot. However, a few tests produced no data due to the aphid

attachment issue (i.e., the electrode was not sufficiently attached to the test aphid so that the

aphid could escape), resulting in unequal numbers of replicates on three plants. A total of 37,

37 and 28 EPG recordings for the seven aphid clones were obtained on wheat, barley and oat,

respectively.

Statistical analysis

As described in [36], the software Stylet+ was used to analyze the following waveforms. The

waveform Np refers to the non-probing phase, C to the pathway phase, E1 to phloem saliva-

tion, E2 to passive sap ingestion from the phloem, G to active sap ingestion from the xylem,

and F to stylet derailment. The frequency and duration for each waveform were calculated.
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The frequency of Np, the duration of G, the frequency of F and the duration of F were analyzed

with Kruskal-Wallis tests, and means were separated with Dunn’s tests at α = 0.05 in SAS [37].

The other traits were analyzed with one-way analysis of variance (ANOVA), and means were

then separated with Tukey tests at α = 0.05 in SAS. Sequences of waveforms were analyzed for

each plant, and the probability of transition from a particular waveform to another was calcu-

lated. The proportions obtained on three test plants were compared with Chi-square tests in

SAS.

The amount of plasticity for probing behaviors of S. avenae was assessed by calculating the

coefficient of variation (CV) following the method in [24]. Data were then analyzed with two-

way analysis of variance (ANOVA), and effects of ‘plant’, ‘clone’, and the interaction between

‘plant’ and ‘clone’ were estimated. Means were separated with Tukey tests at α = 0.05 following

a significant ANOVA in SAS. When needed, data were log transformed to meet the require-

ments of normality and homoscedasticity for these analyses. The PROC CORR procedure was

used to assess the association between a particular probing behavior and its corresponding

plasticity by the Spearman rank-order correlation analysis and Hoeffding independence test in

SAS.

In order to assess the relationship between behavioral plasticity and S. avenae’s fitness, the

lifetime fecundity for aphid clones was recorded on each plant. The relative fecundity of each

aphid clone was calculated through dividing the clone’s lifetime fecundity by the mean of all

test lines under each treatment. The relationship between probing behavior plasticity and rela-

tive fecundity was determined using Pearson correlation analyses in SAS. The Proc REG pro-

cedure in SAS was used to determine the selection differential and gradient (i.e., selection

strength of alternative plants) for each behavioral plasticity as described in [24].

Results

Effects of plant species on life history traits

The developmental time of first instar nymphs for S. avenae clones was longest on barley, and

lowest on wheat (Table 1; F = 18.35; df = 2, 66; P< 0.001). The developmental time of second

instar nymphs on oat was longer than that on wheat (F = 4.99; df = 2, 66; P< 0.01). Compared

to barley or oat, clones of S. avenae on wheat showed shorter developmental time of third

(F = 25.13; df = 2, 66; P< 0.001) and fourth (F = 10.87; df = 2, 66; P< 0.001) instar nymphs,

and the total developmental time of nymphs was also shorter on wheat (F = 56.58; df = 2, 66;

P< 0.001). Lifetime fecundity of S. avenae clones was highest on wheat, but lowest on oat

(F = 89.26; df = 2, 66; P< 0.001).

Table 1. Developmental time and fecundity for Sitobion avenae clones on wheat, barley and oat.

Traits Wheat Barley Oat

DT1 (d) 1.91 ± 0.04 C 2.71 ± 0.10 A 2.33 ± 0.14 B

DT2 (d) 1.94 ± 0.04 B 2.10 ± 0.07 AB 2.24 ± 0.10 A

DT3 (d) 1.50 ± 0.07 B 2.05 ± 0.05 A 2.00 ± 0.07 A

DT4 (d) 1.91 ± 0.08 B 2.62 ± 0.13 A 2.43 ± 0.15 A

DT 5(d) 7.26 ± 0.05 B 9.48 ± 0.18 A 9.00 ± 0.24 A

Lifetime fecundity 76.78 ± 1.52 A 48.52 ± 3.07 B 35.67 ± 2.38 C

Note: DT1-DT4, developmental time of 1st -4th instar nymphs; DT5, total developmental time of nymphs; different letters following data within a row indicate

significant differences at the P< 0.05 level, ANOVA followed by Tukey tests.

https://doi.org/10.1371/journal.pone.0203219.t001
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Effects of plant species on probing and ingestion behaviors

Clones of S. avenae showed a higher frequency of the non-probing phase (Np) on barley than

on wheat (Table 2; Kruskal-Wallis test: χ2 = 7.21; df = 2; P = 0.027), while the duration of Np

had no significant differences among the three test plants (i.e., wheat, barley and oat). The fre-

quency of the pathway phase (C) for S. avenae clones was also higher on barley than on wheat

(F = 4.45; df = 2, 94; P = 0.014). Compared to that on wheat, a longer duration of C on barley

or oat was found (F = 12.68; df = 2, 94; P< 0.001). The occurrence of stylet derailments (F) for

S. avenae clones was the most frequent on barley (Kruskal-Wallis test: χ2 = 16.63; df = 2;

P< 0.001), and its duration was the longest on barley (Kruskal-Wallis test: χ2 = 18.02; df = 2;

P = 0.001). The frequency of phloem salivation (E1) showed no significant differences among

plants, but the duration of E1 was longer on oat than on wheat (F = 5.57; df = 2, 94; P< 0.01).

Among the three plants, S. avenae clones on wheat presented highest frequency (F = 5.46;

df = 2, 94; P< 0.01) and longest duration (F = 19.48; df = 2, 94; P< 0.001) of E2 (phloem sap

ingestion). The duration of the xylem ingestion phase (G) was longer on barley than on wheat

(Kruskal-Wallis test: χ2 = 7.29; df = 2; P = 0.026).

The sequences of probing behaviors for S. avenae clones varied among the three test plants

(Fig 1). After the pathway phase, aphid individuals showed a lower propensity to enter the

phloem phase (E1 and E2) on barley (19.6%) than on wheat (26.7%; χ2 = 7.15, df = 1, P< 0.01)

or oat (26.8%; χ2 = 6.41, df = 1, P< 0.05). Aphid individuals had a higher propensity to under-

take a transition from the pathway phase to stylet derailments on barley (5.1%) than on wheat

(1.4%; χ2 = 9.28, df = 1, P< 0.01) or oat (1.2%; χ2 = 8.95, df = 1, P< 0.01). Aphid individuals

feeding on wheat showed a lower propensity (0.5%) to start xylem ingestion after the pathway

phase compared to those feeding on barley (2.2%; χ2 = 4.88, df = 1, P< 0.05) or oat (3.0%; χ2 =

7.47, df = 1, P< 0.01). The probability of switching from the phloem phase back to the path-

way phase was also lower on wheat (42.8%) than on barley (58.3%; χ2 = 8.03, df = 1, P< 0.01)

or oat (60.0%; χ2 = 8.67, df = 1, P< 0.01). However, similar probabilities of aphid individuals

returning to the non-probing phase after the pathway phase were found on all three plants.

The same pattern was also found for transitions from Np to C, from F to C, and from G to C.

Table 2. Frequency and duration# (mean ± SE) of probing behaviors for Sitobion avenae clones on wheat, barley and oat.

EPG parameters Wheat § Barley Oat

Np frequency 9.00 ± 0.81 b 12.76 ± 0.91 a 11.43 ± 1.92 ab

Np duration 53.99 ± 8.67 A 56.04 ± 8.50 A 63.11 ± 12.05 A

C frequency 11.30 ± 0.90 B 16.22 ± 1.08 A 14.83 ± 2.13 AB

C duration 107.04 ± 7.79 B 179.36 ± 11.38 A 176.75 ± 18.78 A

F frequency 0.16 ± 0.06 b 0.84 ± 0.18 a 0.13 ± 0.07 b

F duration 5.67 ± 2.44 b 45.79 ± 9.63 a 5.63 ± 3.35 b

E1 frequency 3.97 ± 0.45 A 3.65 ± 0.43 A 4.48 ± 0.62 A

E1 Duration 30.59 ± 4.21 B 42.96 ± 6.93 AB 62.32 ± 8.08 A

E2 frequency 1.97 ± 0.21 A 1.24 ± 0.11 B 1.35 ± 0.21 B

E2 duration 274.07 ± 14.15 A 131.47 ± 17.02 B 156.17 ± 26.18 B

G frequency 0.05 ± 0.04 A 0.32 ± 0.10 A 0.30 ± 0.19 A

G duration 0.34 ± 0.28 b 13.33 ± 4.49 a 5.94 ± 3.62 ab

#, durations expressed in minutes
§, a total of 37, 37 and 28 EPG recordings were obtained on wheat, barley and oat, respectively

data in a row followed by different letters indicate significant differences at α = 0.05; upper case letters indicate ANOVA followed by Tukey tests; lower case letters

indicate Kruskal–Wallis tests followed by Dunn’s tests; 05, Np, non-probing; C, pathway phase; E1, phloem salivation; E2, phloem sap ingestion; G, xylem sap ingestion;

F, stylet derailment.

https://doi.org/10.1371/journal.pone.0203219.t002

Probing behaviors and their plasticity in Sitobion avenae

PLOS ONE | https://doi.org/10.1371/journal.pone.0203219 September 5, 2018 5 / 16

https://doi.org/10.1371/journal.pone.0203219.t002
https://doi.org/10.1371/journal.pone.0203219


Fig 1. Comparisons of probing behavioral patterns for Sitobion avenae clones on wheat (i), barley (ii), and oat (iii).

(Values next to the arrows represent the probability of individuals entering a certain feeding step; probabilities followed by

different lower case letters indicate significant differences between plants identified with Chi-square tests at P< 0.05; Np,

non-probing; C, pathway phase; E1, phloem salivation; E2, phloem ingestion; G, xylem ingestion; F, stylet derailment).

https://doi.org/10.1371/journal.pone.0203219.g001
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Plasticity of probing and ingestion behaviors and selective effect of

alternative plants

Compared to those on barley, S. avenae clones on oat showed a higher plasticity level in fre-

quency of Np (Fig 2; F = 138.81; df = 1, 132; P< 0.001), duration of Np (F = 32.72; df = 1, 132;

P< 0.001), frequency of C (F = 43.66; df = 1, 132; P< 0.001), duration of C (F = 6.79; df = 1,

132; P = 0.010), and frequency of E2 (F = 43.41; df = 1, 132; P< 0.001). However, in compari-

son with barley, a lower plasticity level on oat was found in frequency of E1 (F = 7.80; df = 1,

132; P = 0.006), duration of E2 (F = 5.73; df = 1, 132; P = 0.018), frequency of G (F = 112.12;

df = 1, 132; P< 0.001), duration of G (F = 174.36; df = 1, 132; P< 0.001), and duration of F

(F = 11.30; df = 1, 132; P = 0.001). No significant differences between barley and oat were

found in the plasticity of F frequency and E1duration.

Variance components (i.e., ‘plant’, ‘clone’, and ‘plant × clone’) for plasticity of S. avenae’s
probing behaviors were estimated (Table 3). ‘Plant’ accounted for a significant proportion of

the total variance for plasticities of all probing and ingestion behaviorss but those of F fre-

quency and E1 duration, showing significant impacts of alternative plants on behavioral plas-

ticity. ‘Clone’ and the interaction between ‘plant’ and ‘clone’ showed significant effects for

every behavioral character. ‘Clone’ alone explained 30.56% - 70.09% of the total variance for

plasticity of each probing behavior. The interaction of ‘clone’ and ‘plant’ contributed 8.12% -

50.13% to the total variance for plasticity of test behavioral traits.

Selective effects of alternative plants on probing behavioral plasticity for S. avenae clones

were analyzed (Table 4). For aphids feeding on barley, the selection differential for plasticity in

frequency and duration of F was significantly negative, but it was significantly positive for

Fig 2. Comparisons of probing behavioral plasticities (mean ± SE) for Sitobion avenae clones on barley and oat. (F, frequency;

D, duration; Np, non-probing; C, pathway phase; E1, phloem salivation; E2, phloem sap ingestion; G, xylem sap ingestion; F, stylet

derailment; � and NS, significant and non-significant differences between plants identified with two-way ANOVA at P< 0.05).

https://doi.org/10.1371/journal.pone.0203219.g002
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duration of E2. The only significant selection gradient for S. avenae clones feeding on barley

was found for plasticity of F duration. Oat showed significantly selective effects on plasticity of

E2 duration only, for which the selection differential and gradient were both positive.

Associations between probing and ingestion behaviors and their plasticity

Using both Spearman correlation analysis and Hoeffding independence tests, both F frequency

(Fig 3A: Spearman correlation, ρ = 0.2753, P< 0.01; Fig 3B: Hoeffding test, D = 0.0099, P<
0.05) and F duration (Spearman correlation: ρ = 0.2611, P< 0.01; Hoeffding test: D = 0.0141,

Table 3. Estimates of variance components for probing behavioral plasticities of Sitobion avenae clones showing main effects of plant, clone and interactions.

EPG parameters Variance component

Plant Clone Plant×Clone Error

df F P % total df F P % total df F P % total df F P % total

Np frequency 1 138.81 < 0.001 15.86 6 91.01 < 0.001 62.42 6 11.84 < 0.001 8.12 120 - - 13.60

Np duration 1 32.72 < 0.001 6.63 6 40.84 < 0.001 49.69 6 16.07 < 0.001 19.55 120 - - 24.13

C frequency 1 43.66 < 0.001 7.12 6 65.50 < 0.001 64.11 6 9.55 < 0.001 9.34 120 - - 19.41

C duration 1 6.79 0.010 0.67 6 116.40 < 0.001 68.97 6 31.39 < 0.001 18.60 120 - - 11.75

F frequency 1 2.69 0.104 0.14 6 214.52 < 0.001 67.24 6 84.25 < 0.001 26.41 120 - - 6.22

F duration 1 11.30 0.001 0.55 6 238.21 < 0.001 69.45 6 83.09 < 0.001 24.22 120 - - 5.78

E1 frequency 1 7.80 0.006 2.22 6 25.61 < 0.001 43.83 6 11.68 < 0.001 19.99 120 - - 33.95

E1 duration 1 3.32 0.071 0.57 6 68.62 < 0.001 70.09 6 8.90 < 0.001 9.09 120 - - 20.26

E2 frequency 1 43.41 < 0.001 8.38 6 38.52 < 0.001 44.61 6 20.75 < 0.001 24.04 120 - - 22.97

E2 duration 1 5.73 0.018 0.89 6 32.90 < 0.001 30.56 6 53.97 < 0.001 50.13 120 - - 18.42

G frequency 1 112.12 < 0.001 11.02 6 81.13 < 0.001 47.83 6 49.98 < 0.001 29.46 120 - - 11.69

G duration 1 174.36 < 0.001 14.08 6 111.55 < 0.001 54.04 6 45.99 < 0.001 22.28 120 - - 9.61

Notes: Np, non-probing; C, pathway phase; E1, phloem salivation; E2, phloem sap ingestion; G, xylem sap ingestion; F, stylet derailment

https://doi.org/10.1371/journal.pone.0203219.t003

Table 4. Selection differentials and gradients for probing behavioral plasticities of Sitobion avenae clones on two alternative plants (i.e., barley and oat).

Parameters Barley Oat

Differential Gradient Differential Gradient

Np frequency -0.1753 0.1060 0.1962 0.2110

Np duration -0.0441 0.0842 -0.0281 0.0234

C frequency -0.1876 -0.2319 0.1341 -0.0737

C duration -0.1864 -0.1691 -0.0509 -0.2381

F frequency -0.3920 ��� -0.0098 -0.0294 -0.0123

F duration -0.4939 ��� -0.4107 � -0.0535 -0.1300

E1 frequency 0.0604 0.1676 0.0065 0.1065

E1 Duration 0.2203 0.0182 -0.2212 -0.0982

E2 frequency -0.0470 -0.2118 0.1621 -0.1763

E2 duration 0.2918 � 0.1945 0.4799 ��� 0.6148 ���

G frequency -0.0980 0.3388 -0.0162 0.1065

G duration -0.2123 -0.3634 -0.1690 -0.0631

Np, non-probing; C, pathway phase; E1, phloem salivation; E2, phloem ingestion; G, xylem ingestion; F, stylet derailment

�, P< 0.05

���, P< 0.001

significant effects highlighted in bold type.

https://doi.org/10.1371/journal.pone.0203219.t004
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P< 0.01) for S. avenae clones were found to be significantly correlated with their correspond-

ing plasticity. The dependence of G frequency (ρ = 0.2986, P< 0.001), G duration (ρ = 0.2712,

P< 0.01) and E2 frequency (ρ = 0.1825, P< 0.05) on their corresponding plasticity was also

found based on Spearman correlation analyses, although such associations were non-signifi-

cant based on Hoeffding independence tests. All the other test behavioral characters (e.g., E1

frequency, E2 duration, and C duration) were found to be independent of their corresponding

plasticity. Such results suggest that the independence of particular behavioral plasticity from

the behavior involved was character specific.

Relationships between behavioral plasticity and relative fitness

The relative fitness of S. avenae clones was found to be significantly and positively correlated

with the plasticity of E2 frequency (Fig 4; r = 0.2111, P< 0.05) and Np frequency (r = 0.1778,

Fig 3. Spearman (a) and Hoeffding (b) association coefficients between probing behaviors and their plasticities for

Sitobion avenae clones (Np, non-probing; C, pathway phase; E1, phloem salivation; E2, phloem ingestion; G, xylem

ingestion; F, stylet derailment. �, P< 0.05; ��, P< 0.01; ���, P< 0.001).

https://doi.org/10.1371/journal.pone.0203219.g003

Fig 4. Pearson correlations between relative fitness and probing behavioral plasticities for Sitobion avenae clones.

(Np, non—probing; C, pathway phase; E1, phloem salivation; E2, phloem ingestion; G, xylem ingestion; F, stylet

derailment. �, P< 0.05).

https://doi.org/10.1371/journal.pone.0203219.g004
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P< 0.05). The correlation between relative fitness and the plasticity of E1 duration was signifi-

cantly negative (r = -0.2024, P< 0.05). The relationship between the plasticity of all other test

behavioral characters and S. avenae’s relative fitness was non-significant.

Discussion

Probing and ingestion behaviors on three plants

When transferred from the source plant (i.e., wheat) onto the alternative plants (i.e., barley

and oat), S. avenae clones tended to have higher frequency and longer duration of the pathway

phase, indicating transient difficulties from the sieve element puncture activity to phloem sali-

vation (E1) on barley and oat. This is consistent with the findings that the Russian wheat aphid

(D. noxia) shows higher frequency of probes and longer salivation duration on resistant plants

(e.g., oat or resistant barley cultivar ‘STARS-9301B’) than on susceptible plants (e.g., suscepti-

ble barley cultivar ‘Morex’) [38–39]. Clones of S. avenae also tended to have prolonged phloem

salivation and reduced phloem sap ingestion (E2) on the alternative plants, indicating the ini-

tial difficulties for this aphid to initiate phloem sap ingestion and a reduced ability to suppress

the phloem wound responses (e.g., protein clogging inside a sieve element) of both plants [40].

Clones of S. avenae showed a tendency to have an increased duration of xylem sap ingestion

after being switched onto barley or oat, and this could be due toe a higher intensity of osmotic

stress resulting from the high C:N ratio diet of both plants [2,41–42]. This aphid’s reduced

phloem feeding and increased xylem feeding on certain plants could also be attributed to phys-

ical barriers (e.g., sclerenchymatous rings) or secondary metabolites (e.g., flavonoid glycosides)

[43–45]. Compared to wheat or oat, both longer durations and higher frequencies of stylet

derailments were found for S. avenae clones feeding on barley, showing mechanical difficulties

in the stylet pathway in the mesophyll of this plant [33]. These mechanical difficulties might be

derived from differences in the thickness of bundle sheaths, and the arrangement of tonoplast,

and cell wall composition in the plants involved [2,46–47]. Overall, S. avenae clones tended to

have lower frequency of non-probing (Np), reduced pathway phase, decreased phloem saliva-

tion, and increased phloem sap ingestion on wheat (i.e., the source plant), showing that wheat

was most susceptible to this aphid among the three test plants.

Additionally, the sequences of probing behaviors for S. avenae varied among three plants.

For example, S. avenae individuals feeding on the alternative plants (i.e., barley and oat) had a

higher propensity to undertake transitions from the pathway phase (C) to xylem ingestion and

from C to stylet derailments, compared to those feeding on the source plant (i.e., wheat). A

higher probability of transition from the phloem phase (phloem salivation and sap ingestion)

to C was also found for S. avenae feeding on the alternative plants than on the source plant.

The pattern of probing behavioral sequences on the three plants provides additional evidence

that the alternative plants were more resistant to the feeding of S. avenae than the source plant.

The among-plant differences in probing behaviors (or behavioral sequences) of S. avenae may

be due to the features of the leaf surface (e.g., foliar trichome density and epicuticular wax) or

phloem-located cues (e.g., secondary metabolites and phagodeterrents) [2,4,48–51]. Further

studies are required to clarify the resistant factors in barley or oat, which might be useful in

cultural control of S. avenae [28]. Thus, S. avenae can respond to the differential resistant fac-

tors in host plants by developing alternative behavioral phenotypes. This is not unexpected

because some S. avenae clones have shown certain degree of specialization on wheat, barley or

oat in our previous studies [28–29]. It will be interesting to explore the impact of different

behavioral phenotypes on adaptation (or specialization) of S. avenae clones on alternative

plants in the future.
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Patterns of behavioral plasticity and its relationship with fitness in S.

avenae
In this study, S. avenae clones feeding on the two alternative plants (i.e., alternative environ-

ments) showed apparently high extents of plasticity for all test probing behaviors, especially for

stylet derailments and xylem sap ingestion on barley, and for stylet derailments on oat. This

aphid presented relatively higher plasticities in phloem salivation, xylem sap ingestion and stylet

derailment on barley than on oat, whereas it showed significantly higher plasticities for feeding

activities of non-probing (Np) and the pathway phase (C) on oat than on barley. This suggests a

host plant-specific pattern of probing behavioral plasticity for S. avenae. So far, relatively little is

known about how evolutionary processes shape the intraspecific variation in behavioral pheno-

types, and if phenotypic plasticity of behaviors for different organisms has a genetic basis [1].

Our study showed that ‘clone’ (i.e., different S. avenae genotypes from wheat) explained a

significant proportion (30.6% - 70.1%) of the total variance for plasticity of each behavioral

trait, meaning that different genotypes of S. avenae can have differential extents of behavioral

plasticity. This suggests that the divergence of behavioral plasticity in S. avenae could have a

genetic basis. We also found that phenotypic plasticity of vital life-history traits (e.g., develop-

mental time and fecundity) for S. avenae had a clear genetic basis in our previous study [24].

Even though genetic models (i.e., pleiotropy, epistasis, and overdominance) have been used to

explain phenotypic plasticity, the genetic mechanisms of plastic responses are poorly under-

stood [52–53]. Aphid populations often present a high degree of heterozygote excess in the

field [34,54–55]. Thus, the overdominance model, which predicts that plasticity increases with

decreasing heterozygosity, may be able to explain the pattern of plasticity for probing behav-

iors of S. avenae. However, all our test aphid clones came from a single plant (i.e., wheat),

instead of all the three test plants. This might not represent the actual status for the extents of

heterozygote excess in S. avenae in nature. Thus, use of wheat clones only might result in a bias

in test results, presenting a limitation of this study. A recent study has shown that the differen-

tial regulation of genetic pathways (e.g., those involving the gene foraging) is likely a key mech-

anism involved in plasticity of insect behaviors [15]. Another molecular mechanism of

behavioral plasticity in insects involves biochemical changes in the levels of neuromodulators

(e.g., neuropeptides) regulated by the neuropeptide NPF/nitric oxide (NO) pathway [56].

Future studies using more S. avenae genotyopes and more replicates for each genotype are

needed to confirm the above-mentioned results, and determine the exact molecular mecha-

nism underlying behavioral plasticity identified in this study.

Do those genotypes of S. avenae with high extents of behavioral plasticity have enhanced fit-

ness? In the current study, we did find that the fitness of S. avenae correlated positively with

the plasticity for frequencies of non-probing and phloem sap ingestion, suggesting that higher

plasticity in the frequency of both behaviors can be adaptive for this aphid. However, a nega-

tive correlation between S. avenae’s fitness and the plasticity for duration of phloem salivation

(E1) was identified. This means that lower plasticity of E1 duration could enhance the fitness

of this aphid on alternative plants. Nonetheless, the correlations between fitness of S. avenae
and behavioral plasticity tended to be positive for all probing parameters except E1 duration,

E1 frequency, and duration of phloem sap ingestion (E2). Therefore, high extents of plasticity

in probing behaviors can potentially enhance the fitness of this aphid. Indeed, positive selec-

tion for plasticity of E2 duration was identified on both barley and oat. This suggests that natu-

ral selection of alternative plants in the field has the potential to increase the extent of plasticity

for E2 duration of S. avenae in order to maximize its fitness. However, positive selection of

plasticity for other probing behaviors was not identified. This probably reflects the costs and

limits of the evolution of higher extents of plasticity for probing behaviors in S. avenae. In this
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study, the frequency of xylem sap ingestion (G) and its plasticity, as well as the duration of G

and its plasticity, were found to be correlated characters, using both Spearman correlation

analyses and Hoeffding independence tests. Similarly, the plasticity for duration of stylet

derailment (F), F frequency, or frequency of phloem sap ingestion was also likely a correlated

character for the corresponding behavior. Therefore, the evolution of higher extents of plastic-

ity for probing behaviors of S. avenae can be constrained by selection on their correlated

characters.

In summary, this study represents the first to extensively explore probing behavior plasticity

of the economically important cereal aphid, S. avenae. Studies on plasticity of aphid behaviors

have been rare, and there is little evidence in the literature that phenotypic plasticity is adap-

tive. Our results showed that this aphid had apparently high extents of plasticity for all test

probing behaviors on barley or oat. Correlations between fitness (i.e., lifetime fecundity) of S.

avenae and behavioral plasticity tended to be positive for a majority of the probing and inges-

tion behaviors, indicating that higher plasticity in these behaviors could be adaptive for this

aphid. We also found that probing behavioral plasticity of S. avenae could be genetically based.

Thus, our results have ecological and evolutionary implications for this aphid in the field. In

addition, probing behaviors and their plasticity in S. avenae can also have significant implica-

tions for transmission of BYDV (barley yellow dwarf virus) in the field. Future studies are

needed to integrate data on behavioral and life-history trait plasticities, as well as data on

behavioral and life-history traits. This will help us understand the mechanisms, costs and limits

of phenotypic plasticity, and its implications for management of aphids and BYDV on differ-

ent host plants.
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