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Numerous neuropeptide systems have been implicated to coordinately control energy

homeostasis, both centrally and peripherally. However, the vertebrate neuropeptide

Y (NPY) system has emerged as the best described one regarding this biological

process. The protostomian ortholog of NPY is neuropeptide F, characterized by an

RXRF(Y)amide carboxyterminal motif. A second neuropeptide system is short NPF,

characterized by an M/T/L/FRF(W)amide carboxyterminal motif. Although both short and

long NPF neuropeptide systems display carboxyterminal sequence similarities, they are

evolutionary distant and likely already arose as separate signaling systems in the common

ancestor of deuterostomes and protostomes, indicating the functional importance of

both. Both NPF and short-NPF systems seem to have roles in the coordination of feeding

across bilaterian species, but during chordate evolution, the short NPF system appears

to have been lost or evolved into the prolactin releasing peptide signaling system, which

regulates feeding and has been suggested to be orthologous to sNPF. Here we review

the roles of both NPF and sNPF systems in the regulation of feeding and metabolism

in invertebrates.

Keywords: neuropeptide F, neuropeptide Y, short neuropeptide F, feeding behavior, neuropeptide evolution, G

protein coupled receptor, protostomes, neuromodulation

INTRODUCTION

The nomenclature of the two distinct neuropeptide families, short neuropeptide F (sNPF) on the
one hand, and neuropeptide F (NPF) on the other hand, has led to confusing data and conclusions
in literature. Whereas, NPF shares a common bilaterian ancestor with vertebrate neuropeptide Y
(NPY), the sNPF system appears to be protostomian-specific according to (1). In this review, we
summarize work on the regulation of feeding and metabolism by NPF and sNPF in invertebrates
and attempt to clarify annotation ambiguities that have become apparent upon large-scale
phylogenomic analyses of NPF and sNPF systems across bilaterians (1, 2).

The NPY Family in Vertebrates
NPY is part of a large neuropeptide family that besides NPY, includes peptide YY (PYY) and
the pancreatic polypeptide (PP) (3). The 36 amino acid NPY was isolated in 1982 from pig
brain extracts (4) and was found to be widely distributed in the CNS of vertebrates (5, 6).
Whereas, NPY is found at all levels of the brain-gut axis, PYY, and PP seem to be predominantly
expressed by endocrine cells of the digestive system (7). The three peptides share a characteristic
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secondary structure called the pancreatic polypeptide-fold (PP-
fold) (8) that is fundamental for the full activation of the NPY
G protein coupled receptors (NPYRs). These GPCRs comprise
the Y1, Y2, Y4, Y5, and Y6 subtypes (9, 10). The Y1, Y2, and Y5
receptor isoforms preferentially bind NPY and PYY (11), while
Y4 is specific for PP (12). The Y6 receptor exists as a truncated
inactive protein in most mammals, and is only a functionally
active receptor in mice and rabbits (13). While NPY centrally
promotes feeding and reduces energy expenditure, PYY and PP
mediate satiety. In addition, NPY family neuropeptides have
various other functions that go beyond the regulation of feeding
and appetite (14).

Discovery of NPF and sNPF Neuropeptides
in Invertebrates
The first invertebrate NPY-like peptide was discovered in 1991
in the tapewormMoniezia expansa using a C-terminally directed
pancreatic polypeptide (PP) antiserum (15). HPLC purification
of the PP-immunoreactive (IR) extract followed by automated
Edman degradation sequencing identified a 39 amino acid
tapeworm peptide that displays sequence similarities with the
36 amino acid vertebrate NPY (15). Based on its C-terminal
sequence that ends with a phenylalanine (F) instead of a
tyrosine (Y), this peptide was named neuropeptide F instead
of neuropeptide Y. After this discovery, NPF-like peptides have
been identified in other flatworms and in molluscs (16–20), all of
which typically display an RPRF-amide C-terminal sequence and
a length ranging from 36 to 40 amino acids.

The first sNPF peptides were discovered in insects, including
the Colorado potato beetle Leptinotarsa decemlineata and the
desert locust Schistocerca gregaria (21, 22) using antisera raised
againstM. expansa “long” NPF (23). These insect peptides consist
of only 8 to 10 amino acids instead of 36 to 40 amino acids as
typical for vertebrate NPY and flatworm or mollusc NPF. Based
on their carboxyterminal RLRFamide sequence, which is similar
to the RPRFamide motif of the “long” NPFs from flatworms and
molluscs (15), they were designated “short” NPFs or sNPFs (24).

Discovery of NPF and sNPF Receptors in
Invertebrates
NPF receptors (NPFRs) were initially cloned from the brain of
the pond snail Lymnaea stagnalis (25) and subsequently from
Drosophila larvae (26, 27). Both receptors retained the typical
features of vertebrate NPYRs and they showed the highest
homology to the mammalian NPYR 2 isoform (28). Upon
expression of these NPFRs in Chinese Hamster Ovary (CHO)
cells, it was found that the respective NPF peptides inhibit
forskolin-stimulated adenylyl cyclase activity, in accordance with
vertebrate NPYRs signaling through Gi/o small proteins (25, 26,
29). In addition, the DrosophilaNPF receptor can be activated by
mammalian NPY-type neuropeptides when expressed inXenopus
oocytes (27).

The first sNPF receptor (sNPFR) was cloned from D.
melanogaster (30) and later on from the fire ant Solenopsis
invicta (31) and the mosquito Anopheles gambiae (32). Different
Drosophila sNPF variants elicit a calcium response in CHO

cells (30, 33) or in Xenopus oocytes (26, 34) when these are
transformed to express the Drosophila sNPFR.

Issues With Nomenclature
After the cloning of a long 36 amino acid NPF neuropeptide
precursor in Drosophila melanogaster (35) and the sequencing
of the Drosophila genome (36), it became evident that not
all NPF/NPY-immunoreactive peptides that were designated as
NPF were actually long NPFs such as those isolated from M.
expansa and D. melanogaster. This led to the introduction of
the terms long NPF (or simply NPF) and short NPF (sNPF)
(24, 37). Alignment studies of neuropeptide precursors from both
vertebrates and invertebrates pointed out the diversity in the
consensus sequences for sNPF and NPF (38, 39), and suggested
that short NPFs are restricted to protostomian phyla, while long
NPFs are conserved across bilaterians.

In the past, several studies in insects have demonstrated
overlapping functions of NPF and sNPF signaling with respect
to feeding and metabolism, suggesting a common evolutionary
origin of sNPF and NPF neuropeptides and receptors. This
hypothesis was also supported by structural similarities between
both invertebrate sNPF and NPF receptors and vertebrate NPY
receptors (NPYR) (in particular with vertebrate NPY2R) (28, 39).
Recent phylogenomic analyses of neuropeptide receptor families
in bilaterians, however, show that sNPF and NFP receptors
share only a distant common ancestor, explaining the structural
similarities between both.

Both NPF and sNPF signaling systems in invertebrates have
been implicated in the regulation of a diverse array of biological
processes including reproduction, growth, nociception, circadian
clock, learning, feeding andmetabolism and they functionmainly
as neuromodulators or neurohormones [For an extensive review
see (39)]. Here we will review past research on NPF and sNPF
in the regulation of feeding-related behaviors and metabolism
in protostomes. For each discussed phylum, we will briefly
introduce the initial characterization of the sNPF and NPF
signaling systems, followed by the current knowledge on their
function(s) in feeding and metabolism. We will make a clear
distinction between NPF and sNPF and will point to annotation
ambiguities where appropriate. Clarifying annotation errors is
not a goal here but will be crucial to further understand the
evolution of the functions of sNPF and NPF neuropeptides
signaling systems. Although the current picture is still not
entirely clear due to insufficient genome information from all
phyla, we now have increased insight in the evolutionary history
of sNPF and NPF systems (Figures 1, 2). It is clear that NPF and
sNPF are distinct neuropeptides systems, both involved in the
regulation of feeding and metabolism. Both systems branched off
from their common ancestor early in evolution, prior to the split
of the deuterostome and protostome lineages. Therefore, NPF
and sNPF signaling systems are a prime example to ask questions
on the sustained evolutionary selection for both systems in
protostomes in contrast to the deuterostomian chordate lineage
where only the NPF orthologs (NPYs) have been conserved and
even have been duplicated multiple times, but where the sNPF
system seems to have been lost or evolved into the prolactin-
releasing peptide system.
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FIGURE 1 | Scheme of the presence of NPF/NPY neuropeptides and receptors in distinct phyla of the metazoan evolutionary tree. The NPF(Y) C-terminal sequence

motif is indicated. “3“ and “7,” respectively represent the presence or absence of the peptide/receptor in the corresponding phylum. Evidence for the presence of

both NPY/F peptides and receptors in cephalochordates and hemichordates can be found in Elphick et al. (40).

THE (LONG) NPF SIGNALING SYSTEM AND
ITS ROLE IN FEEDING AND METABOLISM

Figure 3 shows an alignment of representative NPF
neuropeptides that have been biochemically isolated

or identified by genome sequencing (for a broader
overview of protostomian sNPF and NPF peptides, see
Supplementary Tables 1, 2). NPFs generally consist of more
than 28 amino acids, apart from the shorter predicted
C. elegans orthologs and some truncated insect NPFs,
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FIGURE 2 | Scheme of the presence of sNPF neuropeptides and receptors in distinct phyla of the metazoan evolutionary tree. “X“ and “7” respectively represent the

presence or absence of the peptide/receptor in the corresponding phylum. “?” indicates that the presence of the peptide/receptor is not clear or has so far not been

investigated. PrP: prolactin. PrPR: prolactin receptor. The sNPF sequence motif is indicated. The first X in the Annelida peptide motif represents a hydrophobic amino

acid, while the second X indicates a Phe, Leu or Met amino acid residue. The X in the Mollusca peptide motif represents a hydrophobic amino acid. The X in the

Arthropoda peptide motif represents a Leu or Ile amino acid residue.
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FIGURE 3 | Amino acid sequence alignment of representative NPFs from different invertebrate phyla. Genus and species abbreviations used in the alignment are:

Schme, Schmidtea mediterranea; Drome, Drosophila melanogaster; Aplca, Aplysia californica; Caeel, Caenorhabditis elegans; Ampfi, Amphiura filiformis; Ophvi,

Ophionotus victoriae; Ophar, Ophiopsila aranea. Identical residues are highlighted in black and conserved residues in gray.

and share the common RXRF/Yamide carboxyterminal
motif (Figure 1).

NPF Signaling in D. melanogaster
Most studies on the regulation of feeding and metabolism by
NPF were conducted in the genetically tractable model organism,
D. melanogaster. In 1992, cloning and functional expression
of two distinct D. melanogaster NPY-like receptors revealed
that they could be activated by mammalian NPY and peptide
YY (27). The first insect NPY-like peptide was also identified
in D. melanogaster, and consisted of 36 amino acids with a
characteristic RVRFa carboxyterminal sequence (35). The C-
terminal F residue, instead of the vertebrate NPY-defining Y
residue, prompted the name conversion from NPY to NPF,
previously adopted in other protostomes as well (15). In 2002,
Drosophila NPF was shown to dose-dependently activate the
Drosophila NPY-like receptor NPFR when expressed in CHO
cells (26). By means of immunocytochemistry and in situ
hybridization, NPF was localized in the midgut and brain of
D. melanogaster, suggesting a role in feeding, digestion and/or
metabolism (35).

The first experimental evidence for a role of Drosophila NPF
in the regulation of metabolism was provided by analysis of
npf transcription levels following sugar exposure. A sugar-rich
diet fed to D. melanogaster larvae evoked npf expression in
two distinct neurons of the suboesophageal ganglion. Additional
experiments with mutant flies deficient in sugar sensing,
highlighted that not sugar ingestion, but taste perception of
sugar was essential for npf expression (41). Subsequent studies
showed that npf expression is high in young, foraging larvae and
low in older larvae that display food aversion and burrowing.
Experimentally induced overexpression and downregulation of
npf transcript levels shifted these stage-specific feeding-related
phenotypes (42).

In-depth characterization of the NPF signaling pathway
revealed that NPF functions downstream of insulin signaling to
regulate feeding in Drosophila larvae. NPF does not specifically
influence total food intake, but may rather regulate food choice
behavior (43, 44). NPF neurons are hypothesized to modulate
the reward circuit to acquire lower-quality foods upon food
deprivation (43). NPF signaling through its NPFR receptor

promotes the intake of noxious food in starved flies and inhibits
the aversive response that is normally elicited. In satiated flies,
however, activation of the insulin signaling pathway results in the
inhibition of the NPF-induced feeding response toward noxious
food (44). NPF thus regulates a feeding response, that integrates
both food attractiveness and hunger state (45). Together, these
studies show that lower quality food or noxious food can evoke
an NPF-mediated feeding response in starved flies, while in
metabolically satiated flies, NPF is inhibited resulting in the
intake of higher quality food (44, 45).

NPF signaling is also required at the intersection of feeding
and stress, namely for the regulation of cold-resistant feeding
behavior (46). NPFR1 is expressed in fructose-responsive sensory
neurons in the thorax, suggesting that NPF may modulate these
neurons directly (47). NPF could modulate the activity of the
transient receptor potential ion channel A (TRPA) called PAIN
and inhibits the regular avoidance response to aversive stimuli.

NPFR1 colocalizes with themajority of dopaminergic neurons
in the larval D. melanogaster CNS, suggesting extensive
interplay between these two signaling pathways (48, 49).
Firstly, NPF expression in the brain of D. melanogaster may
represent the food-deprived state, in which dopaminergic
neurons in the mushroom bodies (MBs) promote appetitive
memory formation (48). Secondly, NPF signaling modulates
dopaminergic transmission in D. melanogaster in appetitive
olfaction. NPFR1-expressing dopaminergic neurons display
projections toward DL2-lateral horn (LH) neurons that receive
olfactory inputs, and modulation of these neurons by NPF is
instrumental to stimulate odor-induced appetitive feeding (49).
NPF thus can stimulate (MBs) or inhibit (DL2-LH neurons)
dopaminergic signaling in functionally distinct neurons even if it
does not appear to be implicated in octopaminergic regulation of
feedingmotivation (50). In relation to this, NPF has recently been
proposed to modulate odor-aroused appetitive behavior through
a newly characterized DA/NPF-mediated circuit (51). When an
appetitive odorant is perceived, the information is integrated
in the DL2 neurons and transmitted to Dop1R1 neurons that
express NPF. The dorsomedial pair of NPF neurons are essential
for the proper manifestation of odor-aroused appetitive behavior
(51). NPF signaling also seems to be implicated in odorant
detection and is required for sensitization and correct odorant
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perception by a subset of olfactory neurons named antennal
basiconics (ab)3A that besides NPFR also express the olfactory
receptor (OR)22a, which responds to different fruity odorants
(52). Related to motivation, sucralose can cause stimulation of
a gustatory receptor that signals via dopamine and octopamine
to activate a reward pathway in which NPF is also implicated.
Supplementation of sucralose to the fly’s diet caused an imbalance
between energy and food sweetness that is signaled by the sweet
taste receptor Gr64a. A mechanistic analysis of this sucralose
response identified the NPF system as a critical downstream
component in this pathway, confirming a conserved role for NPF
in sucralose-sweetened food intake stimulation (53).

Since NPF is involved in the regulation of feeding and
metabolism on multiple levels in D. melanogaster, its effect
on obesity has also been studied. Leptin is a neuropeptide
involved in the regulation of food attraction, food intake and
body weight and its Drosophila homolog is Upd-1. Interestingly,
the Upd-1 receptor Domeless is expressed in the brain’s NPF-
neurons. The odor-activated food response that is normally
elicited by NPF and regulated by internal metabolic status (45),
is perturbed in flies lacking Upd-1 in the NPF neurons. When
the upstream regulation by Upd-1 and Domeless is absent, NPF-
neurons do not register the satiety status of the flies and always
display odor responses on the same level as starved flies, leading
to overconsumption of food and obesity (54). The enzymatic
cofactor tetrahydrobiopterin (BH4) is another compound that
can affect the activity of NPF neurons in satiety. BH4, synthesized
by the adipose tissue, inhibits NPF signaling by blocking its
release and thus induces satiety (55).

In Drosophila, NPF modulates both food intake and
wakefulness (56). In particular, NPF signaling plays a
fundamental role in wake extension during deprived feeding
conditions, in order to facilitate the search of new food sources.
However, the neuron clusters for wake and feeding phenotypes
were completely unrelated, suggesting an independent regulation
of the two behaviors (56).

NPF Signaling in Other Insects
Confusion between NPF and sNPF partly results from insect
research where a clear distinction between both neuropeptide
systems remained difficult for a long time, due to the
identification of so-called “NPY-like” neuropeptides that differed
in length from vertebrate NPY. Studies in the insects, Locusta
migratoria, Schistocerca gregaria (57), and Helicoverpa zea (58),
in which only a C-terminal fragment of the “full-length” NPF
was isolated and identified by mass spectrometry, contributed
to this confusion. Identification of the respective neuropeptide
precursor sequences by RNAseq and genome sequencing has
clarified this issue. Comparison of the coding sequences of these
peptides shows that they are truncated forms of larger NPF
neuropeptides and that the shorter C-terminal fragments may
thus either be artifacts from the extraction procedure or may be
created by extensive posttranslational processing in vivo (57, 58).

The earliest indications of NPF being involved in feeding
and metabolic regulation in various insect species were based
on immunocytochemical localization studies. Its expression in
the digestive system or its temporal regulation of expression in

response to food intake suggested a regulatory role of NPF in the
control of feeding and metabolism. In the yellow fever mosquito,
Aedes aegypti, NPF-IR was detected in the midgut and in the
suboesophageal ganglion where the regulation of food intake
resides. Analysis and sequencing of the immunoreactive peptides
from head andmidgut extracts confirmed the presence of NPF.A.
aegypti NPF inhibits transepithelial ion transport in the anterior
stomach, suggesting a function in the digestive system (59). The
titer of A. aegypti NPF in the haemolymph is influenced by
feeding and decreases drastically after a blood meal (60). Recent
studies indicate that genetic and pharmacological disruption of
the mosquito NPF pathway results in abnormal host-seeking
behavior and blood-feeding (61).

In S. gregaria, however, injection of NPF increases food intake,
while RNA interference of npf transcripts decreases food intake.
These treatments resulted in weight gain for the peptide-injected
group and stunted weight gain for the knockdown group, which
implies a stimulatory role of NPF in feeding (62). S. gregaria
NPF transcription is spatiotemporally regulated in response to
feeding, with high levels in starved animals that drop in the
brain, optic lobes, and midgut upon feeding, but significantly
rise in the suboesophageal ganglion (62). Also in Bombyx mori,
knockdown of NPFR resulted in a reduction of food intake and
growth, pointing toward a role for NPF as a positive regulator of
feeding (63).

A typical long NPF as well as its truncated form have been
found in Rhodnius prolixus (64). NPF-like-IR is present in the
stomatogastric nervous system of Rhodnius, which regulates
feeding. In addition, radioimmunoassay quantification showed
a decrease in the intensity of NPF-like IR material in the cell
bodies and axons after feeding, suggesting a release into the
haemolymph (65).

In the honey bee Apis mellifera (66) and in the wasp
Nasonia vitripennis (67), the NPF sequence does not retain
the canonical RPRF/Yamide C-terminal sequence, displaying
instead a C-terminal KARYamide motif. Hymenopteran NPF
protein precursor sequences show nevertheless clear similarities
with NPF/Y precursors of other invertebrate phyla, having YY
residues in position 30–31 as well as other conserved amino acids.
Interestingly, genomes of hymenopteran species do not seem
to encode a clear ortholog of the NPF receptor. It is therefore
not unthinkable that evolutionary pressure drastically shaped
the so far unknown receptor in hymenopterans into a GPCR
with unrecognizable orthology and that receptor-neuropeptide
co-evolution resulted in a modification of its ligand.

In A. mellifera, NPF levels differ according to the age and
tasks of the worker bees. Younger workers providing brood
care display low NPF intensities in in situ hybridization and
qPCR analysis, while older workers that are responsible for
foraging display higher expression levels (68). This may suggest a
stimulatory role for NPF in food searching and foraging behavior
of worker bees, but experiments providing a causal relationship
are currently lacking.

NPF Signaling in Other Arthropods
Information about NPF orthologs in arthropods outside the
insect orders is currently increasing. Bioinformatic analysis of
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genomes and transcriptomes revealed the presence of NPF and
NPF receptors in chelicerates, including spiders, scorpions and
mites (69). An in silico analysis using the D. melanogaster npf
transcript as a query against the crustacean expressed sequence
tags (ESTs) database revealed putative hits for the shrimp
Marsupenaeus japonicus and the water flea Daphnia magna
(70). The predicted pro-peptides, respectively, encode a 32 and
38 amino acid NPF peptide, which both display the typical
RPRFamide carboxy terminus. A similar analysis also revealed
an NPF ortholog in Daphnia pulex (71). In another study,
npf transcripts have been isolated from mixed eyestalk ganglia
of Litopenaeus vannamei and from the brains of Melicertus
marginatus (72). Both penaeid shrimp species have two identical
transcript sequences and one transcript differs from the other by
an in-frame 37-amino acid insertion in the middle of the coding
sequence of NPF. Both transcripts are broadly distributed in the
nervous system of the animals and the short one is also expressed
in some of the midgut samples. A diet supplemented with the
shorter NPF induced a significant increase in food intake and
growth in juvenile L. vannamei suggesting an orexigenic action
for the NPF (72).

While a neuropeptide from the crab Pugettia productav
has been suggested to resemble vertebrate NPY because of its
SQRYamide carboxyterminal sequence (73), recent phylogenetic
analysis indicates that the RYamide neuropeptide family, which is
widespread in arthropods (74, 75), is evolutionarily distinct from
the NPF/NPY peptide family (1).

NPF Signaling in Nematodes
In nematodes, neuropeptide signaling systems suggested to be
orthologous to NPY/NPF were initially discovered in C. elegans
(76, 77). Neuropeptide receptor 1 (NPR-1) was cloned from a
solitary wild-type strain and firstly assigned to the NPYR family
based on its sequence similarity with the vertebrate NPYR groups
(78). In a following whole-genome analysis study, using the L.
stagnalis lymnokinin GPCR as a query, C. elegansNPR-1, NPR-2,
NPR-3, NPR-4, NPR-5, NPR-6, NPR-7, NPR-8, NPR-10, NPR-11,
NPR-12, and NPR-13 were all annotated as NPY-like receptors
(76, 79). Two of these NPRs, NPR-11, and NPR-12 cluster closest
with theDrosophilaNPFR as shown by phylogenetic tree analysis
(76) and thus appear to be true NPF homologs in C. elegans.
These NPFR orthologs are also encoded in the genomes of all
other nematodes investigated (76, 80).

A specific role in feeding or metabolism has not been
investigated for the nematode NPF system. The only functional
study that has been carried out is on the NPFR ortholog, NPR-
11, which is involved in local search behavior of C. elegans when
the animal is removed from its bacterial food source (81). In
this work, the neuropeptide-like protein 1 (NLP-1), although
not containing a peptide with a typical NPF-motif, was reported
to act upon NPR-11 in the AIA interneuron to modulate local
search behavior.

NPF Signaling in Platyhelminths
The first evidence for NPY orthologs in platyhelminths was found
in the central and peripheral nervous system of the cestode M.
expansa, from which a 39 amino acid peptide was identified by

plasma desorption mass spectrometry (PDMS) upon isolation
monitored by pancreatic polypeptide (PP) antiserum (15). The
primary structure of this M. expansa NPF neuropeptide displays
strong sequence similarities with vertebrate neuropeptide Y
(15). Subsequently, immunochemical analysis using antibodies
against M. expansa NPF and against vertebrate PP, Peptide
tyrosine tyrosine (PYY) and Substance P (SP) revealed the
presence of immunoreactive substances in other cestodes (82–
85) and other flatworm classes, including turbellarians (16, 86,
87), monogeneans (88–91), and trematodes (17, 92–94). So
far, the immunopositive material has only been identified in
Arthurdendyus triangulates (16), Schistosoma mansoni and in
Schistosoma japonicum (17). All three platyhelminth peptides
have a length between 36 and 39 amino acids and display
the NPF-typical RPRF carboxyterminal sequence. In addition,
phylogenetic tree analysis identified several GPCRs similar to
NPF/Y receptors in the S. mansoni GPCR repertoire (95).

Studies on a putative role of NPF in feeding and metabolism
have as yet not been performed in platyhelminths, but PP-, PYY-
, and M. expansa NPF-IR is present in neurons innervating the
oral and ventral suckers of Schistosoma mansoni (94), in the
pharynx musculature of Procerodes littoralis (87) and in fibers
and cells of the intestinal wall of Microstomum lineare (86),
suggesting a possible role in the modulation of food intake
and digestion. However, these results should be interpreted with
caution as cross immunoreactivity with other neuropeptides
cannot be excluded.

NPF Signaling in Molluscs
One year after the identification of NPF in platyhelminths,
several independent studies demonstrated the presence of NPF-
like peptides in different species of molluscs. Following the
detection of PP-IR in circumoesophageal ganglia extracts of the
garden snail Helix aspersa (18), PMDS and automated Edman
degradation led to the identification of an of 39 amino acid
peptide that displays pronounced sequence similarities with
NPF (18). Two additional NPF orthologs were discovered in
the sea slug Aplysia californica (19) and in the cephalopod
Loligo vulgaris (20). All display the C-terminal RPRF motif
that typifies invertebrate NPF (19). Interestingly, gel permeation
chromatography of the squid extract resolved two peaks of
PP-IR with different molecular weights. One was suggested to
contain (long) NPF and the second one contained a nine amino
acid peptide harboring an N-terminal tyrosine and the NPF-
typical RPRF C-terminus, but lacking the PP-fold structure
(PYF) (20). This short peptide is either the result of an
extraction artifact or the product from another as yet unknown
neuropeptide precursor.

The only NPY/NPF receptor homolog known in molluscs
to date has been cloned in the snail L. stagnalis (25). It is
broadly expressed in the CNS. The 39-amino acid L. stagnalis
NPF, which displays the typical RPRF C-terminal sequence and
the N-terminal proline functionally activates this receptor, when
expressed Chinese Hamster Ovary (CHO) cells (25).

A role for NPF in feeding and metabolism has been reported
in various molluscan species. Injection of A. californica NPY
(Aplca-NPY or better Aplca-NPF) into the hemocoel of the
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animal resulted in a dose-dependent reduction of food intake
(96). In A. californica, the feeding process consists of an initial
ingestion program triggered by the presence of food and initiated
by the cerebral ganglion that is progressively converted to
an egestion program when the esophagus and the gut signal
satiation. The change in feeding state depends on the activity of
the feeding central pattern generator (CPG) that receives signals
derived from cerebral and buccal ganglia. In particular, the
cerebral-buccal interneuron 2, located in the cerebral ganglion,
initiates the ingestion program promoting the activity of the
CPG interneuron B40. When the animal approaches satiation,
the release of the Aplca-NPF enhances the egestion program by
reducing the activity of B40 and promoting the activation of the
egestion-promoting neuron B20, also located in the CPG. Aplca-
NPF thus acts as a satiety signal that balances the activity of the
antagonistic CPG interneurons B40 and B20 to potentiate the
egestion program (96). Although the role of NPY as an orexigenic
agent has been widely demonstrated in vertebrates (97–99) and
in D. melanogaster (35, 41), the A. californica ortholog seems to
display the opposite function. In humans and rodents, the gut
released peptide YY3−36 isoform (PYY3−36) has been reported
to inhibit food intake (100). It is produced postprandially by
the intestinal L-cells in proportion to the calories ingested and,
upon release in the blood circulation, it reaches the arcuate
nucleus of the hypothalamus (101). Here, PYY3−36 acts on
NPY2R, which is an inhibitory presynaptic receptor expressed
in NPY neurons, modulating the activity of the NPY orexigenic
pathway and leading to decrease in appetite (100, 101). Therefore,
the localization and the functional activity of Aplca-NPF seems
to be more closely related to the vertebrate PYY3−36 than to
NPY (96). However, administration of L. stagnalis NPY (Lymst-
NPY or better Lymst-NPF) in the snail led to a reduction in
growth and reproductionwithout clear short-term effects on food
intake (102). Thus, NPF regulation of energy flows appears to
be conserved in L. stagnalis, while the regulation of food intake
seems to be controlled by a leptin-like factor named L. stagnalis
storage feedback factor (Lymst-SFF). This peptide is released
from the glycogen cells of the mantle edge lining the shell of the
animal that represents the only energy reserve in L. stagnalis.

A recent study on filter feeding has reported a “vertebrate-
like” action of Ruditapes philippinarumNPF (Rudph-NPF) (103).
Bivalves actively control food uptake by adjusting the filtration
rate according to internal metabolic signaling. In accordance
with this, injection of Rudph-NPF in the hemocoel resulted in
a dose-dependent increase of 23% of filtration rate. In addition,
a qPCR analysis demonstrated a large increase of Rudph-NPF
mRNA levels in the visceral ganglion during starvation that
rapidly declined after feeding, resembling the NPY expression
pattern in vertebrates (104–107). Rudph-NPF injection was also
associated with an increase in insulin and monoamine (serotonin
and dopamine) levels, suggesting a coordinated regulation
of filter feeding by multiple internal signaling pathways. In
conclusion, a controversial role of mollusc NPF in the control
of feeding has emerged from the works reviewed here: Aplca-
NPF has an anorexigenic effect and seems to be functionally
related to the vertebrate PYY3−36 isoform, while the Rudph-
NPF showed an orexigenic effect more related to the vertebrate

NPY. More interestingly, the Lymst-NPF does not exhibit any
clear regulation of food intake, but modulates growth and
reproduction. A possible explanation for this diversity could be
related to the differential tissue expression of NPF receptors that
are present in the different mollusc species. Since only the NPF
receptor of L. stagnalis has been characterized so far, additional
receptor identification studies are needed to elucidate the role of
NPF in the regulation of feeding in molluscs.

NPF Signaling in Annelids
The presence of NPF(Y) orthologs in annelids has been
assessed by bioinformatics in the genomes of the earthworm
Lumbricus rubellus, the polychaete worms Alvinella pompejana
and Capitella telata, and the leech Helobdella robustaas (108,
109). In all species the predicted NPFs range from 29 to 43 amino
acids in length and in the oligo-and polychaetes they display
the NPF-typical RPRFamide carboxy terminus. In addition, a
large transcriptome analysis of Platynereis dumerilii identified
four NPF paralogous named NPY-1 to 4 of 38 to 48 amino acids
in length (110). All the four genes show the typical RPRFamide
carboxyterminal sequence and a partial sequence of the NPY-
4 pro-neuropeptides has been confirmed by mass spectrometry
(110). Although the NPY-4 receptor 1 does not seem to cluster
with vertebrate NPY receptors, screening of P. dumerilii orphan
GPCRs against Platynereis peptide mixtures revealed that this
receptor is activated by three of NPF paralogues (NPY-1,
NPY-3 and NPY-4, all displaying the NPF-typical RPRFamide
carboxyterminal motif) in a calcium-based cellular receptor
assay (111).

NPF encoding genes seem to have expanded in annelids. In
Capitella, three predicted paralogous genes encode NPF (109),
and in Helobdella five paralogues have been predicted, of which
one is probably a pseudogene. Interestingly, three of these five
paralogous sequences contain an NPY-typical RPRYamide C-
terminal motif instead of the canonical invertebrate RPRFamide
sequence (109). It has been shown that leech salivary gland
neuropeptides, including NPY, aid in suppressing inflammation
in their hosts from which they suck blood (112) and therefore,
some of the diversified NPF(Y)s in leeches might be the result
of convergent evolution because of their ectoparasitic lifestyle.
An alternative explanation resides in the genome organization,
gene structure, and functional content of the Spiralia (annelids
and molluscs), which appear to be more similar to those of some
invertebrate deuterostome genomes (Amphioxus and sea urchin)
as well as non-bilaterian metazoans (such as cnidarians, sponges,
and placozoans) than to those of ecdysozoan an platyhelminth
protostomes that have been sequenced to date (113, 114). On
the other hand, similarity-based clustering for neuropeptides
and GPCRs of metazoans revealed that the predicted NPF
peptides and receptors of annelids strongly cluster with the
ones of arthropods, platyhelminths, and molluscs (2). Evidently,
for a comprehensive genomic understanding of the metazoan
radiation, a far larger sampling of genomes will be needed.
Since only bioinformatic and phylogenetic analyses have been
performed on annelids NPFs, their function remains elusive
as yet.
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NPF Signaling in Echinoderms
One of the first investigations on the presence of evolutionarily
conserved neuropeptides in echinoderms has been carried out
in the starfish Marthasterias glacialis (115). Among the tested
antisera, porcine PYY and human PP-like IR was found to be
present in the endocrine cells and the basoepithelial plexus of
the digestive tract. Analysis of the sea urchin Strongylocentrotus
purpuratus genome revealed the existence of NPF(Y) receptors
(116, 117). In ambulacrarians that comprise both echinoderms
and hemichordates both NPY receptors and NPY neuropeptides
(in Saccoglossus kowalevskii) have been predicted (2) (1, 118). In
addition, a bioinformatic study focussing on echinoderms has
recently shown the presence of NPY orthologs in Ophiopsila
aranea, Asterias rubens and Amphiura filiformis (119). The
aligned peptides lack the RQRYamide canonical consensus
sequence of vertebrate NPYs but do contain a conserved
RYamide carboxy terminus as well as other key amino
acids (Figure 3). Functional studies on echinoderm NPY are
currently lacking.

THE SHORT NPF SIGNALING SYSTEM
AND ITS ROLE IN FEEDING AND
METABOLISM

Short NPFs are short neuropeptides of 8 to12 amino acids in
length and display the typical C-terminal consensus sequence
M/T/L/FRFa (Figures 2, 4). As mentioned above short NPF and
long NPF (NPY) are evolutionarily distant from one another. It
has long been assumed that sNPF neuropeptides are confined
to arthropods (http://www.neurostresspep.eu), but it has now
become clear that both sNPF and NPF systems already originated
in the common ancestor of protostomes and deuterostomes.
Whereas, the long NPF (NPY) signaling system has been retained
in both lineages, the short NPF signaling system appears to
have been highly conserved across protostomes, and possibly
in echinoderms (deuterostomes) as well. This raises important
questions as to whether the regulatory functions of sNPF and
NPF systems can be correlated with the differential lifestyles
and environments of respective species. Although the sNPF
system seems to have been lost in vertebrates, sNPF receptors
have been shown to cluster with vertebrate prolactin-releasing
peptide receptors (2), which also have a prominent role in the
regulation of feeding behavior. Further research is needed to
clarify this issue.

sNPF Signaling in D. melanogaster
In Drosophila, four sNPF neuropeptides were predicted from
the genome sequence (120), and later on identified by mass
spectrometry-based peptidomics (121). Their cognate receptor
was identified by means of a calcium-based receptor assay in
CHO cells (30).

The use of snpf mutant flies showed that sNPF is involved in
the regulation of food intake and body size in D. melanogaster.
sNPF increases food intake in larval and adult flies, yet
does not prolong the feeding period in larvae or modulate
food preferences, as opposed to NPF (122). Pathway analysis

FIGURE 4 | Amino acid sequence alignment of representatives of sNPFs from

different invertebrate phyla. Genus and species abbreviations used in the

alignment are: Caeel, Caenorhabditis elegans; Cragi, Crassostrea gigas;

Aplca, Aplysia californica; Drome, Drosophila melanogaster; Aedae, Aedes

aegypti; Capte, Capitella telata; Plasp, Platynereis species. Identical residues

are highlighted in black and conserved residues in gray.

of the sNPF signaling system revealed an interaction with
insulin signaling regulating growth. sNPF activates extracellular-
activated receptor kinases (ERKs) in insulin-producing cells
(IPCs), which in turn modulate the expression of insulin (123,
124). In addition, insulin signaling is implicated in a negative
feedback loop controlling sNPF expression and inhibiting food
intake (124–127). In starved flies where insulin levels are low,
sNPFR1 expression is upregulated resulting in facilitation of food
search behavior (125). A microarray study revealed additional
interaction partners of the sNPF system in D. melanogaster.
The most pronounced and confirmed upregulated gene after
sNPF administration ismnb, a Mnb/Dyrk1a kinase that activates
the FOXO transcription factor through Sir2/Sirt1 deacetylase
action (126). FOXO then in turn activates snpf transcription,
providing a positive feedback loop. Mnb/Dyrk1a was localized
in sNPFR1-expressing neurons, further evidencing an interaction
with the sNPF signaling system (126). Genetic experiments using
a combination of RNAi and overexpression lines of sNPFR1
and putative interaction partners revealed that activation of mnb
transcription is attained through Gαs, PKA and CREB (126). In
addition, there is a positive feedback loop from CREB to sNPF
in the regulation of energy homeostasis. CREB can dimerize with
cAMP-regulated transcription coactivator (Crtc) to stimulate the
expression of sNPF, resulting in an attenuation of the immune
response and an increased starvation resistance. When this
CREB/Crtc-dependent activation of sNPF is absent, the immune
response is stimulated while depleting energy reserves (128).

MicroRNA (miRNA) regulation was also reported to be
involved in the sNPF/Dilp signaling pathway in D. melanogaster

IPCs. The conserved miRNAmiR-9a is able to bind to the 3
′

-
UTR of sNPFR-1 mRNA and downregulates translation leading
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to a decreased production of sNPFR-1 in the IPCs (129). This
inhibition of the sNPF signaling system results in a growth
reduction. The NPF and sNPF system in D. melanogaster
thus modulate feeding behavior in distinct manners but are
both clearly essential for proper control of food intake and
metabolism. The importance of the influence of both these
systems on this delicate balance was demonstrated in a study
investigating resistance to amino acid starvation. Reducing or
increasing the expression of either npf or snpf drastically
decreases the resistance to amino acid starvation and reduces
lifespan on culture media deprived of amino acids (130).

sNPF Signaling in Other Insects
Four peptides, termed “head peptides” were isolated from A.
aegyptii head extracts using an FMRFamide-directed antiserum
(131). These head peptides have long been assumed to be the
sNPFs of A. aegyptii. However, they could not be detected
in the completed A. aegypti genome by bioinformatics, nor
in any tissue by mass spectrometric analyses. In contrast, the
mature peptides encoded by the snpf gene of A. aegypti were
found to be abundantly present in different parts of the CNS
and also in the gut (132). Furthermore, A. aegypti NPYR1 is
activated by sNPF-3, which indicates that this receptor is an
sNPF receptor, and not an NPY receptor ortholog as stated in the
study (133).

The intricate involvement of sNPF in feeding and metabolism
has been demonstrated in many insects but depending on the
species sNPF can act as a stimulating or inhibiting factor.

In A. aegypti, multiple sNPFs inhibit both serotonin-induced
peristaltic contractions and ion transport of the anterior stomach
using in vitro preparations, thus showing a negative modulation
of serotonin-induced digestive action (59). Aedes sNPF receptor
expression is significantly upregulated for 3 days post blood-
feeding with a peak 48 h after the blood meal (133). In contrast
to sNPFR expression, the amount of sNPF significantly drops
in the antennal lobes following a blood meal. This drop in
sNPF coincides with an inhibition of odor-mediated host-
seeking behavior. Injection of sNPF is sufficient to mimic this
inhibition in host-seeking behavior (134). In the mosquito Culex
quinquefasciatus, sNPF precursor and receptor expression drops
27 h post sugar feeding, while a significant increase in sNPFR
could be observed 27 h post blood-feeding (135). Thus, there
seems to be a specific difference in the regulation of sNPF
signaling according to the meal type. Taken together, these
studies show that tissue-specific changes in components of the
sNPF signaling pathway are instrumental in subtle modulation
of feeding, food choice and food searching-related behaviors
in mosquitoes.

In S. gregaria, sNPF transcription is inhibited in starved
animals, while there is a temporal increase of sNPF transcription
immediately after feeding (136). sNPF injection inhibits food
intake and knockdown of sNPFR or sNPF precursor significantly
increases food intake in S. gregaria (136, 137). These results
prompted the idea that sNPF functions as a satiety factor that
inhibits food intake in S. gregaria. Further characterization of the
sNPF signaling pathway in S. gregaria revealed that the nutrient

content in the haemolymph regulates sNPF transcription
through the insulin signaling pathway (138).

In the cockroach Periplaneta americana, an upregulation of
sNPF-IR cells in the midgut was shown upon starvation, while
expression of digestive enzymes was drastically downregulated.
In addition, refeeding significantly decreased sNPF IR within 3 h,
suggesting an inhibitory function of sNPF on digestion (139).
However, the possibility that the sNPF antiserum also recognizes
NPF cannot be dismissed. Ex vivo incubation experiments of
P. americana showed that sNPF directly inhibits the release of
proteases, amylases, and lipases when co-incubated with midguts
actively producing these digestive enzymes (139). sNPF injection
in fed cockroaches increases locomotion to a level comparable to
that of starved animals (140). This suggests that sNPF modulates
locomotion in starved animals and that increasing circulating
sNPF levels in fed animals override satiety and evoke food
searching behavior.

In the silkworm B. mori, starvation caused decreased
transcriptional levels of sNPFR, which again links sNPF to a
crucial role in fed animals. In addition, mass spectrometric
analysis revealed that sNPF levels in the brain decrease
during starvation and increase upon refeeding (141). Injection
of Bommo-sNPF-2 reduced the latency to feed (142). All
these observations suggest that sNPF positively regulates food
searching and feeding in this insect species.

A differential peptidomics study in the Colorado potato
beetle, Leptinotarsa decemlineata, reveals that sNPF is absent in
diapausing adults, but present in active beetles (143). This might
indicate that sNPF is important in actively feeding animals having
increased metabolic activity, while unnecessary in diapausing
animals that are metabolically inactive.

In the honey bee, A. mellifera, food deprivation causes a
significant upregulation of sNPF receptor transcription, pointing
to a role of sNPF in starvation-resistance or the stimulation of
foraging (68, 125). In another hymenopteran species, S. invicta,
a downregulation of sNPFR transcription was observed in
mated queens that were starved, compared to well-fed congeners
(31), again suggesting the importance of sNPF signaling during
feeding or metabolically active states.

Although sNPF has several other described functions, it seems
to be mainly involved in the regulation of feeding.

sNPF Signaling in Other Arthropods
The first crustacean sNPF was discovered in the giant freshwater
prawn Macrobrachium rosenbergii two decades ago (144). A
recent in silico study in this shrimp revealed the presence
in the eyestalk and CNS of sNPF transcripts encoding four
sNPF peptides (145). Another transcriptome study in ice krill
Euphausia crystallorophias lead to the discovery of two sNPF
precursors that cleave into several active peptides (146). A
unique crustacean sNPF, containing an Asp residue in position
2, was found in Daphnia pulex. This makes Dappu-sNPF more
similar to insect sNPFs than other crustacean sNPFs (147).
Bioinformatic analysis of genomes and transcriptomes revealed
the presence of sNPF and sNPF receptors in chelicerates (69). So
far, no functional studies on crustacean or chelicerate sNPFs have
been performed.
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sNPF Signaling in Nematodes
C. elegans sNPF neuropeptides display more sequence variation
compared to other invertebrate sNPFs, which may be attributed
to the extensive expansion and diversification of the sNPF
signaling system in nematodes. Figure 4 shows that peptides
derived from three distinct C. elegans sNPF neuropeptide
precursors, FLP 15, FLP-18 and FLP-21, display the canonical
motif XLRFa in accordance with the XXR(F/Y/W)amide C-
terminal of sNPF in other protostomes.

A large scale phylogenetic analysis on bilaterian neuropeptide
receptors indicated that also sNPF receptors underwent a large
expansion in nematodes (1). Phylogenetic analysis showed that
several C. elegans NPRs cluster with the Drosophila sNPF
receptor, with NPR-6 being the closest (76). Also, other C. elegans
receptors, including NPR-1,2,3,4,5, NPR-10, and NPR-13 cluster
with the Drosophila sNPF receptor in agreement with the large
expansion of sNPF receptors as postulated by Mirabeau and
Joly (1). FLP-21 derived sNPFs have been shown to activate
two candidate sNPF receptors, NPR-1, and NPR-2 in cell-based
receptor assays (148–150). Similarly, FLP-18 derived peptides
have been identified as a ligand for the NPR-1, NPR-4, and NPR-
5 candidate sNPF receptors. FLP-15 has been shown to interact
with the NPR-3 sNPF receptor (148, 149, 151, 152).

The role of nematode sNPF receptors in feeding has been
examined for NPR-1, NPR-4, NPR-5, and their ligands. Although
above-mentioned candidate sNPF receptors have been found
in genomes of other nematodes as well, all the feeding-related
functional data regarding sNPF in nematodes have been almost
exclusively obtained in C. elegans (76, 80).

The sNPF receptor NPR-1 is a suppressor of food-dependent
aggregation behavior in C. elegans (78). When food is present,
some wild-type C. elegans strains, including the standard
laboratory strain N2 Bristol, slow down their movement and
disperse as solitary animals across a bacterial lawn. Other strains
move faster and aggregate at the border of the food lawn (78).
The difference between solitary and aggregation behavior comes
down to a single amino acid change in NPR-1. Solitary worms
have a gain-of-function allele of the neuropeptide receptor NPR-
1, NPR-1 215V (valine at position 215), whereas aggregating
animals have the natural isoform NPR-1 215F (phenylalanine at
position 215). Worms with disturbed npr-1 expression display
solitary behavior (78). Bacterial odor influences the aggregation
of npr-1 animals, as does population density, although not when
food is absent (153). Aggregation behavior is mainly driven by
ambient oxygen levels. C. elegans escapes atmospheric levels of
21% oxygen, which signals exposure at the surface, by aggregating
in groups of animals at the border of a bacterial lawn, where local
oxygen levels are reduced.

The functions of NPR-1 in food-dependent aggregation
behavior are mediated by two short NPF encoding genes,
flp-18 and flp-21 (149). Deletion of flp-21 increases the
food-dependent aggregation behavior in NPR-1 215V
and 215F worms, yet not to the level of the npr-1 null
mutant (149).

Mutants of flp-18 have an altered metabolism, higher fat
accumulation in the intestine and reduced oxygen consumption.
Both npr-4 and npr-5 mutants display the same phenotypes

suggesting that flp-18-mediated fat accumulation is executed by
both receptors (151). Another effect of FLP-18 was observed
in local search behavior. When wild type worms are removed
from their food source, they increase their turning and reversing
movements and explore the local area. When this withdrawal
from food continues for a longer period, they start to search for
food in bigger areas by inhibiting their turning and reversing
behavior. Animals lacking flp-18 fail to make this behavioral
switch (151). This switch is regulated by AIY interneurons
via NPR-4 signaling (154–156). AIY release of FLP-18 is also
involved in dauer formation, a transition state aiding in survival
when food is scarce. This effect of FLP-18 is controlled by NPR-5
in ASJ neurons (151).

Deletion of npr-2 and npr-7 have been associated with
an increase in the intestinal fat storage, but the underlying
mechanism seems different from the one observed in npr-4 and
npr-5 mutants, since FLP-18, the ligand acting upon these last
two receptors, is not active on NPR-2 and NPR-7 (151). The
ligand of NPR-2 has been identified as FLP-21. NPR-2, along
with NPR-1, seems to increase the adaptation to noxious stimuli
in the absence of food. However, neither FLP-21 or FLP-18 are
involved in this process (150). Although the same peptide is
involved in the regulation of aggregation behavior, the action of
FLP-21 upon NPR-2 in the modulation of fat storage has never
been assessed.

sNPF Signaling in Molluscs
A recent study in the Pacific oyster Crassostrea gigas pointed
toward the homology of C. gigas LFRFamide neuropeptides
and arthropod sNPFs (157). Yet, it is important to note that
LFRFamide peptides lack the Arg residue at the fourth position
from the C-terminus and have a Phe instead of a Leu residue
at the third position from the C-termunus, which typified all
known sNPFs at that time (158). Using in silico techniques,
(157) found a Cragi-sNPFR-like receptor and showed that three
Cragi-LFRFamide peptides from the same precursor activate
this sNPF receptor in a dose-dependent manner (157). They
further evidenced that the receptor is differentially expressed
in males and females and is upregulated in starved oysters.
These results may suggest a role in energy metabolism and
reproduction (157) and make the system a convincing functional
sNPF ortholog.

Even though the Cragi-sNPF-like system is the first one
that was functionally characterized in molluscs, it is not the
first LFRFamide (or sNPF) neuropeptide that was discovered in
this phylum. Initially, LFRFamides or sNPFs were discovered
in gastropods (159) and since then also in cephalopods and
oysters (160, 161). In A. californica, LFRFamide peptides or
sNPFs have an inhibitory effect in buccal neurons (162). In L.
stagnalis, the sNPF-encoding gene is upregulated in response
to Trichobilharzia ocellata infection, indicating a role in energy
metabolism and reproduction (163). Another example is the
involvement of sNPF peptides in feeding along with learning
and memory in the cuttlefish Sepia officinalis (164, 165). For a
detailed review see Bigot et al. (157) and Zatylny-Gaudin and
Favrel (161).
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sNPF Signaling in Annelids
A bioinformatic study on C. telata predicts the presence of
an LFRWamide neuropeptide encoding gene reported to be
closely related to the mollusk gene (109) that encodes sNPF
receptor activating LFRFamides or sNPFs (157). The genome
of C. telata also encodes an sNPF receptor for which the
activating ligand is currently unknown (114). In Platynereis the
RYamide gene (110), encoding LFRWamides and XXRYamides,
displays high sequence similarities with the LFRFamide
(sNPF) precursor of mollusks (Figure 4). The Platynereis
NKY receptor appears to be a candidate sNPF receptor. It
was found to be activated in vitro (although at a high EC50
of 120 nM) by KAFWQPMMGGPLPVETRLASFGSRIEP-
DRTEPGSGPNGIKAMRYamide (111). This neuropeptide
does, however, not belong to the NPF, nor the sNPF
family. In vivo studies will be needed to demonstrate the
cognate ligand of the annelid sNPF receptor. Knowledge
on the function of sNPF signaling in annelids remains so
far elusive.

sNPF in Echinoderms
Information of sNPF in echinoderms is almost non-existing.
Only in A. rubens, a GPCR that resembles an sNPF-type receptor
rather than an NPF receptor has recently been identified (166).

CONCLUSIONS

Despite their early evolutionary origin and subsequent
evolutionary separation, NPF and sNPF neuropeptidergic
signaling systems both control similar feeding aspects. In
the species investigated, both of them converge to up- or
downregulation of insulin signaling depending on the internal
feeding state of the animal. It is remarkable to conclude that
almost all invertebrate phyla retained both systems, even if
their function in feeding is similar. It is, however, clear from
the protostomian species investigated that both systems are

needed for optimal regulation of feeding. This may suggest
that both systems are probably controlling slightly different
pathways underlying feeding behaviors. In vertebrates, sNPF
signaling seems to have been lost during evolution, or may have
evolved into the prolactin releasing peptide signaling system,
which also regulates feeding and has been suggested to be
orthologous to sNPF. Vertebrate long NPFs such as NPY, PPY
and PP neuropeptide genes show an evolutionary expansion,
either to compensate for the possible loss of sNPF, or to adapt to
vertebrate-specific life styles and feeding.
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