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ABSTRACT
The world is in the midst of a pandemic. We still know little about the disease COVID-19 or about the virus
(SARS-CoV-2) that causes it. We do not have a vaccine or a treatment (aside from managing symptoms).
We do not know if recovery from COVID-19 produces immunity, and if so for how long, hence we do not
know if “herd immunity” will eventually reduce the risk or if a successful vaccine can be developed—
and this knowledge may be a long time coming. In the meantime, the COVID-19 pandemic is presenting
enormous challenges to medical research, and to clinical trials in particular. This article identifies some
of those challenges and suggests ways in which machine learning (ML) can help in response to those
challenges. We identify three areas of challenge: ongoing clinical trials for non-COVID-19 drugs, clinical trials
for repurposing drugs to treat COVID-19, and clinical trials for new drugs to treat COVID-19. Within each of
these areas, we identify aspects for which we believe ML can provide invaluable assistance.
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1. Introduction

The novel SARS-CoV-2 virus and COVID-19, the disease it
causes, have changed the whole world. We are facing a global
health crisis—characterized as a pandemic by the World Health
Organization (WHO)—unlike any in recent history. The inter-
national scientific community is struggling to understand both
the virus and the disease. This requires efforts at an unprece-
dented level of international focus and cooperation to preserve
clinical trial integrity during the pandemic, to develop and to
identify treatments, and to find out under what conditions they
are safe and effective.

In this article, we discuss challenges in three key areas of
clinical research and propose ways in which machine learning
(ML) can help to address those challenges. The three areas are:
ongoing clinical trials for non-COVID-19 drugs, clinical trials
for repurposing drugs to treat COVID-19, and clinical trials
for new drugs to treat COVID-19. In each of these three areas,
we identify opportunities where we believe ML can provide
important insights and can help address some of the challenges
faced in clinical trials. We are aware that some of what we suggest
may not be practicable during the current pandemic—but our
discussion, although motivated by the current pandemic also
has an eye toward the future. We are also aware that some of what
we suggest may not have been used in a regulatory environment
previously but the pandemic provides an opportunity to apply
novel approaches that can be used in this challenging situa-
tion. This may lead to regulatory acceptance of some of these
methods and thus lead to changes in future drug development
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processes. Our discussion is intended as a broad overview; we
provide references for deeper reading but in most instances we
do not go into detail about ML methods and results. However,
to give some idea of what has been done and what is possible,
we do go into greater detail in two places.

The aim of this article is to bridge the gap between quanti-
tative research scientists engaged in clinical trials impacted by
or related to COVID-19 and the ML community and to help
bring these communities together. In what follows we review
opportunities for ML applications for clinical trials in the era
of COVID-19 to stimulate further research and highlight a
few cases where we see particular benefit. More specifically, we
review the three distinct areas of challenge mentioned above
and discuss selected applications in more detail, which could
then serve as a springboard for future research. Table 1 pro-
vides a summary and guide to the more detailed discussion
that follows. In the various columns, we highlight challenges,
typical methodologies, opportunities, and the most relevant ML
methods. We also include references to the section(s) in which
the challenges are discussed and a more comprehensive list of
methods and references can be found.

ML has had success in a number of areas. Perhaps the best-
known application to medicine is in image recognition, where
ML algorithms have proved equal or superior to humans in
interpreting X-ray and MRI images and slides. For example,
Cruz-Roa et al. (2017) demonstrated that a trained ML
algorithm achieves near-perfect detection of breast cancer at a
microscopic level. Their algorithm, like other image recognition
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Table 1. Summary and guide to the more detailed discussion in this article.

Clinical trial challenges Typical trial methodology COVID-motivated opportunities Representative method Section

Improving data quality Highly controlled environment; extensive
data collection and monitoring of
patients throughout the trial.

The pandemic and associated measures
are causing disruptions to data
collection in ongoing trials. Existing ML
methods can be used to impute missing
data and/or produce estimates robust
to missing data. ML methods can also
be used to flexibly model and uncover
biases introduced by changing
conditions over the course of the
pandemic.

Time-series imputation using
M-RNN (Yoon, Zame, and van
der Schaar 2018)

2

Managing halted trials In normal adaptive designs, interim
analyses of realized clinical outcomes or
surrogate end-points, in blinded or
unblinded fashion, can be used to adapt
recruitment strategies (e.g., refining
sample size or eligibility criteria).

Many ongoing (non-COVID-related)
clinical trials face temporary
suspension. Unplanned interim
analyses may present the opportunity
to adapt recruitment strategies, in
blinded or unblinded fashion, to
increase the likelihood that restarted
trials succeed. Further, if a trial is fully
suspended, ML methods can be used
for discovery of (heterogeneous)
treatment effects and for assessment of
uncertainty.

Uncertainty assessment using
conformal prediction under
covariate shift (Tibshirani et al.
2019)

2

Extracting and
incorporating prior
information

Bayesian clinical trial designs enable the
incorporation of prior information to
borrow strength from existing studies
(Hobbs et al. 2011).

Much observational evidence is generated
by experimental use of drugs, small
clinical trials and incomplete/halted
trials. ML for causal inference can use
this evidence to extract information
and build prior beliefs to be
incorporated in new studies.

Causal inference from
observational data using
BART (Hill 2011)

2 and 3

Using ML for drug
validation trials

Limited ML-based design methods such as
estimating individualized treatment
effects (Alaa, Weisz, and van der Schaar
2017) or adaptive drug combination
studies (Lee, Shen et al. 2020)

The current COVID pandemic provides
optimal conditions for existing ML
methods for response-adaptive
randomization: the time to clinical
endpoint is relatively short, allowing
frequent adaptation; a constant stream
of patients is arriving and quick action
is key.

Sequential patient recruitment
and allocation using RCT-KG
(Atan, Zame, and van der
Schaar 2019)

3 and 4

Rethinking the classical
phase design

Multi-phased clinical trial with each phase
focusing on specific aspects; limited
knowledge transfer between phases.
High confidence but long process.

Break the static multi-phase paradigm and
substitute a dynamic, adaptive
trial-collection-trial loop with frequent
evaluation and adjustment, leading to
faster convergence.

Considering efficacy and toxicity
jointly in early stage trials
using SEEDA (Shen et al. 2020)

4

algorithms, employs supervised learning, in which the algorithm
is presented with a training set of instances that provide, for each
instance, both the covariates and the ground truth. Less well-
known applications employ unsupervised learning, in which
the algorithm is presented with a training set of instances that
provide only covariates, but is asked only to create clusters of
similar instances, and semi-supervised learning, in which the
training set provides a few instances with both the covariates and
the ground truth and many instances with only the covariates.
Both unsupervised and semi-supervised learning are frequently
employed in cluster analysis. Segar et al. (2020) provide a
recent application of unsupervised learning to cluster analysis
of heart failure and Filipovych, Resnick, and Davatzikos (2011)
provided a recent example of semi-supervised learning to image
recognition. In addition to supervised learning, the work that
we discuss here employs reinforcement learning (RL), in which
the algorithm learns from previous experience and adjusts
its behavior in response to what it has learned, and causal
inference. Both RL and causal inference have their roots in
statistics. Indeed, the application of RL to clinical trials, using

the framework of multi-armed bandits, derives from the seminal
work of Thompson (1933), Gittins (1979), and Lai and Robbins
(1985). Causal inference has its roots in the work of Neyman
(1923) and Rubin (1978) and ML work in causal inference
most frequently employs what has now become the “standard”
Neyman–Rubin potential outcomes framework.

2. Clinical Trials for Non-COVID Drugs

The societal response to COVID-19 pandemic has included
travel restrictions, social distancing, and even confinements all
over the world. All of these will significantly reduce the ability
and/or willingness of trial subjects and staff to access clinical
sites and affect data collection: some data will be missing and
some data may be gathered in a different way (e.g., remotely vs.
on-site). Moreover, the possibility of transmission of COVID-19
from trial subjects to medical personnel and vice versa presents
a substantial risk, especially because it appears that the disease is
transmissible before the onset of symptoms and some infected
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individuals never display symptoms. These concerns have led
the U.S. Food and Drug Administration to issue special guide-
lines for the conduct of clinical trials during the pandemic (FDA
2020b). All these concerns will undoubtedly result in complica-
tions that lead to compromised trial data and challenges in the
interpretation of clinical trial results (Akacha et al. 2020; Meyer
et al. 2020).

The extent of these challenges will depend on, for example,
the duration of the current COVID-19 pandemic, the number
of impacted subjects, the disease condition being studied and
various trial design elements, and may result in the halting of
many ongoing clinical trials (EMA 2020a; 2020b). The halting
of a clinical trial and the resulting absence of data may make
it difficult to gather and document the knowledge that was
expected in the trial design, especially if the trial was halted in
its early stages.

Another problem is that data collected before the pandemic
may be of different quality than data collected after the
pandemic for many reasons, some identifiable and some
non-identifiable. For example, there will likely be significant
impact on the day-to-day operations of clinical sites, leading
to missed visits, increased protocol deviations, late data entry,
data collected using different modalities (e.g., collected via a
remote visit) and slow follow-up to queries. The times at which
COVID-19 cases first occurred and were first observed, the time
of “lock-down” and the time of “reopening” will vary dramati-
cally across countries, states, counties, cities, towns, sites or even
specific units, but trialists may have limited access to this infor-
mation. For those subjects who are infected with SARS-CoV-2
the variation in observed symptoms may be enormous—some
subjects may be asymptomatic while others may die. This varia-
tion may make it difficult to assign causation to the drug under
study and hence to identify safety violations. It may also affect
changes in laboratory markers and affect the course of treatment
for all but the most severe diseases (e.g., advanced cancers).

These and many other impacts will be felt during the pan-
demic and for an extended time as global healthcare systems
deal with the aftermath. Addressing these issues when the trial is
resumed will require effective and reliable methods for extract-
ing knowledge from data of different quality and for establishing
confidence in that knowledge.

2.1. Analysis of Data From Ongoing Clinical Trials

During the pandemic, on-site assessment of patients may be
less frequent, which will lead to missing data. Moreover, poten-
tial differences in visit frequency before, during and after the
pandemic may mean that patient data are not sampled at the
usual intervals. Both of these issues could be addressed using
existing ML methods. Missing data might be imputed using ML
methods specifically designed to impute missing data in tempo-
ral data streams (Yoon, Zame, and van der Schaar 2017; Yoon,
Jordon, and van der Schaar 2018b; Yin and Cheung 2019). These
methods make it possible to infer the patient state during the
period in which on-site monitoring was less frequent. On this
task, ML methods, using multi-dimensional recurrent neural
networks (Yoon, Zame, and van der Schaar 2018) and generative
adversarial imputation nets (Yoon, Jordon, and van der Schaar
2018b), substantially outperform previous methods, including

multiple imputation by chained equations, matrix completion,
and expectation maximization, on a variety of datasets (from
the online UCI repository). All of these methods rely on the
assumption that data are missing at random, that is, that the
reason data are missing is recorded in the data and unrelated
to the patients’ unobserved state. This may or may not be
a reasonable assumption in the context of the pandemic; for
instance, variables that influence whether visits will be cancelled
(such as local conditions and a patient’s risk-status) are likely to
be recorded, but others (such as illness of a family member and
difficulty in traveling) may not be. Moreover, this assumption
may or may not conform to current regulatory guidelines. In
either case, estimation will remain a problem if not enough
information is available for imputation or prediction models
(Akacha et al. 2020; Meyer et al. 2020) to be applicable Accessing
these records may require integrating site-level operational data
with patient data from the study. Other ML models are specif-
ically designed for the analysis of irregularly sampled temporal
data (Neil, Pfeiffer, and Liu 2016; Alaa and van der Schaar 2017b;
Shukla and Marlin 2019).

As clinical trials continue throughout the pandemic, the
validity of trial results may be compromised by the many dif-
ferences between the periods before, during and after the pan-
demic (EMA 2020a). It is very likely that measures taken during
the pandemic will alter the daily lives of trial subjects, the
general standard of care they receive, the application of the
treatment being tested and even the control. Such alterations
might affect both the clinical outcomes and the effectiveness of
treatments, and the effects of these alterations must be untangled
from the treatment effects. This will require including variables
that capture a subject’s individual history during the pandemic
(especially changes in medical treatment, but also changes in
diet, exercise, etc., if relevant) and using recent ML methods
to estimate treatment effects. Because the true shape of the
relationship between a subject’s pandemic history and treatment
effects is completely unknown at this point, the inherent flexi-
bility and data-driven nature of ML methods provide them an
advantage over standard statistical approaches in this scenario.

If the trial continues during the pandemic, it is likely that the
participation and recruitment of subjects will be altered (if not
stopped entirely). If these alterations affect particular subgroups
disproportionately, they will change the composition of the
patient population, and may bias the estimated population-level
treatment effect, unless such confounding effects are adjusted
for in the analysis. It will therefore be crucial to identify the
extent of these alterations and determine the implications for
both the estimates of treatment effects for the various subgroups
and for the confidence that can be placed in these estimates (see
below).

2.2. Extracting Knowledge From Data of Suspended Trials

To extract knowledge from the data of trials that have been
terminated before their intended endpoint, we first need to learn
both what we do know and what we do not know on the basis
of the available data. ML methods for estimating heterogeneous
treatment responses (Athey and Imbens 2016; Tran and Zheleva
2019) may be well suited to these tasks. These and other meth-
ods for estimating heterogeneous treatment responses begin
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with a method for estimating individualized treatment effects
(ITE) and construct subgroups and estimates of heterogeneous
treatment responses using the chosen method of estimating ITE.
Hill (2011), Athey and Imbens (2016), Alaa and van der Schaar
(2017a, 2018), and Yoon, Jordon, and van der Schaar (2018a)
provide an array of different methods for estimating ITE. We
refer to the section “Exploiting observational data in the design
of new trials” below and Bica, Alaa, Lambert et al. (2020) for
more discussions.

These models can identify subgroups that have similar
covariates and treatment responses and estimate the treatment
responses in each subgroup. Because the trial will have been
terminated before its intended endpoint, data will necessarily
be incomplete. Moreover, the burden of the pandemic on the
health care system and the concomitant limitation of resources
may have interfered with the collection and recording of
subject covariates and outcomes. Thus, there may be concerns
about the reliability of these treatment response estimates. To
manage these concerns and to separate reliable estimates from
unreliable estimates requires assessing the confidence in these
estimates. Recent ML methods for systematically quantifying
the uncertainty of estimation (Lei et al. 2018) are designed
for such tasks. A particular issue that may arise in suspended
clinical trials is that the population distribution of subjects in
the trial (by age, gender, income, geographic location, etc.) may
be distorted relative to the intended population and/or the
real-world population. Such distortion would affect both the
reliability of, and the confidence in, the extracted knowledge,
and need to be taken into account using appropriate methods
(see, e.g., Akacha et al. 2020 and the references therein). ML
methods for quantifying uncertainty under covariate shift
(Tibshirani et al. 2019) may be suited to address this issue as
well.

2.3. Adjusting Restarted Clinical Trials for Efficient
Resource Utilization

When the situation is normalized, it is likely that many halted
clinical trials will be restarted. When restarting a blinded trial
with a fixed format, little or nothing can be changed. However,
if only a small fraction of the trial had been conducted prior
to halting, one might consider stopping the trial, unblinding
the data, and using the knowledge extracted from that data
as prior information in the design of a new trial. Conversely,
if the trial had been almost complete prior to halting, one
might again consider stopping the trial and unblinding the data.
In early stages of drug development the knowledge extracted
from that data could be used to decide whether a new trial is
warranted, and, if so, how to design that new trial; in late stages
of drug development, the knowledge extracted could be used
to decide whether the drug is ready to be submitted for regu-
latory approval. When permitted—as in trials with an adaptive
design—the knowledge extracted from pre-pandemic data may
be valuable in adjusting design elements such as recruitment
plans, sample sizes, and treatment allocations. More broadly, the
knowledge learned from halted trials (e.g., identified subgroups,
estimates of treatment effects and confidence levels for those
estimates) can be used as prior information for restarted trials

that leverage adaptive (Kunz et al. 2020) or Bayesian clinical trial
designs (Lee and Chu 2012).

3. Drug Repurposing Trials

COVID-19 is currently not a well understood disease, with
multiple biological and clinical manifestations—for example,
respiratory, immune-related, coagulation, gastrointestinal. ML
can play an important role in finding patterns and signatures in
the underlying molecular biology of COVID-19 mechanisms,
and linking those to the clinical characteristics of the disease.
This in turn can facilitate the identification of both existing
medicines that could potentially be repurposed, as well as vali-
dating in silico, whether novel medicines may be effective. Thus,
which clinical trials to run could potentially be driven by this
biomedical insight from ML conducted on existing data. An
existing approach for doing this is knowledge graph inference,
where a vast network of existing, interrelated data is formed, and
ML is used to reason over this network, extracting new insights
which would not be possible from looking at individual datasets
on their own (Alaimo and Pulvirenti 2018). As more data are
accumulated the graph can continually be built out. Enabling
samples to be taken from patients participating in COVID-19
trials, would add even more richness to the picture, adding
potential temporal changes to be inferred as well.

At the moment, no drugs have been approved for the treat-
ment of COVID-19 except on an emergency basis. However, 40
or more existing drugs have been identified as having promise,
some of which have been approved for clinical trials (EMA
2020c). The most prominent example is Hydroxychloroquine,
which is approved for treatment of malaria; other possibili-
ties include Lopinavir/Ritonavir, which is approved for treat-
ment of HIV, Acalabrutinib, which is approved for treatment of
chronic lymphocytic leukemia and Remdesivir, which was not
previously approved for treatment of any condition but which
appears promising in current trials and has been authorized
for emergency use (FDA 2020a). Some of these same drugs
have been approved for emergency and compassionate use in
various other countries (EMA 2020c). To complement anecdotal
evidence, promising in vitro evidence and evidence from small
experiments and small-scale clinical trials, the efficacy of these
drugs for treatment of COVID-19 in humans will need to be
established in large-scale clinical trials. Repurposing existing
drugs for treatment of COVID-19 presents a potentially much
faster route to finding an effective treatment, both because new
drugs do not have to be developed and because, for many of
the existing drugs, safety and efficacy for some conditions in
humans has already been established on the basis of previous
clinical trials (although perhaps only for some particular pop-
ulation(s) and in some dose(s) that might be different than
needed to treat COVID-19). Such knowledge may speed the
process of determining safety and efficacy in treating COVID-
19.

3.1. “Virtual” Clinical Trials

The central problem in assessing the effectiveness of a new drug
is the comparison against existing drugs or a placebo. Clinical
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trials address this problem by creating a control group that is
either untreated or treated with existing drugs but drawn ran-
domly from the same population as the treated group. However,
there are situations when the use of such a control group may
not be possible, or its size might be limited, for either practical
or ethical reasons, including during an outbreak. The rapid
spread of the COVID-19 pandemic and the lack of knowledge
about effective drugs (or treatments) has led hospitals around
the world to experiment with drugs that have not undergone
proper clinical trials and are not likely to undergo such tri-
als in the immediate future. By integrating data across hospi-
tals, data-driven methods can be used to identify patients who
have received standard treatments but are otherwise similar to
patients who have received experimental treatments (Zhu et al.
2016; Suo et al. 2018). ML methods in particular can be used
to create, ex post, a “virtual” control group, especially in situa-
tions where highly complex or nonlinear interactions between
covariates and outcomes need to be captured. Data from such
a “virtual” clinical trial may not be entirely comparable to data
obtained from a standard clinical trial, but knowledge learned
from such “virtual” trials can identify those drugs that should
undergo the first formal clinical trials, inform hospitals and
physicians about the most promising candidates for compas-
sionate use, and inform researchers about the most promising
experimental drugs.

3.2. Exploiting Observational Data in the Design of New
Trials

In addition to identifying particularly promising drugs, the
experimental and compassionate use of drugs to treat COVID-
19 is yielding a large body of data, which can be exploited to
produce prior information for the design of future (Bayesian)
controlled trials (Schmidli et al. 2020). ML methods for causal
inference from observational data are especially well-suited to
this task.

To illustrate, consider the problem of estimating the effect of
a new drug for the treatment of COVID-19. For each patient
i, the observation will provide an array Xi of patient features,
a treatment indicator Ti∈{0, 1} and an observed outcome Yi.

Here, we assume that only one treatment and a control are under
consideration. In a different setting, there might be several
possible treatments and a control; in such a setting, the treat-
ment indicator might take on more than two possible values.
However, the same framework and methods can still be applied.

Using the potential outcomes framework of Neyman (1923)
and Rubin (1978), we define the patient outcome without treat-
ment (Ti = 0) to be Y(0)

i and the patient outcome with treatment
(Ti = 1) to be Y(1)

i . In the observed data, we have information
only about the factual patient outcome; because one of T0, T1
is 1 and the other is 0, we can write the factual outcome as
Yi = TiY(1)

i + (1 − Ti) Y(0)
i . The counterfactual outcome—

that is, the patient outcome that would have occurred under
the option that was not applied—is not observed, but must be
estimated from the observed data. The individualized treatment
effect is the difference in potential outcomes:

ITE(x) = E

[
Y(1)

i − Y(0)
i | Xi = x

]
.

ML has developed a number of methods for estimating indi-
vidualized treatment effects from observed data. As illustrated
in Figure 1, the observed outcomes for the treated patients (red)
and the observed outcomes for the control patients (blue) can be
used to estimate the response surfaces g0(x) = E

[
Y(0) | X = x

]
and g1(x) = E

[
Y(1) | X = x

]
. By modeling the response sur-

faces using one shared function f (x, t) and simply including the
treatment indicator (t) as a feature, such that f (x, 0) = g0(x)

and f (x, 1) = g1(x), many ML models could be used to flexibly
estimate treatment effects. A popular example of this approach
is Hill (2011), using Bayesian additive regression trees (BART).
More sophisticated methods for causal inference such as Alaa
and van der Schaar (2017a, 2018), Shalit, Johansson, and Sontag
(2017), and Yoon, Jordon, and van der Schaar (2018a) approxi-
mate g0(x) and g1(x) through multitask learning, which involves
using a shared structure between the two response functions,
while at the same time fitting separate outcome models for
the control and treated populations. These ML methods are
flexible and capable of learning nonlinear interactions among
the patient features, treatments and potential outcomes. The
method of Alaa and van der Schaar (2017a) also uncovers, for

Figure 1. The observed data contains information about patient characteristics x, assigned treatments and observed (factual outcomes) outcomes. The observed outcomes
for the control (blue) and treated (red) patients can be used to train machine learning methods to estimate the response surfaces g0(x) and g1(x) for each treatment option.
Using these response functions we can estimate individualized treatment effects and thus identify patients who would benefit most and patients who would benefit least
most from receiving the treatment. This would not be possible if we only estimated the average treatment effect.
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Figure 2. Given an observational dataset with patient features Xi , assigned treatments Ti and factual outcomes Yi jointly sampled from the distribution Pθ , validation is
needed (e.g., Alaa and van der Schaar 2019) to select the causal inference method, out of the large number available (e.g., Causal Forests (Athey and Imbens 2016), NSGP
(Alaa and van der Schaar 2019), and GANITE (Yoon, Jordon, and van der Schaar 2018a) that will achieve the best estimate of the individualized treatment effects.

each patient, the features that are most important for estimating
patient’s potential outcomes.

In some circumstances, selection bias may be present in the
observed data; that is, the treatment assignment depended on
the patient characteristics. This bias must be accounted for in
estimating the response surfaces. To this end, Alaa, Weisz, and
van der Schaar (2017) used the propensity score, and Shalit,
Johansson, and Sontag (2017) built treatment invariant repre-
sentations of patient characteristics.

By obtaining unbiased estimates of the response functions
g0(x) and g1(x) we can compute both potential outcomes Y(1)

and Y(0) conditioned on the patient’s characteristic and thus
obtain the individualized treatment effect ITE(x). Using the
estimated individualized treatment effect for each person, we
can then identify patients for whom the treatments are more or
less effective. This information can be subsequently leveraged
to find the patient subgroups that would benefit most from the
treatments.

The arsenal of causal inference methods has grown sub-
stantially in the past few years. This creates opportunities for
more reliable inference, but also complicates the choices that
researchers have to make and defend when selecting a causal
inference method for the available observational data. Because
counterfactual data is not available, we cannot use cross-
validation to decide which model to use for an observational
dataset nor to tune the hyperparameters of any such model.
Validation of causal inference models is crucial for translating
recent advances in ML-based causal inference into practice.
To address this challenge, Alaa and van der Schaar (2019)
proposed the use of influence functions, a technique from robust
statistics, to approximate the loss of causal inference methods
without requiring access to counterfactual data. Their method
achieves promising results on causal inference model evaluation
and selection and, as illustrated in Figure 2, can be used to
identify the most appropriate causal inference model for each
observational dataset of interest.

When we have information about patient outcomes con-
ditional on time-dependent treatments and patient covariates,
causal inference methods that can estimate treatment effects
over time can be used (Lim, Alaa, and van der Schaar 2018;

Bica, Alaa, Jordon et al. 2020). These methods can estimate
counterfactual patient outcomes under sequences of possible
treatment assignments and thus help us understand what treat-
ments should be given to patients and in what order.

The optimal dosages of drugs (or combinations of drugs)
repurposed to treat COVID-19 patients may be very different
from the optimal dosages for their originally intended applica-
tions, as they may be influenced both by effectiveness in treating
the disease and the likelihood of adverse interactions with the
disease itself. ML models for individualized dose-response esti-
mation can be applied to this problem (Bica, Jordon, and van
der Schaar 2020). In each of these applications, the estimation
uncertainty can be quantified to establish confidence in the
estimates produced (Lei et al. 2018; Tibshirani et al. 2019), which
will enable more reliable exploitation of the observed data.

3.3. Execution and Evaluation of Actual Clinical Trials

More than 300 trials to investigate the efficacy of medical treat-
ments against COVID-19 are already registered with the WHO
(IDDO 2020). However, bodies that exercise oversight, such as
the European Committee for Medicinal Products for Human
Use (CHMP) have expressed concern that small studies will
not be able to generate convincing evidence; instead of many
small studies, they have called for large multi-arm, multi-site
trials to evaluate a multitude of therapeutic options (CHMP
2020). As a result, a number of large adaptive clinical trials
for evaluating repurposed medications for COVID-19, such as
Solidarity (WHO 2020) and RECOVERY (Oxford 2020), are
currently underway and are recruiting patients at a multitude
of sites to be randomly assigned across available treatment arms.
ML methods have the potential to improve the design, execution
and evaluation of such trials, as we will illustrate below.

Because of their inherent flexibility and efficiency, adaptive
trials (Bretz, Gallo, and Maurer 2017; Pallmann et al. 2018)
are especially suited to the current volatile situation. Instead of
randomizing patients to fixed treatment arms in fixed propor-
tions throughout the trial, adaptive designs use interim analyses
to reconfigure patient recruitment criteria, assignment rules
and treatment options (Park, Thorlund, and Mills 2018). In
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recent years, there has been a growing trend to leverage ML
approaches, especially tools from RL such as Markov decision
processes and multi-armed bandits, to improve and expedite
adaptive clinical trial designs (Villar, Bowden, and Wason 2015;
Varatharajah et al. 2018; Atan, Zame, and van der Schaar 2019).
The framework of multi-armed bandits is particularly useful
in the context of clinical trials because it fits easily and well
and because there is an enormous literature on multi-armed
bandits, going back to Gittins (1979). All of this work is designed
to address the exploration-exploitation trade-off, which can be
interpreted as a trade-off between clinical research (to discover
knowledge about treatments) and clinical practice (to benefit the
participants) in clinical trials (Berry 2004), by assigning new
patients to treatment arms on the basis of information from
previous patients. These methods have been shown to speed up
learning and identify subgroups for which different treatments
might be employed and different treatment responses might
be expected (Lee, Shen et al. 2020). Because these methods
are automatic, they are easy to implement (when trial logistics
permit). As previously discussed, the Bayesian nature of many
of these algorithms permits smooth incorporation of observa-
tional evidence as prior information.

Another important potential application of ML methods in
this setting is to perform post-hoc analyses of existing trial data
to identify heterogeneous treatment response across different
patient subgroups (e.g., Athey and Imbens 2016). ML meth-
ods can establish the validity of these analyses by producing
systematic confidence guarantees (Tibshirani et al. 2019). This
is especially important for COVID-19 because of the broad
range of characteristics and comorbidities of patients, the wide
variation in the disease trajectory of infected patients and our
current limited understanding of the disease mechanism.

3.4. Robust Recursive Partitioning for Subgroup Analysis

The understanding of treatment effects plays an important role
in shaping interventions and treatments. When—as is often the
case—treatment effects are different for different segments of the
patient population, it is important to identify those segments
for which the treatment is effective and those for which it is
ineffective, and those for which it has unacceptable side effects
and those for which it does not. COVID-19 provides a striking
example of the possibilities, because it appears to manifest in
different ways—including as a respiratory disorder and as a
hematological disorder—and over different time horizons, and
to manifest differently for patients of different ages and with
different underlying conditions. A treatment that is effective
against early manifestation as a respiratory disorder for a patient
with asthma might not be effective against late manifestation
as a hematological disorder for a patient with diabetes, etc.
Such differences have been observed in the initial clinical trial
of Remdesivir in adults with severe COVID-19 (Wang et al.
2020). In such situations, heterogeneous treatment effect (HTE)
analysis (also known as subgroup analysis) can be extremely
useful in finding subgroups consisting of patients who have
similar covariates and display similar treatment responses. In
the context of a clinical trial, HTE analysis can increase the
likelihood of identifying subgroups of the population for whom

a particular treatment is effective, even when it is found to be
ineffective for the population as a whole

Identifying subjects who have similar covariates and display
similar treatment responses, requires reliable estimates of the
treatment responses of individual subjects; that is, of ITEs. As
we have mentioned earlier, there are a number of methods for
estimating ITE; some may be more appropriate in a particular
circumstance than others. Several recent approaches for esti-
mating HTE proceed by simultaneously estimating ITE and
recursively partitioning the subject population; see especially
Athey and Imbens (2016), Su et al. (2009), and Tran and Zheleva
(2019). These methods chose partitions to maximize the het-
erogeneity of treatment effects across subgroups (using a sample
mean estimator) under the assumption that treatment effects
are homogeneous within subgroups. However, this assumption
is not true in practice; as a result, these methods often identify
subgroups for which the heterogeneity within the subgroups is
comparable to the heterogeneity across subgroups. This leads
to wide confidence intervals and often to false discovery—even
identifying groups for which the treatment effect is estimated to
be positive even though it is simply noise. Obviously, decisions
based on such false discovery are useless, if not worse.

We describe a novel robust recursive partitioning (R2P)
method for subgroup analysis that overcomes this critical
challenge (Lee, Zhang et al. 2020). R2P has three distinctive
features that separate it from previous methods: it makes a
deliberate effort to minimize heterogeneity of treatment effects
within each of the subgroups while maximizing heterogeneity
across subgroups, it produces confidence guarantees with
narrow confidence intervals, and it can take make use of any
ITE estimator, including estimators that are yet to be proposed.

We formalize the robust partitioning problem in the follow-
ing way. Combining the given ITE estimator with the method
of split conformal regression (Lei et al. 2018) provides ITE
estimates together with valid confidence intervals (given any
preassigned coverage rate). On the basis of these estimates, we
define, for any subset l of the covariate space (a potential sub-
group), the expected absolute deviation Sl, which is a measure
of the heterogeneity of ITE within l, and the expected width of
confidence intervals Wl, which is a measure of how confident
we are about the estimates. Ideally, we would like to create a
partition � of the covariate space that minimizes both Sl and Wl
for each element of the partition; because this is impossible, we
choose a hyperparameter λ and minimize the sum of a convex
combination of Sl and Wl. That is, we formalize the problem as
finding a partition � of the covariate space to minimize

minimize
∑
l∈�

λWl + (1 − λ)Sl.

It might seem that the solution to this problem would be to
choose a very fine partition into small subsets, but this is not so:
although the expected deviation Sl may shrink when l does, the
expected width of confidence intervals Wl grows. This problem
formulation indirectly balances heterogeneity within subgroups
and heterogeneity across subgroups.

To provide empirical evidence that this method works well,
we must resort to simulated data. This is unavoidable because
in real data we never know both potential outcomes: the subject
either received the treatment or did not; in the former case we
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Figure 3. Distribution of treatment effects for subgroups identified by R2P and four benchmark methods using simulated data. The vertical axis is the estimated treatment
effect; the horizontal axis indexes the subgroups identified by each method. R2P, CCT, and CT-A each identify 5 subgroups, CT-H identifies 4 subgroups and CT-L identifies
3. (See the text for the description of the four benchmark methods.) Each box represents the range between the 25th and 75th percentiles of the treatment effects of the
test samples; each whisker represents the range between the 5th and 95th percentiles.

know the treated outcome and in the latter case we know the
untreated outcome. Of course all other empirical studies also use
simulated data, for precisely the same reason. Figure 3 presents
boxplot comparisons of R2P against four benchmark methods
for subgroup analysis: standard regression trees for causal effects
(CT-A) (Breiman et al. 1984), conformal regression trees for
causal effects (CCT) (Johansson et al. 2018), causal trees with
honest criterion (CT-H) (Athey and Imbens 2016), and causal
trees with generalization costs (CT-L) (Tran and Zheleva 2019).

As Figure 3 shows, R2P identifies subgroups reliably:
different subgroups display very different average treatment
effects and the distributions of the different groups are well-
discriminated (non-overlapping). The benchmark methods are
unreliable: the distributions of treatment effects are not well-
discriminated and false discovery occurs for all four other
methods, and occurs frequently for three of the four. The
numerical results tell the same story. The objective is to create a
partition into subgroups with the property that treatment effects
are very heterogeneous across subgroups but very homogeneous
within subgroups. The extent to which a partition achieves this
objective can be measured by the ratio of the variance in the
average treatment effect across subgroups to the variance of the
average treatment effect within subgroups; we would like this
ratio to be as big as possible. For R2P, this ratio is greater than
20; the ratio for CT-A is less than 8, the ratios for CCT and
CT-H are less than 4, and the ratio for CT-L is less than 1 (Lee,
Zhang et al. 2020).

4. Trials for New Drugs Designed for Treating
COVID-19

Existing clinical validation processes for new drugs, such as the
processes adopted by regulatory agencies like the U.S. Food and
Drug Administration or the European Medicines Agency are
well designed but coarse-grained and static: they are conducted
sequentially in phases with each phase conducted largely inde-
pendently of other phases. This process emphasizes confidence
in the safety and efficacy of drugs at the cost of long delay; a
fully phased sequence of trials can take years—and many drugs
fail their trials. During an active outbreak of a pandemic disease
for which no treatment is currently known—such as the current
COVID-19 pandemic—but during which anecdotal evidence
for certain drugs or drug combinations can emerge quickly, a
more dynamic and fine-grained validation process should be
considered. In the early stages of such a process, confidence in
the safety and efficacy of a drug (or combination of drugs) will

be lower, but during an ongoing active and dangerous outbreak,
continued aggressive testing may be warranted even with a lower
confidence level. During a pandemic, a rapid feedback loop
of testing and validation cannot be completely separated from
treatment. Implementing such a rapid feedback loop will require
persuading regulatory agencies to grant approval for investiga-
tions that are based on sound models and provide commitment
to continued real-time monitoring and the development and use
of a global control database.

4.1. Online Learning for Design of Dynamic Clinical Trials

A key to expediting clinical trials without sacrificing confidence
will be to break the multi-phase paradigm and convert the
process into a continuous and adaptive trial-collection-retrial
loop, where the data collected previously is used to determine
the continuation trial strategy. This online learning paradigm
is illustrated in Figure 4. As noted above, in the static clinical
trial design, information is not fully used: each phase is intended
to serve only one purpose, and the data that is collected in
each phase is usually not used for design or inference in later
stages. In a pandemic setting it would be justifiable and more
efficient for the design and execution of the entire sequence of
trials to be adjusted “on the fly” in a fine-grained manner on the
basis of observed outcomes, rather than determined in advance.
This fine-grained dynamic paradigm is particularly well-suited
for Bayesian designs because it enabling posterior updating for
multiple objectives simultaneously.

Applying a dynamic online-learning-based framework offers
the possibility to learn simultaneously about toxicity and effi-
cacy of a new drug. Because this methodology is more effi-
cient, and reduces learning time, it can be particularly use-
ful for time-sensitive clinical trials of COVID-19 treatments.
Moreover, given the dire situation of the COVID-19 pandemic,
any trial of potential treatments must also take efficacy into
account because ethical considerations would require expected
therapeutic benefit for participants. Both factors call for the trial
design to include efficacy as a co-primary endpoint from the
beginning—and not just in the second and third phases.

To highlight the aforementioned challenges and demonstrate
the benefits of online learning, we describe an early-phase clini-
cal trial design with a (possibly restricted) class of patients for
whom the potential for therapeutic benefit is required. Stan-
dard multi-phased designs are not optimal for this purpose
because they are not sample-efficient and they do not necessarily
maximize the treatment effect for trial participants. The frame-
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Figure 4. Static versus online-learning-based clinical trial design.

work we describe addresses these issues by considering toxicity
and efficacy jointly in a single trial, rather than sequentially in
separate trials. Previous work has focused on jointly modeling
efficacy and toxicity and on designing the trial methodology
on the basis of statistical algorithms that exploit a multivariate
model (Bekele and Shen 2005; Zhang, Sargent, and Mandrekar
2006; Yin, Li, and Ji 2006; Dette, Möllenhoff, and Bretz 2019).
Instead, Shen et al. (2020) formulate this as a proper online
learning problem and propose a method to solve this problem.

Assume a total of K dose levels of a new drug are to be tested
on a maximum of n patients. Each trial event on a particular
patient results in a toxicity event and an efficacy event. For sim-
plicity we assume here that both of these events can be classified
as 0 or 1; that is, that dose-limiting toxicity (DLT) occurred Y =
1 or did not Y = 0, and that the patient’s condition improved
X = 1 or did not X = 0. (More generally, we might assign
degrees of severity of side-effects and degrees of improvement
or degradation in condition.) To guide the study to improve
the condition of as many participating patients as possible, we
define the objective of the study to be the maximization of
cumulative (expected) efficacy over all patients. To ensure that
as few patients as possible are exposed to unsafe doses, we take
as given to us (by regulators, for instance) a toxicity threshold θ

and a failure threshold δ; we then impose the constraint that the
probability that the average observed toxicity exceeds θ should
be no greater than δ. This allows us to pursue high efficacy while
assuring that toxicity events are unlikely.

We formalize the online learning problem as

maximize E

[ n∑
t=1

Xt

]
,

subject to P

[
1
n

n∑
t=1

Yt > θ

]
≤ δ.

Note that the objective is exactly the average efficacy of
treatment and that the constraint is the required degree of safety.
This online-learning formulation requires safe exploration for
the most effective dose level. For a trial design to meet this
requirement it must, in deciding the dose for every new patient,
consider both the expected toxicity and the expected efficacy.

To solve this online learning problem, Shen et al. (2020)
develop a novel method: Safe Efficacy Exploration Dose

Allocation (SEEDA). SEEDA employs a new multi-armed
bandit algorithm to maximize the cumulative reward function
subject to the constraint that the current choice of arm has a
low probability of violating the given safety threshold. Shen
et al. (2020) demonstrate (both theoretically and empirically)
that SEEDA outperforms previously used designs when both
efficacy and toxicity are considered and the patient budget is
limited.

4.2. Sequential Patient Recruitment

Randomized controlled trials (RCTs) are the gold standard for
comparing the effectiveness of a new treatment to the current
one. But most RCTs are slow and many RCTs fail (Printz 2015).
Most RCTs allocate the patients to the treatment group and
the control group by uniform randomization. If patients can be
recruited in cohorts (rather than all at once) and the effects on
each cohort can be observed before recruiting the next cohort,
then ML-based methods developed in recent years (Atan, Zame,
and van der Schaar 2019; Harrer et al. 2019) have shown that
learning can be dramatically improved—especially if the effects
are heterogeneous across identifiable subgroups of patients. In
such situations, the patient allocation problem can be formu-
lated as a finite stage Markov decision process (a standard
RL model), but with a carefully selected clinical trial design
objective (e.g., minimizing a weighted combination of Type I
and Type II errors as in the RCT-KG algorithm of Atan, Zame,
and van der Schaar (2019)). In particular, the RL based method
preserves the randomization feature of RCTs, and enables more
efficient adaptive designs by using what has been learned from
previous cohorts to adaptively recruit patients to subgroups and
allocate patients (to treatment/control). ML methods achieve
significant reduction in error and require many fewer patients
to achieve a prescribed level of confidence (Atan, Zame, and van
der Schaar 2019; Lee, Shen et al. 2020). Furthermore, these new
methods can provide significant benefits that outweigh potential
inflation of confidence under the circumstances of an active
outbreak, see also Dodd et al. (2016), Proschan, Dodd, and Price
(2016), and Mulangu et al. (2019), see Stallard et al. (2020) for
recent overview of such methods in the context of COVID-19
therapies.
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5. Conclusion

The current SARS-CoV-2/COVID-19 pandemic represents the
greatest global healthcare challenge of our lifetime. Now, and
in the immediate future, the need is to identify, approve and
distribute treatments and vaccines for COVID-19—but what we
learn in this effort will yield benefits that affect the entire future
course of drug development and change the lives of patients
across the world.

Many of the technical issues discussed above are particularly
acute in the context of a pandemic—but they are by no means
uniquely relevant to the current context. The needs to assess
temporal shifts in treatment effect, to distinguish the character-
istics of a sample of patients recruited to a clinical trial against
the real-world disease population and to speed up the process of
investigation and approval—to cite only a few examples—have
always existed. The challenge today is uniquely acute because
of the scale of the pandemic and the variety of unknowns. In
the face of this task, the traditional biostatistician might be
tempted to follow a familiar path: to rely on the unique skills
and methods that have served well in the design and execution
of traditional clinical trials and drug-development programs; to
approach each individual trial as a separate problem; to find
a (locally) optimal way to handle data-integrity issues for a
given study; to generate a small dataset for each novel agent; to
reach conclusions from that dataset that are at odds with similar
datasets generated and conclusions reached by hundreds or
thousands of others following a similar path. We have attempted
here to suggest a different path: to reach out across disciplines to
leverage insights, knowledge and methods from many areas. We
believe this will be essential to harness the necessary expertise
to address the kind of challenges we now face. We have focused
here on ML and clinical trials because those are the areas of
our expertise, but areas such as epidemiology, natural language
processing, operations research, statistics and systems biology—
and even advertising and finance—may provide important and
necessary contributions.

The scale of the pandemic means that an enormous vol-
ume of data is being generated on modes of infection, risk
factors, symptoms, treatments, outcomes and on the nature of
the virus itself. Because these data come from many sources,
they will arrive as fragments, and these fragments must be first
be integrated before they can be understood. This will require
making these data widely available and easily accessible—while
still preserving patient privacy; this is a challenge in itself—but
it has been done in various contexts and is becoming easier with
the widespread adoption of electronic health records, at least in
the developed countries. Indeed, it may be useful to have and
integrate not just medical and biological data, but demographic
data, geographic data, etc. This is certainly not easy but in can
be done—and has been done. (See, e.g., Alaa and van der Schaar
2020, which provides details of the work of the Cambridge
Adjutorium, integrating hospital-level data from across the UK
to predict the demand for COVID-19-related resources. The
trained algorithm is currently under testing for adoption across
the UK.) It has been said that data science is a team sport—and
never has a team been more necessary to bringing the required
tools to the hands of clinicians, researchers, patients, regulators,
payers, and many others.

Companies are launching new trials for COVID-19 at
unprecedented speed. Adaptations to impacted trials and
global trial platforms provide a glimpse of what will be
possible post-pandemic, from changing operational aspects
(accelerated transitions to virtual visits, digital endpoints from
wearables, home-based labs and pharmacokinetics, networks
of distributed sites, etc.) to fundamental shifts in the design
paradigm (increased platform studies, real-world studies, cross-
company collaborations, etc.). An important challenge will be
to decide which of the different approaches used during the
pandemic—because traditional approaches were too slow or not
possible—should become standard after the pandemic. Diverse
quantitative communities are coming together to address the
challenges of this pandemic; our hope is that they will stay
together—not just for this pandemic but in the long run, which
will greatly improve the conduct of clinical trials in the future.
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