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Abstract: ZnO and cerium-doped ZnO on a glass substrate have been prepared by the sol–gel method
using the spin coating technique and water bath growth process. Ce-doping concentration on film
structure, morphology, and optical properties is investigated. The result indicated that the hexagonal
wurtzite ZnO with high crystalline quality formed on the substrate. The crystal parameters a and c
decreased, crystal size increased, and the compressive strain formed after Ce-doping. Formed un-,
3%, 6%, 12% Ce-doped ZnO film has a spherical shape with a size between 8.6–31, 14–52, 18–56, and
20–91 nm, respectively. All films had good absorption of 300–400 nm ultraviolet light, in particular,
the absorption of near ultraviolet (370–400 nm) increased after doping of Ce. The transmittance of
light between 400–800 nm decreased with Ce-doping concentration. The band gap energy increased
after Ce-doping reaching better optical behavior for preparing ZnO heterostructured thin-film. All
film emitted intense blue emission under 375 nm excitation at room temperature. This indicated the
film can have application in optoelectronic devices.
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1. Introduction

Zinc oxide (ZnO) has a band-gap width of 3.37 eV at room temperature (RT) and an
exciton energy of 60 meV. ZnO has excellent chemical stability because of its hexagonal
wurtzite structure at normal temperatures leading to a large Coulomb force for its positive
and negative electron pairs [1]. ZnO is environmentally friendly, inexpensive, and abundant
in nature and intrinsic defects such as oxygen vacancies or Zn interstitials are mostly on
the surface of ZnO causing visible emissions [2,3]. All these unique properties make ZnO
application in the ultraviolet (UV) and blue source and have efficient exciton emission [4].
ZnO has also attracted research interest for its applications in optoelectronic applications
by forming homo, pn junction, and heterogeneous materials [5–7], and gas detection [8,9].
ZnO is generally an n-type semiconductor that usually forms a heterojunction LED with
GaN, SiC, and other p-type semiconductors, and is used in optoelectronic devices [10].
For some of their specific application requirements, ZnO film requires specific structural
features, morphology, and optical band gaps [11]. Doping is a significant and effective
way to improve the physical properties of ZnO thin films [12]. Cerium-doped ZnO is
widely used due to its unique properties including visible-light-emitting devices [13,14],
catalytic characteristic [15–17], new diluted magnetic [18], spintronics [19,20] and gas
sensor [21]. Various synthesis techniques have been used to prepare ZnO nanoparticles,
such spray pyrolysis [22], RF magnetron sputtering [23], solid-state reaction [24], solution
method [25,26], electrospinning [27] co-precipitation [28], sol–gel [29,30]. In this study, we
report the Ce concentration on structural, morphological, and optical properties of sample
films deposited by the sol–gel method combining the spin coating technique and water
bath growth. This process can reduce spin coating time, simplicity, and uniformity film
on glass substrates. Few reports about affect Ce concentration on the crystal structure of
ZnO:Ce film. In this work, the effect of Ce-doping on the crystal structure and the optical
properties of ZnO:Ce were studied in detail.
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2. Experimental Process
2.1. The Deposition of Un- and Ce-Doped ZnO Film on Glass Substrates

All reactants were reagent grade (AR). Ce-doped sample added 3%, 6%, 12% of
Ce(NO3)35H2O to solution. The deposition processes as Figure 1.

Figure 1. Schematic diagram for the deposition of un- and Ce-doped ZnO film on glass substrates.

2.2. Film Characterization

The structure and morphology were examined by using an XRD (SHIMADZU-6000) and
SEM (Hitachi S4800). UV/vis transmittance and absorption of the sample were performed
using UV-3600 SHIMADZU spectrophotometer. PL spectra were measured by HITACHI
F-4600 spectrophotometer. All measurements were performed at room temperature.

3. Results and Discussion
3.1. XRD and SEM Analysis

Figure 2 shows the XRD patterns of un-, 3%, 6% and 12% Ce-doped ZnO film. The
films are well matched with hexagonal wurtzite ZnO (JCPDS 36-1451) [29]. The strongest
diffraction peak is obtained at 3% Ce-doped sample and the diffraction peak intensity
decreases with further increasing of Ce contents. When Ce-doping ratio is 12%, CeO2
impurity appeared (2θ–29◦) marked as * in Figure 2 [16,29]. Ce-doped ZnO film oriented
along (101) crystallographic plane. The lattice constants calculated using:

1
d2

hkl
=

4
3

(
h2 + hk + k2

a2

)
+

l2

c2 (1)

Figure 2. XRD patterns of un-(a), 3% (b), 6% (c) and 12% (d) Ce-doped ZnO film.
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The crystallite size (D) is calculated using the Debye–Scherrer’s formula for the average
calculated date of the (100), (002) and (101) diffraction peaks [31].

D =
0.89λ

βcosθ
(2)

εzz =
(c − c0)

c0
× 100% (3)

where εzz is along the c axis, c0 and c is the lattice parameter of un- and Ce-doped ZnO film.
The crystal size increased and lattice constant decreased after Ce doping (Table 1).

The ionic radii of Ce4+ and Ce3+ (0.087 and 0.115 nm, respectively) be larger than that
of the Zn2+ ion of 0.074 nm [1]. The compressive strain is formed after doping of Ce.
Changes in crystal structure after doping Ce indicate that Ce is incorporated into the ZnO
matrix. SEM result indicated that film morphology of un-, 3%, 6% and 12% Ce-doped
ZnO film diameter range in 8.6–31, 14–52, 18–56 and 20–91 nm, respectively (Figure 3).
A hundred particles were selected and measured by Image J software. The 3% and 6%
Ce-doped samples appear with a spherical morphology. There is a local agglomeration in
the undoped and 12% Ce-doped sample, and the uniformity of the film after doping 3%
and 6% Ce is obtained. In our previous work, the morphology of doped ZnO was changed
from granular to rod when doping concentration is larger than 1% deposited on glass
substrate by similar method [32–34]. However, in this work, the sample morphology do not
change after larger than 1% Ce-doping, as well as lattice constant decreased after doping of
larger ionic radii of Ce indicating the unique properties of Ce ions. It is maybe due to the
dominant compressive strain on ZnO lattice caused by Ce enclosed in grain boundaries
and prevents the growth further along the growing crystal orientation [35,36].The particle
size increased after doping of Ce, consistent with the calculated size trend.

Figure 3. Cont.
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Figure 3. SEM of un-(a) 3% (b) 6% (c) 12% (d) Ce-doped (b) ZnO thin film.
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Table 1. Lattice constant and diameter of undoped and Ce-doped ZnO thin film.

Molar Ratio
of Ce (%)

Lattice Constant
εzz

Debye–Scherrer’s
D (nm) SEM G (nm)

a c c/a

0 0.2995 0.4815 1.61 0 14.93 8.6–31
3 0.2972 0.4781 1.61 −0.70 17.94 14–52
6 0.2989 0.4806 1.61 −0.20 16.03 18–56
12 0.2989 0.4784 1.60 −0.50 23.79 20–91

3.2. Optical Properties

The film completely absorbs the ultraviolet (UV) light and transmits the visible light.
The visible light transmittance decreases with increasing of Ce content (Figure 4). Numerous
factors can influence film visible light transmittance. In our experiment, the decreased
visible light transmittance is maybe due to crystal size increased after Ce-doping. UV-vis
absorbance of un-and Ce-doped ZnO film displayed as Figure 5. The absorbance peak
appears at about 300 nm. The absorption of near ultraviolet (370–400 nm) is stronger than
the undoped one after doping of Ce ions. Optical gap values for un- and Ce-doped ZnO
using the well-known Equation (4)

αhv = A
(
hv − Eg

)1/2 (4)

The value of absorption coefficient (a) is intercepted between 314–376 nm for calculat-
ing the band gap (Eg). The band gap of undoped, doping of 3%, 6% and 12% Ce ZnO is
found to be 3.43, 3.49, 3.46 and 3.51 eV, respectively. The band gap increases after doping of
Ce (Figure 6). The possible reason may relate to strain. The compressive strain widened
band gap [37]. In addition, because of the Burstein–Moss effect also make the band gap
widened [38]. The increase in the optical band gap brings it closer to the band gap width of
p-type semiconductor materials and reaching better optical behavior for preparing ZnO
heterostructured thin-film [39].

Figure 4. UV-vis optical transmittance of un-and Ce-doped ZnO films.
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Figure 5. UV-vis absorbance of un-and Ce-doped ZnO films.

Figure 6. Optical band gap (a is intercepted between 314–376 nm) of un- and different Ce-doped ZnO films.

The PL emission spectra of un-and different Ce-doped ZnO film under 375 nm exci-
tation are shown in Figure 7. All films have emission peaks at about 424 and 442 nm. An
emission of 424 nm is assigned to the recombination of the Zn interstitial levels to the top
of the valence band; 442 nm emission is attributed to the recombination of O vacancies
to the valence band [32]. CIE-1931 chromaticity coordinates of samples is (0.1518, 0.0594),
(0.1517, 0.0602), (0.1518, 0.0603), (0.1519, 0.0598) for undoped and 3%, 6%, 12% Ce-doped
ZnO, respectively (Figure 8). The color purity was calculated using [40]

Color Purity =

√
(xs − xi)

2 + (ys − yi)
2√

(xd − xi)
2 + (yd − yi)

2
× 100% (5)

where (xs, ys) are the coordinates of a sample point; in our experiment all of the sample
coordinates are basically the same, and the value is (0.152, 0.060), (xd, yd) are the coordinates
of the dominant wavelength, in our experiment dominant wavelength at 442 nm, its
coordinate is (0.1756, 0.0053) and (xi, yi) are the coordinates of the CIE coordinates of white
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illuminant point is (0.310, 0.316). The calculated colour purity is 89%, indicating that this
material has potential application in blue light sources.

Figure 7. PL of un- and different Ce-doped ZnO films (λex = 375 nm).

Figure 8. CIE-1931 chromaticity coordinates of samples excited under 375 nm.

4. Conclusions

In summary, undoped, Ce-doped ZnO films deposited on glass substrates were synthe-
sized by sol–gel method contained spin coating and water bath growth technique. The Ce
incorporation on the crystal structure and optical properties of un- and Ce-doped ZnO film
was investigated. XRD results indicated that all films formed a hexagonal wurtzite ZnO
crystal structure, the lattice constant decreased, crystal size increased, and compressive
strain formed after Ce-doping, indicating the Ce incorporated into ZnO crystal. The pres-
ence of spherical type was confirmed by SEM. Room temperature UV–vis and PL spectra
showed strong absorption in the near UV region and the absorption of near ultraviolet
(370–400 nm) increased after doping of Ce ions. Optical transmittance of visible light
was reduced with increasing Ce-doping content. The band gap energy increased after
Ce-doping. Intense blue emission with a color purity of 89% was observed under 375 nm
excitation. ZnO:Ce film has potential applications in the near ultraviolet (n-UV) LED light
conversion materials and a blue light source.
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