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Abstract

The evidence that two molecules interact in a living cell is often inferred from multiple

different experiments. Experimental data is captured in multiple repositories, but there

is no simple way to assess the evidence of an interaction occurring in a cellular environ-

ment. Merging and scoring of data are commonly required operations after querying for

the details of specific molecular interactions, to remove redundancy and assess the

strength of accompanying experimental evidence. We have developed both a merging

algorithm and a scoring system for molecular interactions based on the proteomics

standard initiative–molecular interaction standards. In this manuscript, we introduce

these two algorithms and provide community access to the tool suite, describe examples

of how these tools are useful to selectively present molecular interaction data and dem-

onstrate a case where the algorithms were successfully used to identify a systematic

error in an existing dataset.

Introduction

To understand the behaviour of molecules such as proteins

in the living cell, an understanding of their interactions

with other molecules is critical. Protein interaction data

are generated by many different methodologies in low or

high throughput. The results from interaction studies are
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scattered across a broad spectrum of biological publica-

tions. This information is collected by the many interaction

databases in existence today (1, 2). In isolation, each piece

of experimental data can only contribute to the under-

standing of one specific biological process, but the combin-

ation of all interaction data gives researchers an overall

picture of the relationships between molecules in a cell,

a tissue or an organism. Consolidation of this data is thus

essential for the research community to give the most com-

plete data representation possible.

Dedicated teams of curators collect molecular inter-

action data from literature and accurately represent this in-

formation in a structured database. The type and amount

of information captured by different curation groups varies

in different resources. Rapid curation records only minimal

information about either the experiment or participating

molecules, MIMIx-level curation (3) gathers experimental

detail, but not additional information about the participat-

ing molecules provided by the detailed IMEx-level curation

(4), which describes all possible details the authors give

concerning a specific experiment and its molecular compo-

nents. It is, however, particularly important that all experi-

mental details under which each interaction was observed

are recorded. The field currently lacks a single method-

ology, which can unambiguously identify a molecular

interaction as being physiologically relevant in the intact,

living cell. All current methods for detecting protein–

protein and other molecular interactions are capable of

generating false-positive data. However, by combining

observations made using different experimental methodol-

ogies, it is possible to increase the confidence with which

the researcher can regard a particular interaction. If a spe-

cific interaction has been confirmed by multiple observa-

tions and/or experimental methodologies, more confidence

can be assigned to it. Despite over 10 years of work, no

database, nor indeed a compilation of all available scien-

tific data generated to date, can claim to fully describe the

interactomes of even well-studied model organisms such

as Saccharomyces cerevisiae or Homo sapiens. Thus, many

resources attempt to improve coverage by inferring

through computational approaches (e.g. phylogenetic

profiling, association methods, inference of interactions

from homologous structures) those interactions that are

not reported in the literature. Though predictive data

would not be expected to be as trustworthy as experimen-

tal data, both are important to assess the overall evidence

for an interaction.

Integration and comparison of data is essential to in-

crease the coverage of an entire interactome, but also to

increase confidence in a single interaction within an

interactome. Starting from 2002, the Human Proteome

Organisation Proteomics Standards Initiative (HUPO-PSI)

has made an effort to develop molecular interaction

data standards, data interchange formats and controlled

vocabularies with which to implement these standards in a

consistent manner (5, 6). The adoption of Proteomics

standard Initiative–Molecular Interaction (PSI–MI) stand-

ards by data providers and software tools has played an

important role in facilitating data integration. It is now

easy to query interactions from diverse and distributed

interaction resources and group evidences relating to the

same interaction.

The community has, however, not agreed yet on a gen-

erally accepted common scoring system for molecular

interactions (7)]. A set of different confidence measures for

molecular interactions exist. Many of these are specific to

particular experimental methodologies, for example, yeast

2-hybrid (8) or affinity purification coupled with tandem

mass spectrometry (9). Others use heuristic integration of

annotation evidences with third-party data such as the re-

sults of text-mining or Gene Ontology annotation of the

interacting protein pairs (10, 11). Scoring the interactions

according to the known topology of the network, the

‘wiring diagram’ of the cell, is the basis of another popular

set of methodologies (12, 13). However, the field is still

lacking a simple implementation of a confidence scoring

methodology, which works over any standards compliant

dataset and can readily be used by bench scientist to assess

the quality of their own data prior to publication using

code made publicly available to enable this. With the

objective of providing reusable tools for integrating

and scoring molecular interactions evidences, we present

MImerge and MIscore. The MImerge service groups and

merges evidences for the same interaction. MIscore pro-

vides a customizable scoring system reliant on the annota-

tion of experimental, predicted or inferred data from

which each interacting binary pair was generated using the

PSI–MI standards and format.

Methods

MImerge

MImerge recognizes groups of evidences of the same inter-

action, merging redundant annotations and identifying

novel information (Figure 1). Merging is performed by

matching interacting molecule pairs using a predefined set

of database identifiers and cross references. The algorithm

matches interactor molecules based on standard identifiers

such as UniProtKB (14), RefSeq (15), ROGID (16), or

ChEBI (17) accession numbers.

Input

The primary input of MImerge is a binaryInteraction java

object defined by the PSI MITAB java implementation
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[http://code.google.com/p/psimi/]. Alternatively, the

method accepts interactions in any of the versions of the

PSI MITAB formats (5, 6). To facilitate data retrieval,

MImerge can connect, query and fetch interaction data

from any of the Proteomics Standard Initiative Common

QUery InterfaCe (PSICQUIC) (7) services available in the

PSICQUIC registry.

Output

MImerge provides three outputs:

• a list of interactions

• a list of interactors

• a list of interactor synonyms

Each interaction is the result of merging all the experi-

mental evidences indicating that a specific pair of mol-

ecules interacts. The primary output is an object

containing all the new information provided by the ori-

ginal evidences. The ‘interaction objects field’ also retains

the original relationship information in fields such as pub-

lication, interaction type and detection method allowing,

for example, the separate scoring of all the individual

pieces of evidence for a particular binary interaction,

which can then be resolved into a single cumulative score.

This primary object can be easily exported into a merged

PSI–MI MITAB25 format. Thus the algorithm produces a

list of interactors with both references to the interaction

results and a list of synonyms found for each interactor.

Mapping

The PSI–MI formats provide three different fields in which

information used to identify an interactor can be stored:

(1) the unique identifier, (2) alternative identifiers and

(3) the aliases. MImerge accesses these three fields to iden-

tify cross-references, which could potentially identify

molecules with different identifiers but describing the

same entity. More details including examples of how to

use MImerge are available in http://code.google.com/p/

micluster/

MIscore

MIscore is a customizable, heuristic scoring system that

does not rely on a comparison with third-party data but

rather on the available annotation evidences associated

with an interaction. It is capable of scoring any type of

interaction evidence (experimental, inferred, predicted)

adhering to the MIMIx guidelines and being described

using the PSI–MI controlled vocabulary (CV) (5). The

method is agnostic to the type of interactor, working

equally well for protein–protein interactions, protein–

nucleic acid, drug-target or any combination of molecular

interactions. The PSI–MI data formats include a field in

which molecule type should be clearly defined, according

to an agreed set of CV terms, so the user may pre-filter out

molecule types which they do not wish to merge. Similarly,

the PSI–MI file uses CV terms to describe the experimental,

predicted or inferred evidence used to identify a specific

interaction. If the users only wish, for example, to work

with experimental data, they can filter the file first, remove

all predicted data and then run MIscore. Detailed annota-

tions will also score more highly than less detailed ones.

For example, use of a top-level term such as ‘experimental

interaction evidence’ will score less well than a more de-

tailed annotation of the methodology, such as ‘X-ray

crystallography’. The scoring system takes three factors

into account:

1. How the interaction was observed, predicted or

inferred (interaction detection method; MI:0001)

2. The type of interaction. Direct interaction, physical as-

sociation, co-localization and so forth. (interaction

type; MI:0190)

3. The number of publications reporting a specific

interaction

MIscore provides a score that represents the degree

of confidence in the existence of a particular interaction

by assessing the annotation of that specific interaction

in a standards-compliant dataset. The score given to an

interaction will increase as the number of experimental evi-

dences supporting that interaction increases. Experimental

evidences contribute more highly to the final score than evi-

dences derived by predictive algorithms or literature text-

mining methods. Combinations of evidences, such as low

scoring experimental interactions (e.g. co-localizations)

supported by non-experimental evidence provide a higher

degree of confidence than either would in isolation. In the

Figure 1. Schematic of the merging of interactions between molecules

M1–M3, described in publication P1–3 by interaction detection methods

D1–3 and with interaction types T1 and T2.
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versions of MIscore implemented by the IntAct database

and for the filtering of data for export from IntAct to

UniProtKB, the values have been selected to reflect the

ethos of these databases, with a strong emphasis on there

being experimental evidence for the existence of a physical

interaction. Full details of the scores used as available on

the IntAct ‘FAQ—Frequently Asked Questions’ section.

Databases such as BioGRID (18), which captures genetic

evidences for an interaction, may prefer to use different

weighting when implementing this scoring system, and the

algorithm has been specifically designed to enable this.

In Table 1, the evidence for AKT interacting protein

(AKTIP) binding to hook microtubule-tethering protein

(HOOK2) in various databases has been merged and

scored. IntAct provides fewer pieces of evidence than

STRING (11) but scores higher because it offers detailed

experimental evidence of a direct interaction. A meta-

database such as Mentha (19), that integrates experimental

evidences from different sources, gives an even higher score

(0.76 in the case of this specific protein pair). If we look

for experimental evidences in all the PSICQUIC services,

we find 12 evidences from five different databases resulting

in a high confidence score of 0.81. Thus, merging the

predictive and experimental evidences increases the confi-

dence score for this interaction.

Score calculation

By default MIscore presents a normalized score (SMI)

between 0 and 1 reflecting the reliability of its combined

experimental evidence. This score is calculated from

the weighted sum of the three different sub-scores listed

above: number of publications (p), experimental detection

methods (m) and interaction types (t) found for the inter-

action (Figure 2). The importance of each variable in

the main equation can be adjusted using a weight factor.

Table 1. Merging and scoring evidences of the interaction between AKTIP_HUMAN and HOOK2_HUMAN

PSICQUIC service Interaction

evidences

Publications Interaction types Detection methods MIscore

STRING 3 1* – Experimental interaction detection

Inferred by curator

Predictive text mining

0.20

VirHostNet 1 1 Physical association Two hybrid 0.37

Spike 1 1 Direct interaction Coimmunoprecipitation 0.44

IntAct 2 2 Physical association Two hybrid pooling approach

Two hybrid fragment pooling approach

0.35

APID 1 1 Association Two hybrid pooling approach 0.31

Menthe 7 3 Physical association

Direct interaction

Affinity chromatography technology

Two hybrid

Two hybrid pooling approach

Two hybrid fragment pooling approach

0.76

Spike

IntAct

VirHostNet

4 2 Direct interaction

Physical association

Two hybrid

Coimmunoprecipitation

Two hybrid pooling approach

Two hybrid fragment pooling approach

0.68

APID

mentha

Spike

IntAct

VirHostNet

12 3 Direct interaction

Physical association

Association

Two hybrid

Coimmunoprecipitation

Two hybrid pooling approach

Two hybrid fragment pooling approach

Affinity chromatography technology

0.81

Spike

IntAct

VirHostNet

APID

mentha

STRING

15 3 Direct interaction

Physical association

Association

–

Two hybrid

Experimental interaction detection

Inferred by curator

Predictive text mining

Coimmunoprecipitation

Affinity chromatography technology

Two hybrid pooling approach

Two hybrid fragment pooling approach

0.81

MIQL query “identifier:(Q9H8T0) AND identifier:(Q96ED9)”. *Predicted data from STRING does not have any publications assigned, so publication number

here is attributed only for experimentally derived data, which is imported from other databases.
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Each of these sub-scores is also represented by a score

between 0 and 1.

SMI ¼
Kp � SpðnÞ þ Km � SmðcvÞ þ Kt � StðcvÞ

Kp þ Km þ Kt

K½p;m;t� �Weight factor jjK 2 ½0� 1�

S½p;m;t� � Scores jj S 2 ½0� 1�

Publication score

The publication score takes into account the number of

different publications supporting an interaction.

Sp � Publication Score jj Sp 2 ½0� 1�

Sp ¼ logðbþ1Þðnþ 1Þ

n:Number of publications reporting the interaction

jjSp � n 2 N½0;1; 2;3:::�.
b:Number of publications with maximum score; default:

b¼ 7

Method score

The method score takes into account the diversity of inter-

action detection methods reported for an interaction.

Sm �Method Score jj Sm 2 ½0� 1�

SmðcviÞ ¼ logðbþ1Þðaþ 1Þ

a ¼
P
ðscvi � niÞ

b ¼ aþ
P
ðMaxðGscviÞÞ

scv is a normalized score between 0 and 1 associated to an

interaction detection method term, as defined by the MI

ontology. An MI detection method ontology term without

an assigned score inherits the score from the nearest par-

ent. Gscv represents a category of scores normally group-

ing scores with a common parent. n is the number of times

an ontology term is reported. The scv score values are cus-

tomizable; however, detection method ontology terms are

assigned with a default score based on the assessment of

the HUPO PSI–MI consortium:

scv1¼ 1.00 jj cv1¼MI:0013 j biophysical

scv2¼ 0.66 jj cv2¼MI:0090 j protein complementation

assay

scv3¼ 0.10 jj cv3¼MI:0254 j genetic interference

scv4¼ 0.10 jj cv4¼MI:0255 j post transcriptional

interference

scv5¼ 1.00 jj cv5¼MI:0401 j biochemical

scv6¼ 0.33 jj cv6¼MI:0428 j imaging technique

scv7¼ 0.05 jj cv7¼ unknown j unknown

Gscv1¼ scv1 j Gscv2¼ scv2 j Gscv3¼ scv3 j Gscv4¼ scv4

jGscv5¼ scv5 j Gscv6¼ scv6

Type score

The interaction type score takes into account the diversity

of interaction types reported for an interaction.

St:Type Score j j St2 [0�1]

St(cvi)¼ log(bþ 1)(aþ 1)

a¼
P

(scvi�ni)

b¼ aþ
P

(Max(Gscvi))

Figure 2. The MIscore normalized score calculates a composite score for an interaction based on the number of publications reporting the interaction,

the reported interaction detection methods and interaction types.
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As in the method score, scv is a normalized score be-

tween 0 and 1, in this case associated to an interaction type

CV term. An MI-type ontology term without an assigned

score inherits the score from the nearest parent.

Interaction-type scores are also customizable but by de-

fault they have assigned a heuristic score based on the as-

sessment of the HUPO PSI–MI consortium:

scv1¼ 0.10 jj cv1¼MI:0208 j genetic interaction

scv2¼ 0.33 jj cv2¼MI:0403 j colocalization

scv3¼ 0.33 jj cv3¼MI:0914 j association

scv4¼ 0.66 jj cv4¼MI:0915 j physical association

scv5¼ 1.00 jj cv5¼MI:0407 j direct interaction

scv6¼ 0.05 jj cv6¼ unknown j unknown

Gscv1¼ scv1 j Gscv2¼ scv2 j Gscv3¼ scv3, scv4, scv5

More details including examples of how to use MIscore

are available at https://code.google.com/p/miscore/.

Results

Tools

A number of services have been built based on MIscore

and MImerge, which allow users, with or without technical

skills to merge and score interaction evidences. All these

services are open source and available under the ‘GNU

GPL v3’ license.

1. Java APIs

Java APIs are available for MIscore and MImerge (https://

code.google.com/p/miscore/ and https://code.google.com/

p/micluster/, respectively). MImerge includes MIscore as a

dependency, providing the option of merging interactions

and scoring groups of evidences. An API has also been im-

plemented to calculate the score distribution of a collection

of interactions from a database.

2. Web services

To facilitate programmatic access, a REST web service

based on a MImerge API is publicly available. The service

permits users to merge and score interactions from

PSICQUIC services using the PSI–MI query language

(MIQL) or alternatively, from a PSI–MITAB file.

Additionally, MIscore is available as a PSISCORE web ser-

vice providing evidence scores based on data from

PSICQUIC services (7).

The service provides three different methods, (i) ‘cluster’

that sends a request to the server to start a merging job and

returns a job id; (ii) ‘status’ that returns the status of a par-

ticular merging job and (iii) ‘download’ that returns a

PSI–MITAB file containing the processed interactions.

To prevent abuse, the service stops automatically if the

merging takes more than a day or if the input file is

>5 MB.

3. Web interface

To enable human access to the web service and as an

example of a use case for the web service, a web interface

has been built (http://dachstein.biochem.mpg.de:8080/

mimergeclient/). The interface inherits all the functionality

available in the web service for MImerge and MIscore.

MIscore

To evaluate the performance of MIscore, we created a

positive and a negative dataset. Interactions from Mentha

were downloaded and the datasets were built according to

the following criteria:

Positive dataset selection: the interactions have been re-

ported (i) by three or more detection methods and

(ii) in humans. At the time of writing, 12 778 unique

interactions met the specified standards out of which a

random subset of 500 was selected, evidences for the se-

lected interactions were collected, merged and scored.

Negative dataset selection: the interactions have been re-

ported (i) by the Negatome Database (43) and (ii) in

humans. At the time of writing, 397 unique interactions

met the specified standards, evidences for those inter-

actions were collected, merged and scored.

Using the datasets described above, true positive and

false positive rates were calculated for different cutoffs and

then plotted (Figure 3). The figure suggests that MIscore

and Mentha perform similarly since ROC curves have

comparable area under the curve (AUC). The Mentha

ROC curve rises steeply, which is consistent with higher

precision. However, the MIscore ROC recovers at the end.

The maximal Matthews correlation coefficient (MCC)

was calculated to find the cutoff point for optimal

score predictions. As seen in Table 2, the optimal cutoff

value for MIscore is 0.485 (which is close to the heuristic

cutoff of 0.45 proposed by IntAct) while Mentha score op-

timal cutoff value is 0.343.

Finally, the precision, accuracy and recall of both scor-

ing methods were calculated for the optimal cutoffs

(Table 2). MIscore precision, accuracy and recall values

are higher than those of Mentha, meaning that (at that

point) MIscore classifies positives and negatives better

than Mentha.

MImerge

MImerge was used to merge interactions from IntAct,

BioGRID, MINT and DIP (20). At the moment of writing,
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the databases provided a total of 1 291 743 interactions,

which were reduced to 865 642 after the merging process,

implying that almost 33% of the interactions reported are

redundant.

A closer inspection of the resulting data reveals

BioGRID appeared to have no interactions in common

with the other databases. That is not surprising since

BioGRID annotates interactors using entrez gene ids and

does not provide UniProtKB accessions in their MITAB

download (as do the other databases) making it impossible

for MImerge to find common interactions between

BioGRID and the rest of the selected data providers.

Figure 4 shows MImerge results for DIP, IntAct and

MINT. Only 1.54% of the interactions are shared between

the three databases, 10.86% are shared between two data-

bases and 87.6% are not shared at all. The low redundancy

values observed in the aforementioned databases are

explained by the aim of curating different parts of the lit-

erature to increase coverage of the annotated interactome,

an IMEx curation policy.

Score distribution analysis across molecular

interaction data providers

MImerge and MIscore were used to calculate the score dis-

tribution across several molecular interaction databases

(Table 3). Databases have been grouped into four catego-

ries based on the type of evidences served: (i) internally

curated (IC), (ii) IMEX curated (IM), (iii) predicted (P) and

(iv) imported (I) (Figure 5). Not surprisingly, IMEX cura-

ted databases tend to have a proportionally higher score

distribution since IMEX defines a common curation strat-

egy that aims to provide a high standard dataset, whereas

databases serving predicted evidences tend to have a lower

score due to lack of additional support to prove an

interaction.

Also, it was observed that databases that import predic-

tions (in particular Mentha) show a score distribution in-

crease, shifting scores to higher values, when compared

with the databases they integrate. The score increases

when merging evidences was further explored by merging

and scoring evidences of the interaction between

AKTIP_HUMAN and HOOK2_HUMAN (Table 1).

MIscore does not provide an interaction quality score per

se but rather a measure of how well annotated an inter-

action is. Therefore, it would be expected that the combin-

ation of evidences from different data sources contribute to

increase the score. However, the observed increase is not

as great as one might expect. The slight increase is due

to the high number of redundant interactions, which are

repeated by secondary databases and which do not add

value to the score. Redundancy in molecular interaction

databases can be high (29) largely caused by those data-

bases that do not collect novel curation or predictions

but rather import and present data from other interaction

databases. MImerge removes such redundancies by merg-

ing interactions from secondary databases such as

iRefIndex (16).

Figure 3. MIscore and Mentha true-positive rates vs. the false-positive

rates for different score cutoffs.

Table 2. Performance measures used to evaluate MIscore

and Mentha scores

Score Accuracy Precision Recall MCC Cutoff

MIscore 0.755 0.701 0.978 0.541 0.485

Mentha 0.673 0.660 0.854 0.474 0.343

Figure 4. MImerge results for DIP, IntAct and MINT. Only 1.54% of the

interactions are shared between the three databases, 10.86% are shared

between two databases and 87.6% are not shared at all.
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Services using MImerge and MIscore to

selectively display or import molecular

interactions

MImerge and MIscore services are currently being used by

several applications to filter, sort and select molecular

interactions.

UniProt

An extended version of the MIscore is being used by

UniProtKB (12), Gene Ontology annotation project (36)

and NeXtProt (37). Those resources calculate scores of

interactions from different IMEx databases (4) to select-

ively import interactions above a defined score threshold.

Additional rules ensure these are true binary interaction ra-

ther than complex components, which frequently co-purify

and thus score highly as interacting molecules.

IntAct

The IntAct database (32) and its web interface use MIscore

to score molecular interactions. By default, the IntAct

web interface displays interactions sorted according to

the score provided by MIscore, with the most highly scor-

ing binary pairs displayed first. When filtering data for

subsequent reanalysis, the IntAct database regards data

with a score of >0.6 as high-confidence and 0.45–0.6 as

medium confidence but users are free to use their own

cutoffs when using the Search tool to filter the data as they

see fit.

EMBL-EBI search

The EMBL-EBI search (38) uses MImerge and MIscore

to provide non-redundant summary information about

molecular interactions, selecting specifically IntAct inter-

actions with a high score.

PSICQUIC

MIscore scores are also available in several PSICQUIC ser-

vices (UniProt, IntAct, MINT, ChEMBL (24), I2D-IMEx

(30), InnateDB-IMEx (26), MBInfo (http://www.mechano-

bio.info), MolCon (http://www.molecularconnections.

com) and UniProt). It is possible to query all these services

by score using MIQL.

COPaKB

The Cardiac Organellar Protein Atlas Knowledgebase (39)

presents interactome views for each proteome module.

The interactomes are built using MImerge to integrate pro-

tein interaction evidences from IMEx resources. It also

makes use of the weight of MIscore scores to create the

interactome layout. [http://www.heartproteome.org/copa/

Modules.aspx]

Cytoscape

Cytoscape (40) has added the option to merge and score

PSICQUIC molecular interactions using MImerge and

MIscore. This option is part of the core implementation

in version 3.1 as ‘intact-MIscore’, a column that results

Figure 5. MIscore distribution proportion for the molecular interaction databases in Table 3. Databases have been grouped in four categories based

on the type of evidences provided: imported (I), internally curated (IC), IMEX curated (IM) and predicted(p).
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from using the option ‘Automatic Network Merge

(Experimental)’ in the import tool.

A Case Study for Literature-Based Protein

Interaction Curation

Literature curation provides useful reference sets for further

data analysis, prediction and validation. A confidence score

such as MIscore can play an important role in facilitating

such tasks. As an example, we present an actual case of how

MIscore was used to analyse a submission error in an

experimental dataset of high-throughput protein interactions.

The IntAct database accepted in 2008 a submission re-

quest to curate a high-throughput experimental dataset

of �700 interactions, which were subsequently published

(41). After publication the authors discovered that one-

third of the reported interactions were effectively

randomized due to a data management error. This prob-

lem was reported to IntAct and the data was properly

re-curated, and an erratum was published (42).

As is shown in Figure 6, the incorrect interactions cre-

ated by the error consistently received a low MIscore,

when compared with the correctly annotated data, which

has scored more highly as it has been confirmed by add-

itional interaction evidences present in the database.

Similarly, false-positive data generated by a single tech-

nique would be expected to receive a lower score than a

‘true’ interaction which has been confirmed by multiple

methods. This demonstrates the value of merging data

obtained by detailed literature curation with interactions

evidences obtained from high-throughput protein inter-

action experiments and utilizing MIscore to provide a

numerical assessment scoring of confidence in each inter-

action evidence within a dataset.

Discussion

In this work, we present MImerge and MIscore, which pro-

vide simple scoring heuristics for molecular interactions

dependent on available interaction evidence, thus provid-

ing a framework to integrate and score literature curated

interaction datasets. There are multiple algorithms merg-

ing and scoring interactions (Table 1). Ten out of 27

PSICQUIC services explicitly state the use of MIscore

while another 10 use a different algorithm. However, most

of them are not reported in the scientific literature (to our

Figure 6. Distribution of IntAct MIscores for the pairwise interactions reported in Ref. 23. A clear and statistically significant difference in score

distribution is evident between the 54% of the interactions which were correctly reported and the 46% which were effectively randomized. A Mood

test for comparison of non-normally distributed samples was used to compare both groups.
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knowledge, STRING is the only algorithm currently pub-

lished (35)).

MIscore differs from other scoring methods in that it re-

quires the minimum information needed for reporting a

molecular interaction experiment to score an interaction,

while other scoring algorithms depend on external data,

either based on orthology detection, or ‘gold standard’ ref-

erence sets. The algorithms are customizable by the user,

who can weight the interaction detection method and

interaction type according to their own confidence in the

different methodologies and also alter the maximum num-

ber of publications they wish to score. Default values have

been supplied and used throughout in the examples.

MIscore and MImerge can help in resolving conflicting

or erroneous information on molecular interactions pro-

vided by third parties. We have outlined an actual example

of how the results of MImerge and MIscore were used to

assess confidence levels for a high-throughput protein

interaction dataset and consistently assigned low scores to

an erroneous subset within it, thus demonstrating the prac-

tical relevance of the schema. Based on our experience,

MImerge and MIscore can thus be used for identifying

molecular interactions in interaction databases that are

wrongly annotated.

With MIscore and MImerge come a set of associated

tools, which together allow the user to easily access these

two algorithms. The tools have been created both for

bench-researchers and also for third-party services that

need to integrate and measure interacting molecule pairs.

While providing community agreed default settings,

MIscore is customizable for specific use cases.
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