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Abstract

Objectives: Neuregulin 1 signaling plays an important role in cardiac trabecular

development, and in sustaining functional integrity in adult hearts. Treatment with

neuregulin 1 enhances adult cardiomyocyte differentiation, survival and/or function

in vitro and in vivo. It has also been suggested that recombinant neuregulin 1b1

(NRG1b1) induces cardiomyocyte proliferation in normal and injured adult hearts.

Here we further explore the impact of neuregulin 1 signaling on adult cardiomyocyte

cell cycle activity.

Methods and Results: Adult mice were subjected to 9 consecutive daily injections

of recombinant NRG1b1 or vehicle, and cardiomyocyte DNA synthesis was

quantitated via bromodeoxyuridine (BrdU) incorporation, which was delivered using

mini-osmotic pumps over the entire duration of NRG1b1 treatment. NRG1b1

treatment inhibited baseline rates of cardiomyocyte DNA synthesis in normal mice

(cardiomyocyte labelling index: 0.019¡0.005% vs. 0.003¡0.001%, saline vs.

NRG1b1, P,0.05). Acute NRG1b1 treatment did result in activation of Erk1/2 and

cardiac myosin regulatory light chain (down-stream mediators of neuregulin

signalling), as well as activation of DNA synthesis in non-cardiomyocytes,

validating the biological activity of the recombinant protein. In other studies, mice

were subjected to permanent coronary artery occlusion, and cardiomyocyte DNA

synthesis was monitored via tritiated thymidine incorporation which was delivered

as a single injection 7 days post-infarction. Daily NRG1b1 treatment had no impact

on cardiomyocyte DNA synthesis in the infarcted myocardium (cardiomyocyte

labelling index: 0.039¡0.011% vs. 0.027¡0.021%, saline vs. NRG1b1, P.0.05).

Summary: These data indicate that NRG1b1 treatment does not increase

cardiomyocyte DNA synthesis (and consequently does not increase the rate of
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cardiomyocyte renewal) in normal or infarcted adult mouse hearts. Thus, any

improvement in cardiac structure and function observed following neuregulin

treatment of injured hearts likely occurs independently of overt myocardial

regeneration.

Introduction

Many forms of cardiovascular disease are associated with acute or chronic

cardiomyocyte loss. Although the adult mammalian heart retains a limited

potential for regenerative growth (via proliferation of pre-existing cardiomyocytes

and/or de novo cardiomyogenic differentiation), the magnitude of this activity has

been the subject of considerable debate [1, 2]. The prevalence of myocardial

insufficiency in diseased hearts underscores the reality that the intrinsic

regenerative capacity of the adult heart is insufficient to repair substantive injury.

Considerable effort has therefore been invested to develop interventions aimed at

limiting the loss of at risk cardiomyocytes, and at enhancing the function of

surviving cardiomyocytes in diseased hearts.

The neuregulins are a family of cytokines which signal through the ErbB family

of tyrosine kinase receptors [3–6]. There are four neuregulin genes, each of which

can give rise to multiple cytokines via alternative splicing. Ablation of the

Neuregulin 1 gene [7, 8], the neuregulin 1 receptor ErbB4 [9], or the ErbB4

hetero-dimerizing partner ErB2 [10] resulted in aborted trabecular growth which

was accompanied by embryonic lethality, suggesting that neuregulin 1 signaling

might regulate cardiomyocyte proliferation during early cardiac development.

Although this view was supported by several cell culture studies [11, 12],

subsequent gene targeting experiments suggested that neuregulin 1 regulates

cardiomyocyte differentiation and maturation during early development [13, 14].

It is also apparent that neuregulin 1 signaling plays an important role in post-

natal cardiac function [15]. Although mice with cardiac-restricted ablation of the

ErbB2 [16] or ErbB4 [17] receptor were normal at birth, they developed lethal

dilated cardiomyopathy in adult life. Moreover, down-regulation of ErbB2/4 was

observed in rats with pressure overload-induced heart failure [18]. Similarly,

decreased myocardial ErbB2 and ErbB4 signaling was observed in failing human

myocardium [19], and receptor levels were observed to normalize following

mechanical unloading [20]. It is also noteworthy that breast cancer patients

treated with Herceptin/Trastuzmab (an inhibitory ErbB2 antibody) were more

susceptible to developing cardiomyopathy, particularly when co-treated with

anthracycline [21, 22].

Collectively, these studies indicate that decreased neuregulin signaling is

associated with adverse cardiac function in post-natal hearts. This view is

supported by the observation that increasing neuregulin signaling has a positive

impact on cardiomyocytes. For example, treatment with recombinant neuregulin
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1 increased expression of genes associated with enhanced cardiomyocyte survival

and/or function in vitro and in vivo [23–28]. Neuregulin treatment attenuated

doxorubicin-induced cardiotoxicity [29, 30], and improved cardiac function in

myocardial infarction, viral myocarditis and rapid pacing heart failure models

[31]. These findings prompted several clinical trials, which to date have suggested

that neuregulin treatment may improve cardiac function in patients with chronic

heart failure [32, 33]. It has also been suggested that treatment with recombinant

NRG1b1 (comprising neuregulin 1 amino acid residues 176–256) induced

cardiomyocyte proliferation in adult mice [34] with no impact on cardiomyo-

genic stem cell activity, raising the possibility that enhanced cardiomyocyte

renewal might underlie some of the beneficial effects of neuregulin 1 treatment in

patients. In contrast, a subsequent study suggested that NRG1b1 promoted

myocardial renewal in vivo via a combination of cardiomyogenic stem cell

activation and cell cycle induction [35], although issues regarding the fidelity of

the assay used to detect cardiomyocyte renewal in that study have previously been

raised [36].

In this report, we further examined the impact of NRG1b1 treatment on

cardiomyocyte renewal by monitoring DNA synthesis using either bromodeox-

yuridine (BrdU, delivered via implanted osmotic mini-pumps) or tritiated

thymidine (3H-Thy, delivered via IP injection) incorporation. The experiments

employed transgenic mice expressing a cardiomyocyte-restricted, nuclear localized

reporter to facilitate accurate cardiomyocyte nuclear identification in tissue

sections. NRG1b1 treatment inhibited baseline rates of cardiomyocyte DNA

synthesis in normal mice, and had no impact on cardiomyocyte DNA synthesis at

the infarct border zone at 7 days post-injury. These results suggest that any

benefits on cardiac structure and function observed following NRG1b1 treatment

occur independently of enhanced cardiomyocyte renewal.

Methods

Mice

MHC-nLAC transgenic mice [37] utilize the mouse alpha-cardiac MHC promoter

to target expression of a nuclear-localized b-galactosidase reporter to cardio-

myocytes. Experimental mice were generated in an inbred DBA/2J background;

non-transgenic breeding mates were obtained from the Jackson Laboratory (Bar

Harbor, Maine). Experiments were initiated when mice reached 12 weeks of age.

Experimental mice were treated with recombinant human NRG1b1 (corre-

sponding to the EGF domain, amino acid residues 176–256, #396-HB, R&D

Systems, Minneapolis, MN), at a dose of 2.5 micrograms per mouse per IP

injection, dissolved in saline containing 0.1% Bovine Serum Albumin (BSA);

control mice received vehicle alone. Ethics statement: all animal manipulations

were performed in accordance with National Institutes of Health Guidelines and

were approved by the Institutional Animal Care and Use Committee (Study
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#10286). All surgeries were performed under isoflurane anesthesia, and all efforts

were made to minimize suffering.

Myocardial Infarction

Myocardial infarction (MI) was performed as described previously [38]. Briefly,

the animals were intubated and ventilated with 2% isoflurane and supplemental

oxygen. Depth of anesthesia was monitored via tail pinch and stretch reflex. Via

left thoracotomy, the left coronary artery was ligated at the inferior border of the

left auricle and the animals allowed to recover for 24 hours with supplemental

oxygen.

Cardiomyocyte DNA Synthesis Assay

For BrdU labeling, mice were implanted with osmotic mini-pumps (Alzet, #1002,

0.25 microliter/hour, Palo Alto, California) containing BrdU (Roche #280879,

Indianapolis, Indiana) at a concentration of 16 mg/ml in physiologic saline.

Minipump implantation was as described previously [39]. Hearts were harvested

after nine days of BrdU labeling, fixed in 4% paraformaledhyde, and were then

embedded in paraffin and sectioned at 10 microns using standard methods [40].

Sections were subjected to antigen retrieval by incubation in sodium citrate buffer

(0.01 M Tri-sodium citrate, 0.05% TWEEN 20, pH 6.0) for 30 minutes at 100 C̊.

Non-specific immune reactivity was blocked using a M.O.M. detection kit (Vector

Laboratories, Burlingame, California), and sections were then processed for b-

galactosidase (Life Technologies #A-11132 rabbit anti b-galactosidase, Carlsbad,

California) and BrdU (Roche #11296736001 mouse monoclonal anti BrdU)

immune reactivity. Signal was developed using Alexa 555-conjugated goat anti

rabbit and Alexa 488-conjugated goat anti mouse antibodies (Life Technologies,

#A21429 and #A11001, respectively). Cardiomyocyte DNA synthesis was

identified by the co-localization of red nuclear b-galactosidase immune reactivity

and green BrdU immune reactivity.

Alternatively, mice received a single injection of tritiated thymidine (3H-Thy,

200 mCi i.p. at 20 Ci/mM, New England Nuclear, Boston, Massachusetts). Hearts

were harvested 4 hours later, immersion fixed in 50 mM cacodylic acid/1%

paraformaldehyde, cryoprotected in 30% sucrose, embedded and sectioned at 10

microns using standard histologic techniques [40]. Sections were reacted with

1 mg/ml 5-bromo-4-chloro-3-indolyl-b-D-galactoside (X-GAL) in 5 mM potas-

sium ferricyanide, 5 mM potassium ferrocyanide, 2 mM magnesium chloride, 1x

PBS. The sections were counter-stained with Hoechst 33342 (Invitrogen,

Carlsbad, CA), and autoradiographic emulsion was applied and processed as

described previously [41]. Cardiomyocyte DNA synthesis was identified by the co-

localization of blue nuclear b-galactosidase activity and silver grains.
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Western blot analyses

Hearts were homogenized in NET buffer (150 mM NaCl, 5 mM EDTA, 50 mM

Tris pH 8.0, 1% NP-40) containing protease (Roche #11 836 170 001,

Indianapolis, Indiana) and phosphatase (Thermo Scientific #78420, Rockford,

Illinois) inhibitors, and protein content was quantitated using the Coomassie Blue

method (Pierce, Rockford, IL) as described [42]. Samples were denatured in

sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) loading

buffer for 5 min at 95 C̊ and resolved on 10% SDS-PAGE gels. Fractionated

proteins were then electrotransferred from the gel to nitrocellulose (Amersham)

filters in Towbin buffer at 200-mA constant current and analyzed by Western

blotting. The filters were stained with 0.1% naphthol blue-black in 45% methanol,

10% acetic acid to assess the efficiency of transfer. Antibodies used recognized

Erk1/2 p42/p44 and p-Erk1/2[Thr202/Thy204] (#s 9102 and 4377, respectively,

Cell Signaling, Danvers MA). To detect phosphorylation of cardiac myosin

regulatory light chain (RLC), tissue was snap frozen in liquid nitrogen and

thawed/homogenized directly in 10% tricholoro acetic acid (TCA)/10 mM DTT.

Acid-precipitated proteins were washed free of TCA with ethyl ether and

processed for urea/glycerol PAGE as previously described [43]. Total urea-

solubilized samples (4 mg) were separated by urea/glycerol PAGE. Phosphorylated

and non-phosphorylated RLC were measured by immunobloting with a total

myosin antibody (Enzo, F109 3E1), used at 1:5000 dilution in 3% BSA.

Dispersed cell analyses

Isolated cardiomyocytes were prepared by retrograde perfusion with collagenase

[39]. Animals were heparinized (10 ml/kg ip, Sigma, St. Louis, MO) approxi-

mately 5 minutes prior to sacrifice. Hearts were removed and then hung by the

aorta on 23 gauge cannulae, and perfused with phosphate buffered saline (PBS)

followed by 0.17% collagenase (Type I, Worthington Biochemical, Freehold NJ)

in PBS. Hearts were perfused until flaccid, and ventricular cells obtained by

removing the lower 75% of the heart, mincing the tissue with scissors, and then

triturating with a Pasteur pipette. Cell suspensions were immediately placed in

several volumes of 50 mM cacodylic acid/1% paraformaldehyde. After fixation,

the cell suspensions were filtered through a fine mesh and reacted with X-GAL for

2 hours at 37 C̊, and then washed three times in PBS. The cell suspensions were

then incubated in block solution (phosphate-buffered saline containing 0.1%

Tween 20, 1% BSA and 10% goat serum) for one hour, followed by incubation

with anti-cardiac alpha-actinin antibody (# A7811, Sigma-Aldrich, St. Louis MO)

at a 1:500 dilution in block solution for one hour, followed by incubation with

goat anti-mouse Alexa 555 (#A-21137, Invitrogen) at a 1:10 dilution in block

solution for 1 hour. Cells were washed 3x with PBS between incubations. After

processing, the cells were smeared onto positively charged slides (Superfrost Plus,

Fisher, Pittsburgh, PA), and allowed to dry.
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Statistics

Results were expressed as mean ¡ SEM. Comparisons between two groups were

performed using the unpaired Student’s t test. All tests were two-tailed. Data were

considered statistically significant at p,0.05.

Results

MHC-nLAC mice, which are maintained in an inbred DBA/2J genetic

background, were used to monitor the impact of NRG1b1 on cardiomyocyte

DNA synthesis. When used in conjunction with BrdU incorporation, cardio-

myocyte DNA synthesis is identified by the co-localization of red anti-b-

galactosidase and green anti-BrdU immune reactivity in tissue sections. Adult

MHC-nLAC mice were implanted with mini-osmotic pumps containing BrdU.

The mice then received a total of 9 consecutive daily injections of recombinant

NRG1b1 (2.5 mg/injection I.P.; control mice received vehicle only). Hearts were

harvested 5 hours after the last injection, sectioned, and the sections processed for

immune reactivity. Examples of DNA synthesis as detected by this assay are shown

in Fig. 1A. Surprisingly, there was a reduction in the number of ventricular

cardiomyocyte nuclei synthesizing DNA in mice receiving NRG1b1 as compared

to mice receiving vehicle alone (Table 1, Experiment 1). To confirm BrdU

delivery, small intestine from the NRG-treated mice was harvested and processed

for anti-BrdU immune reactivity (the rapid turn-over of intestinal microvilli

epithelium provides a convenient control for the presence of modified nucleotide

[44]). BrdU signal was readily detected from the crypt to the tip of the villi

(Fig. 1B).

To determine if genetic background might influence the response to NRG1b1

treatment, cardiomyocyte DNA synthesis was compared in mice with DBA/2J vs.

[C57Bl/6J6DBA/2J] F1 backgrounds. The mice received 9 consecutive daily

injections of recombinant protein; 3H-Thy was injected one hour after the final

NRG1b1 treatment. The hearts were harvested 4 hours later, sectioned, stained

with the chromogenic b-galactosidase substrate X-GAL and processed for

autoradiography. When MHC-nLAC mice are analyzed in conjunction with 3H-

Thy incorporation and autoradiography, cardiomyocyte DNA synthesis is

identified by the co-localization of the blue X-GAL reaction product and silver

grains (Fig. 1C). No difference in cardiomyocyte DNA synthesis was observed in

NRG1b1 treated mice with DBA/2J vs. [C57Bl/6J6DBA/2J]F1 genetic back-

grounds (Table 1, Experiment 2). To determine if higher levels of NRG1b1 would

promote cardiomyocyte DNA synthesis, MHC-nLAC mice (DBA/2J background)

were given 3 consecutive daily injections of a 3-fold greater dose of recombinant

protein. 3H-Thy was injected one hour after the final NRG1b1 treatment and the

hearts were harvested 4 hours later and processed. No increase in ventricular

cardiomyocyte DNA synthesis was detected in mice with the higher NRG1b1 dose

as compared to the lower dose (Table 1, Experiment 3).
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To confirm that NRG1b1 injection induced biological activities in our hands,

mice were given a single injection of NRG1b1 (2.5 mg) and hearts were harvested

90 minutes later. Protein lysate prepared from the hearts was then processed for

Western blot analyses. Previous studies utilized phosphorylation of Erk1/2 and

cardiac myosin regulatory light chain (RLC) as indicators of NRG1b1 biological

activity in vivo [31, 43]. In agreement with these previous studies, NRG1b1

treatment resulted in a statistically significant increase in the level of

phosphorylation of both proteins (Fig. 2A). A 2.2-fold increase in the number of

non-cardiomyocytes exhibiting DNA synthesis after 9 consecutive daily injections

of NRG1b1 (analyzed by 3H-Thy injection at one hour after the last treatment,

Fig. 2B) was observed, further indicating that NRG1b1 elicited a biological

response in our hands. Previous studies demonstrated that MHC-nLAC mice have

a high penetrance of transgene expression (that is, the percentage of MHC-nLAC

cardiomyocytes which exhibit nuclear b-galactosidase activity). To determine if

NRG1b1 suppressed the penetrance of transgene expression (which could

Fig. 1. Examples of cardiomyocyte DNA synthesis assay. (A) Use of BrdU to monitor cardiomyocyte DNA synthesis in non-injured adult mice receiving 9
consecutive daily injections of NRG1b1 (BrdU was delivered using a mini-osmotic pump). Left panel shows anti-b-galactosidase immune reactivity, middle
panel shows anti-BrdU immune reactivity, and right panel shows the merged image. Arrow indicates a BrdU positive cardiomyocyte nucleus, arrowhead
indicates a BrdU positive non-cardiomyocyte nucleus. Bar510 microns. (B) BrdU incorporation in the nuclei of the small intestine microvilli epithelial cells of
an NRG1b1-treated mouse. Note the absence of BrdU signal in the muscularis mucosae zone (asterisk). Bar510 microns. (C) Use of 3H-Thy to monitor
cardiomyocyte DNA synthesis in non-injured adult mice receiving 9 consecutive daily injections of NRG1b1 (3H-Thy was delivered as a single bolus 1 hour
after the last NRG1b1 treatment). Arrow indicates a 3H-Thy positive cardiomyocyte nucleus, arrowhead indicates a 3H-Thy positive non-cardiomyocyte
nucleus. Bar510 microns.

doi:10.1371/journal.pone.0115871.g001
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negatively impact the ability to detect cardiomyocyte DNA synthesis in our assay),

MHC-nLAC mice received 9 consecutive daily injections of recombinant protein.

Five hours after the last injection, the hearts were harvested and dispersed

cardiomyocyte preparations were generated via retrograde collagenase perfusion.

The cells were then processed for anti-actinin immune reactivity (to identify

cardiomyocytes) and X-GAL reaction (to monitor transgene penetrance). Of a

total of 1,241 cardiomyocytes examined from 2 different NRG1b1-treated

animals, 99.7% exhibited nuclear b-galactosidase activity (Fig. 3): 1130 of 1133

multi-nucleated (99.7%) and 107 of 108 mono-nucleated (99.1%) cardiomyocytes

were X-GAL positive. These values are completely consistent with previous

analyses of untreated adult MHC-nLAC mice [37]. Thus, NRG1b1 treatment did

not impact the penetrance of MHC-nLAC reporter transgene expression.

To determine if NRG1b1 treatment enhances cardiomyocyte DNA synthesis in

response to injury, MHC-nLAC mice were subjected to myocardial infarction

(MI) via permanent coronary artery occlusion. Seven days later, consecutive daily

NRG1b1 injections were initiated for a total of 7 days (control mice received

Table 1. Cardiomyocyte DNA synthesis in adult MHC-nLAC mice following vehicle or NRG1b1 injection.

Experiment;
Mouse Treatment;
Nucleotide
Delivery Method

Genetic
Bkg.*

NRG1b1 mg/
Injection

BrdU+

or 3H-Thy+

CM
Nuclei/Total

Positive
Nuclei ¡

SEM (%)
# Mice
Analyzed

p vs.
Control

Experiment #1;
nine daily NRG1b1
injections in
uninjured mice;
BrdU mini-pump

DBA 0 36/187,169 0.019¡0.005 7 Control

DBA 2.5 7/207,490 0.003¡0.001 7 ,0.05

Experiment #2;
nine daily NRG1b1
injections in
uninjured mice; 3H-
Thy injection on
day nine

DBA 2.5 1/182,420 0.0005¡0.0004 5 Control

F1 2.5 1/216,192 0.0005¡0.0006 3 .0.05

Experiment #3;
three daily
NRG1b1 injections
in uninjured mice;
3H-Thy injection
on day three

DBA 7.5 2/383,919 0.0005¡0.0002 3 .0.05{

Experiment #4;
seven daily
NRG1b1 injections
in MI mice; 3H-
Thy injection
on day seven

DBA 0 9/23,181 0.039¡0.011 5 Control

DBA 2.5 8/29,463 0.027¡0.021 6 .0.05

*Genetic background, DBA5DBA/2J; F15[C57Bl/6J6DBA/2J]F1.
{.0.05 vs. mice receiving 9 injections of lower dose of NRG1b1, followed by a single injection of 3H-Thy.

doi:10.1371/journal.pone.0115871.t001
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injections of vehicle only). Mice received an injection of 3H-Thy 1 hour after the

last NRG1b1 injection, and hearts were harvested 4 hours later and processed.

Cardiomyocyte DNA synthesis was readily detected in the surviving LV and

septum (MI border zone inclusive) of the infarcted mice, consistent with previous

results [41]. However, no significant difference was observed in the percentage of
3H-Thy positive nuclei in mice receiving NRG1b1 as compared to mice receiving

vehicle alone, although there was a trend towards a reduced cardiomyocyte

labeling index in the NRG1b1-treated animals (Table 1, Experiment 4).

Discussion

It is now well established that the normal mouse myocardium exhibits very low

rates of cardiomyocyte cell cycle activity, and that this is increased following

myocardial injury [41, 45]. The studies reported here demonstrate that NRG1b1

treatment inhibits the low rates of cardiomyocyte DNA synthesis present in

uninjured myocardium, and furthermore fails to promote increased levels of

cardiomyocyte DNA synthesis when analyzed 7 days after permanent coronary

artery ligation. Since BrdU incorporated into stem cells would ultimately appear

in de novo cardiomyoctes [46], these data also indicate that NRG1b1 does not

stimulate cardiomyogenic stem cell activity over the course of the study. These

Fig. 2. NRG1b1 elicits biological responses in the adult mouse heart. (A) Western blot demonstrating the levels of total Erk1/2 p42/p44, P-Erk1/2[Thr202/
Thy204] and RLC in mice treated with NRG1b1 or vehicle (hearts harvested and processed 90 minutes after treatment). Densometric quantitation revealed
that NRG1b1 treatment resulted in a 987% increase in the level of ERK1 phosphorylation, a 5727% increase in the level of ERK2 phosphorylation, and a
21% increase in the level of phosphorylated RLC vs. vehicle-treated mice (p,0.01, Student’s t-test). (B) Non-cardiomyocyte 3H-Thy nuclear labeling index in
non-injured adult mice following 9 consecutive daily injections of NRG1b1 (5 sections analyzed from each of 4 independent mice) or vehicle (4 sections
analyzed from each of 4 independent mice). *: p,0.05 vs. vehicle treated animals, Student’s t-test.

doi:10.1371/journal.pone.0115871.g002
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data collectively suggest that NRG1b1 treatment does not promote cardiomyocyte

renewal in adult mice.

This conclusion is in contrast to an earlier report suggesting that NRG1b1

induced robust cardiomyocyte cell cycle activity [34]. In that study, normal adult

mice received 9 consecutive daily injections of NRG1b1 and DNA synthesis was

monitored via BrdU incorporation, which was present in the drinking water

during the entire treatment period. BrdU immune reactivity was reported in

14.3% of the mono-nucleated and 3% of the multi-nucleated cardiomyocytes,

whereas no immune reactivity was detected in mice receiving vehicle. It was also

reported that NRG1b1 treatment of mice with MI (7 consecutive daily injections

initiated 7 days post-injury) resulted in a 4.4-fold increase in the level of

cardiomyocyte DNA synthesis as compared to vehicle-treated animals. Although

several additional experimental end points further supported the conclusion that

NRG1b1 induced cardiomyocyte proliferation in the earlier study, a number of

technical issues complicate critical interpretation of those data (including the

potential impact of altered gene expression prior to cardiomyocyte terminal

differentiation, the fidelity of the reporters used to mark cardiomyocyte nuclei in

in vitro experiments and clonal cardiomyocyte expansion in in vivo experiments, a

marked disconnect between the number of M-phase vs. S-phase mononuclear

cardiomyocytes, and caveats regarding the age of analyses in some of the

experiments [34]). Thus, the most compelling observation from the earlier study

was the increased level of cardiomyocyte DNA synthesis in NRG1b1-treated,

Fig. 3. Expression of the MHC-nLAC reporter transgene following 9 consecutive daily injections of NRG1b1. Treated hearts were subjected to
retrograde collagenase perfusion, and the resulting dispersed cell preparations were reacted with X-GAL and processed for cardiac alpha-actinin immune
reactivity. Cardiac alpha-actinin immune reactivity (red signal) and nuclear b-galactosidase activity (inset) in a bi-nucleated (left panel) and a mono-
nucleated (right panel) cardiomyocyte. Bar550 microns.

doi:10.1371/journal.pone.0115871.g003
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genetically naïve mice under baseline conditions and following MI. It was,

however, rather surprising that the reported level of cardiomyocyte DNA synthesis

in uninjured NRG1b1-treated mice was more than 10-fold greater than that in

infarcted NRG1b1-treated mice (when normalized for the difference in the

duration of BrdU treatment). Indeed, myocardial injury is typically associated

with an increase in cardiomyocyte cell cycle activity [41, 45].

Given these discrepant results, it is important to critically examine the technical

aspects of the current study. The observation that cardiomyocyte DNA synthesis

was reproducibly detected in uninjured, vehicle-treated hearts argues that both the

BrdU and the 3H-Thy assays were sufficiently sensitive to detect any NRG1b1-

induced increase in cell cycle activity. Indeed, the failure to detect BrdU

incorporation in vehicle treated uninjured hearts in the earlier study [34] suggests

that the DNA synthesis assays employed in the current study were more sensitive.

The observation that a three-fold increase in NRG1b1 concentration failed to

induce cardiomyocyte DNA synthesis suggests that the animals were not simply

under-dosed. The observation that similar results were obtained with [C57Bl/

6J6DBA/2J]F1 animals suggests that genetic background was not a major

contributor to the absence of DNA synthesis. The high penetrance of reporter

transgene expression (only ca. 0.1% of the mono-nucleated and 0.3% of the

multi-nucleated cardiomyocytes lacked b-galactosidase activity) argues that, if

NRG1b1 treatment of uninjured mice induced cardiomyocyte DNA synthesis as

was reported previously (i.e., in 14.3% of the mono-nucleated and 3% of the

multi-nucleated cardiomyocytes [34]), the vast majority of these cells would have

to also express the MHC-nLAC reporter and thus would have been detectable by

our assay system.

It is of interest to note that the BrdU experiments used mice maintained in a

DBA/2J genetic background; 7.8% of the cardiomyocytes are mono-nucleated in

this background [39]. We screened 207,490 cardiomyocyte nuclei in tissue

sections from un-injured mice treated with NRG1b1; we would anticipate

approximately 16,184 of these nuclei were from mono-nucleated cells, and that

191,306 were from bi- or multi-nucleated cardiomyocytes. Only 7 BrdU positive

cardiomyocyte nuclei were detected of the 207,490 nuclei screened. Even if all 7

BrdU cardiomyocyte nuclei were present in the mono-nucleated pool, this would

account for only 0.043% of the population (7 nuclei of 16,184 total mono-nuclear

cardiomyocyte nuclei), which is 333-fold lower than the rate of 14.3% reported by

Kuhn and colleagues. Similarly, if all 7 BrdU cardiomyocyte nuclei were present in

the bi/mulinucleated-nucleated pool, this would account for only 0.0037% of the

population (7 nuclei of 191,306 total bi/multi-nuclear cardiomyocyte nuclei),

which is 810-fold lower than the rate of 3% reported by Kuhn and colleagues.

Thus, the frequency of cardiomyocyte DNA synthesis in NRG1b1-treated animals

in our study is more than two orders of magnitude lower that that reported by

Khun’s group, irrespective of the affected sub-population (i.e., mono- vs. bi/

multi-nucleated).

It is important to note that delivery of NRG1b1 to uninjured hearts did in fact

elicit a number of biological responses. Increases in the level of phosphorylated
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Erk1/2 and cardiac myosin regulatory light chain were observed, in agreement

with previous studies examining the impact of treatment on uninjured hearts.

Moreover, NRG1b1 treatment increased the levels of non-cardiomyocyte DNA

synthesis. These observations suggest that the recombinant protein was

biologically active in our hands when delivered to uninjured mouse hearts. A

limitation of the current study is that the long-term impact of NRG1b1 treatment

on post-MI cardiac function was not monitored. However, this shortcoming does

not impact on the results obtained studying uninjured hearts.

In light of these observations, it is difficult to identify technical deficiencies to

explain the absence of NRG1b1-induced cardiomyocyte DNA synthesis in the

current study. It should however be noted that the MHC-nLAC mice have been

used extensively to track cardiomyocyte DNA synthesis during post-natal

development, following intra-cardiac transplantation, following myocardial injury

and in genetically modified animals [37, 41, 42, 47–52]. Given this, the simplest

interpretation of the current results is that that NRG1b1 treatment does not result

in an increase in the number of cardiomyocytes exhibiting DNA synthesis, and

consequently does not increase the rate of cardiomyocyte renewal, in normal or

injured adult mouse hearts. Ultimately, the ability to accurately quantitate the

impact of NRG1b1 (or any other intervention) on cardiomyocyte cell cycle

activity, and consequently the impact on myocardial renewal, is dependent upon

the rigor of the assays employed to identify cardiomyocytes (or cardiomyocyte

nuclei) and to document cell cycle activity. In light of the arguments raised above

regarding the fidelity of the MHC-nLAC reporter, the data presented here, albeit

negative, are compelling and difficult to discount.

Conclusions

As indicated above, a substantial body of preclinical data, as well as preliminary

clinical trials in humans, suggests that NRG1b1 treatment can have a positive

impact on cardiac function following myocardial injury. Understanding the

underlying molecular mechanism for short- and long-term NRG1b1-mediated

functional improvement could provide important insight for improving

treatment efficacy. Given the data presented here, any beneficial impact of

NRG1b1 treatment in injured hearts is not attributable to enhanced myocardial

regeneration.
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