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Interferometry with non-classical motional
states of a Bose–Einstein condensate
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The Ramsey interferometer is a prime example of precise control at the quantum level. It is

usually implemented using internal states of atoms, molecules or ions, for which powerful

manipulation procedures are now available. Whether it is possible to control external degrees

of freedom of more complex, interacting many-body systems at this level remained an open

question. Here we demonstrate a two-pulse Ramsey-type interferometer for non-classical

motional states of a Bose–Einstein condensate in an anharmonic trap. The control sequences

used to manipulate the condensate wavefunction are obtained from optimal control theory

and are directly optimized to maximize the interferometric contrast. They permit a fast

manipulation of the atomic ensemble compared to the intrinsic decay processes and

many-body dephasing effects. This allows us to reach an interferometric contrast of 92% in

the experimental implementation.
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F
undamental investigations and technological applications of
quantum physics are rapidly expanding research fields1.
Essential elements for their development are the progress

made in the control of quantum states and the improvement of
powerful techniques like spectroscopy and interferometry.
A prominent example is the method of separated oscillating
fields2,3, as it combines accurate quantum control with
interferometry.

This technique, refered to as Ramsey interferometry, has
become has become an essential tool to investigate the physics of
well-isolated, single-particle quantum systems or non-interacting
ensembles. Its applications range from the measurement of
nuclear magnetic moments, for which it was originally conceived,
to molecular spectroscopy4, and from atomic clocks5 to cavity
quantum electrodynamics experiments6.

Implementing Ramsey interferometry for many-body systems
is challenging. Interactions between the constituents lead to
complex dynamics, which require new approaches to implement
the ‘Ramsey pulses’—namely, the two successive oscillatory fields
realizing ‘p/2’ rotations in Ramsey’s original work. A key obstacle
here, compared to single-particle or non-interacting systems, is
the lack of separation between the different energy scales.

Realizing a Ramsey interferometer for the motional states of a
Bose–Einstein condensate (BEC) in a trap requires the following
operations: (1) the creation of an equal superposition of two trap
eigenstates with a controlled relative phase; and (2) a pulse acting
as a phase-sensitive p/2 operation for all these superpositions for
the read-out (Fig. 1c). These operations must be fast and preserve
phase coherence over the entire BEC.

An excited BEC exhibits complex behaviour, in particular in
the presence of intrinsic dephasing7,8, decoherence or decay9,
which also make coherent manipulation challenging10. One
strategy to control the quantum states of such systems is to
implement operations faster than the characteristic timescales
of the prejudicial processes, using optimal control theory
(OCT)11,12. The speedup can be exploited to realize elaborate
manipulations, as in the present case of a sequence of transfer
pulses for interferometry.

We drive transitions between motional states by displacing
(‘shaking’) the trap along one axis (Fig. 1a), following a trajectory
obtained by OCT. By making the trapping potential anharmonic
with a strong quartic component along the shaking direction13,
we effectively reduce the external states of the BEC to a two-level
system. Unlike in the harmonic case, the resonant frequencies
between each pair of states are then different, enabling the design

of OCT pulses that suppress leakage to higher motional states.
This ‘shaking’ method was first introduced in ref. 9 to realize a
full population inversion of the two lowest-lying motional states
and study the subsequent decay dynamics14.

We design the two control pulses using the chopped random
basis algorithm (CRAB)15, with the particularity that the second
pulse is directly optimized to reach high interferometric contrast.
For this optimization, we describe the system’s dynamics as a
condensate wavefunction using an effective one-dimensional
Gross-Pitaevskii equation (1D GPE), which is justified by the very
low temperatures and the very short times considered. The OCT
pulses allow us to drive transitions between motional states13 on a
timescale comparable to the trapping frequency16. The produced
states are then superpositions of two motional Fock states17,18, to
be distinguished from the Poissonian superpositions of motional
states populated in a classical centre-of-mass movement.

In this work, we demonstrate phase-sensitive coherent control
of the motional states of a many-body system by realizing, using
optimal control, a Ramsey-type interferometer with a contrast of
92% experimentally. This application to Ramsey interferometry
proves that manipulating a complex, interacting many-body
system in a fast, coherent and reproducible way is possible.

Results
Experimental procedure. Our experimental system, sketched in
Fig. 1, is a dilute, quasi one-dimensional quantum-degenerate gas
of B700 87Rb atoms in an elongated magnetic trap on an atom
chip19. Both the temperature (To50 nKEh/kB� 1 kHz) and
chemical potential (m/hC0.6 kHz) (kB being Boltzmann’s
constant and h Planck’s constant) are below the smallest
transverse level spacing (E01¼ h� 1.83 kHz), ensuring that the
system is initialized in its motional ground state |0S (see
Methods). The trapping potential is made anisotropic and
anharmonic in the horizontal transverse y-direction by radio-
frequency dressing13,20,21. It is well approximated by the
6th-order polynomial

VðyÞ ¼ a2y2þ a4y4þ a6y6; ð1Þ

with a2 ¼ h�1;331 Hz=ð2r2
0;yÞ, a4 ¼ h�62:7 Hz=r4

0;y and a6 ¼
� h�0:63 Hz=r6

0;y , where r0,y¼ 252 nm is the r.m.s. radius of the
single-particle ground-state wavefunction in the y-direction.
The energy differences between the three lowest transverse
single-particle levels of the potential are E01¼ h� 1.83 kHz and
E12¼ h� 1.98 kHz. In the other directions, the confinement
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Figure 1 | Schematic of the Ramsey interferometric sequence. (a) Representation of the BEC subjected to a fast displacement l(t) in the y-direction.

(b) Trapping potential and effective two-mode system. The anharmonicity in the y-direction leads to a unique transition frequency between the

ground state |0S (blue) and the lowest-lying excited state |1yS (red), effectively almost isolating the two-level system |0S� |1yS. The other states

(dashed line) have higher energies. (c) Example of an interferometric trajectory (blue dots) on the Bloch sphere representation of the two-level system.

(1) is the first pulse that prepares a balanced coherent superposition. (2) is the phase accumulation time corresponding to a rotation around the

vertical axis. (3) is the second pulse, which is equivalent to a p/2 pulse for the states on the equator and corresponds to a 90� counter-clockwise

rotation around Jy. The red squares show the 15 points on which the second pulse was optimized.
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remains essentially harmonic with oz¼ 2p� 2.58 kHz and
ox¼ 2p� 16 Hz.

We drive transitions between the two lowest-lying motional
states by shaking the trap purely along the y-direction, following
trajectories obtained by the CRAB optimization. The trap
displacement l(t) reaches values on the order of 4 times the
r.m.s. size of the ground-state wavefunction (see Fig. 2a).

Optimization with the CRAB algorithm. The goal of optimal
control is to find the best path in the control parameter space,
which is expressed formally as a minimization of a cost function
or performance measure22,23. For the optimization of the pulses,
we describe the system as a condensate wavefunction using
an effective one-dimensional GPE along the y-axis, with the
Hamiltonian

Ĥgp½c; t� ¼ � ‘ 2

2m
@2

@y2
þVðy� lðtÞÞþ gyN jcðy; tÞ j2 ð2Þ

where ‘ is the reduced Planck constant, m the atomic mass, N the
number of atoms and gy the effective one-dimensional interaction
constant in the y-direction24. The minimum of the potential V
can be spatially displaced along y by a distance l(t) (see Fig. 1a).

The CRAB optimization method expands the control pulse
into a (not necessarily orthogonal) basis. Here, the optimization is
carried out on 60 Fourier components with their respective
amplitudes and phases. Under the action of the control pulse,
the wavefunction undergoes a transformation that is computed
numerically using the split-step analysis method25. The

wavefunctions of the different motional states are the stationary
solutions of the GPE and were obtained numerically by imaginary
time propagation26.

State analysis. The behaviour of the wavefunction in the hor-
izontal xy-plane at different times t throughout the Ramsey
sequence is monitored by time-of-flight fluorescence imaging27.
Along the transverse y-axis, the high trap frequency and 46 ms
expansion time ensure that the measured atomic density is an
image of the in-trap momentum distribution. The experimental
images are integrated along the longitudinal x-axis and
concatenated to follow the evolution of the transverse
wavefunction over time, as illustrated in Fig. 2c.

After the control pulses, the density distributions exhibit
characteristic ‘beating’ patterns arising from interferences
between the different motional levels populated. To simulate this
distribution, we calculate the evolution of the 1D GPE in the
static potential V(y) starting from a given initial superposition of
k states:

jcinitiali ¼
X

k

ffiffiffiffiffi
pk
p

eiyk jkyi ð3Þ

where kA{0,1,2}, corresponding to the three lowest-lying states in
the y-direction. We compute the momentum distribution and
compare its evolution to the experimental densities after time-of-
flight. A fitting procedure enables us to infer which superposition
of motional states is most likely to have generated the
experimentally observed beating patterns, in particular what the
populations of interest for the interferometer, p0 and p1, are. This
way, we can estimate the fidelity of the first pulse as well as the
output of the full interferometric sequence (see Methods and
ref. 13).

First pulse. The first pulse (Fig. 2a) aims to create a balanced
superposition cj targeti ¼ 1

� ffiffiffi
2
p� �

0j i þ eif 1y

�� i� �
of the ground

state |0S and first excited state |1yS with a relative phase f
arbitrarily chosen to be zero. The cost function to be minimized
can be written in terms of the overlap fidelity F :

Fð1Þ ¼ 1�F ¼ 1� < hctarget jcðTð1ÞÞi
h i� �2

; ð4Þ

where |c(T(1))S represents the state of the system at the end of
the first pulse.

When designing the pulse, a trade-off must be found between
fidelity and speed16,28. We choose a pulse with a theoretical
fidelity of 99% for a pulse duration of 1.19 ms. This duration is
about twice the timescale set by the single-particle level spacing
n� 1

01 ¼ h=E01 ¼ 0:55 ms. The experimental realization yields an
overlap of 95(4)% of the obtained wavefunction with |ctargetS
(see Methods).

Phase accumulation time. After creating a coherent super-
position of |0S and |1yS, the wavefunction is held in a static
potential for an adjustable time thold. The energy difference
between the levels leads to an evolution of the relative phase. In a
simplified linear picture, this phase evolution corresponds to a
rotation of the state vector on the equatorial plane of the Bloch
sphere at a constant angular frequency given by the energy
difference between the levels (see Fig. 1c). In the trap, the inter-
atomic interactions introduce a non-linearity in the system and
the corresponding mean-field energy slightly decreases the
frequency with respect to the single-particle energy splitting13 E01.
For a balanced superposition, one period of the oscillation of the
relative phase is then T¼ 0.58 ms, corresponding to a 5% increase
with respect to the single-particle precession period. The phase
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Figure 2 | Dynamics of the excitation and interference patterns observed

during and after the first pulse. (a) In situ transverse (along y-direction)

density profile as a function of time during and after the first pulse. Red line:

real space trajectory of the excitation pulse l(t). The displacement of the

trap minimum corresponds to several times the ground state r.m.s. size.

(b) Simulated picture of the momentum distribution during and after the

first pulse. (c) Measured momentum distribution during and after the first

pulse. The time-of-flight images were averaged over three repetitions,

integrated along the longitudinal x-direction and concatenated to show the

time evolution. (d) Fit to the momentum distribution from which the

populations p0 and p1 are extracted (see text).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5009 ARTICLE

NATURE COMMUNICATIONS | 5:4009 | DOI: 10.1038/ncomms5009 | www.nature.com/naturecommunications 3

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


accumulation time thold is varied to observe interferometric
fringes in the Ramsey sequence (Fig. 3).

Full Ramsey sequence. The second pulse is also implemented by
shaking the trapping potential in the y-direction. However, con-
trary to the first pulse, it does not target a specific state super-
position starting from a known initial state. It rather aims at
transforming any state on the equator of the Bloch sphere into
another state superposition, where the populations of |0S and
|1yS are maximally sensitive to the phase of the initial state. To
optimize this pulse, the following cost function was minimized:

J ð2Þ ¼max
thold

ð1� p0� p1Þ

þ j1� max
thold

ðp0Þþ min
thold

ðp0Þ j

þ j1� max
thold

ðp1Þþ min
thold

ðp1Þ j;

ð5Þ

where p0 (respectively p1) is the ground state (respectively first
excited state) population at the end of the second pulse, and the
maximum is taken over Nh¼ 15 different values of the phase
accumulation time thold for which the numerical optimization was
performed. The first term of equation (5) minimizes the transfer
of population to higher-energy levels, while the second term
(respectively third term) maximizes the amplitude of the oscil-
lation of p0 (respectively p1). The obtained pulse has a duration of
1.6 ms. It can also be seen as a p/2 pulse, or 90� rotation around
the Jy-axis, for the states on the equator as depicted in Fig. 1c.

We point out that this optimization procedure aims at
maximizing the visibility, and not directly at producing a p/2
pulse. In the latter case, the optimization can be carried out
using a different cost function, for example J ¼ 1�minf
(|/c0(f)|c(f)S|2), where f is an angle in the equatorial plane
of the Bloch sphere, c0(f) is the state obtained when applying a
real p/2 pulse to an initial state described by f, and c(f) is the
actual state produced by the control sequence when applied to the
same initial state. Using this alternative approach leads to nearly
as good results in terms of visibility.

When simulating the whole interferometric sequence, we
observe an oscillation of p0 and p1 as a function of thold, with a
periodicity of 0.58 ms. The contrast, defined as C(pi)¼ (max(pi)
�min(pi))/(max(pi)þmin(pi)), reaches C(p0)EC(p1)E97% in
the numerical simulations. As shown in Fig. 3c, a limited transfer
of population to higher excited states of the order 10% also takes
place. We note that although the second pulse is designed without
constraint on the shape of the interferometric fringes, the final
fringe evolution is close to a sine function.

Experimentally, the populations p0 and p1 for different phase
accumulation times are inferred from the evolution of the
momentum density after the two-pulse Ramsey sequence, like the
one represented in Fig. 2c, for these different phase accumulation
times. The populations of the superpositions are extracted using
our state analysis (see Methods for details). Fig. 3a shows the
obtained Ramsey signal. The experimental results are in good
agreement with the numerical simulation on the first interfero-
metric fringes. The contrast reaches 92(5)%, and the Ramsey
period measured is 0.57(2) ms. The fit residuals, interpreted as a
population in higher excited states and an incoherent fraction,
amount to 15%–25% depending on thold.

Discussion
The goal of the cost function we chose to optimize the second
pulse is to maximize the visibility of the interferometer fringes,
rather than generating a general p/2 pulse. This pulse was
optimized for a finite number of points on the equator of the
Bloch sphere. However, we point out that the holding times thold

(and with it the phases in the superposition) chosen for the
experiment differ from the ones used for the numerical
optimization of the second pulse. The experimental observation
of fringes indicates that the pulse is valid for all points on the
equator.

Looking at longer times thold we observe a reduction of
contrast, indicating a loss of coherence in the created super-
position over time. Fitting an exponentially damped sine to the
experimental fringes reveals a damping time constant of 1.6±0.7
ms. This decay is not observed in our 1D GPE simulation
(see Fig. 3b).

We investigated four possible mechanisms that could explain
the contrast reduction. However, none of them could account for
the observed decay. First, perturbations of the wavefunction could
arise from a coupling between the different transverse and
longitudinal modes. However, simulations using a 3D GPE solver
revealed no such effect. Second, we evaluated the rate of
dephasing29,30 between the two modes arising from interactions
and binomial number fluctuations in each mode and found
RB52 mrad ms� 1, hence a dephasing of 1 rad only after
B20 ms, which is too long to account for the observed decay (see
Methods for details). Third, the phase fluctuations present in a
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Figure 3 | Interference fringes of the motional-states interferometer.

(a) Experimental data. Populations of the ground state p0 (blue squares)

and first excited state p1 (red diamonds), extracted from fits to the

experimental density patterns, as a function of the phase accumulation time

thold. The error bars indicate the 1s confidence interval of the fit. The blue

and red dashed lines are exponentially damped sines. (b) OCT optimization

data. Populations of the ground state thold (blue dashed line) and first

excited state p1 (red line) as a function of the phase accumulation time thold.

(c) Populations in higher excited states in the optimization (black solid line)

compared to residual part in the fits to experimental data (black diamonds).

The top insets are examples of experimental momentum distributions

(upper) and their corresponding fitted GPE momentum distribution (lower)

for the three different hold times indicated by the vertical dashed lines in

panel (a).
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1D geometry31 do not affect us directly, as the system is mono-
mode along the y-direction, where we drive and observe the
dynamics. But they could potentially affect the read-out contrast;
however, these are not observed on our experimental timescale.
Finally, collisional decay of the quantum gas trapped in the first
excited state, like in ref. 9, would lead to emission of momentum-
correlated atom pairs. We do not observe such pair creation in
the present experiment, although this can also be due to the lower
population in |1yS and the shorter observation times compared
to refs 9,14.

Other types of collisions could take place between atoms in the
same quantum state, between atoms in the ground and first
excited states, or with residual atoms in highly excited states. A
detailed calculation of the decoherence effects listed here would
require tools that are only partially available in the state-of-the-
art numerical simulations of such systems, and in any case is
beyond the scope of this paper.

In conclusion, we have demonstrated a scheme to coherently
control non-classical motional states with high speed and
efficiency using optimal control, and implemented it in a two-
pulse Ramsey interferometer sequence, realizing experimentally a
motional state interferometer with a contrast higher than 90%.

This proves that coherent manipulation of a complex,
interacting many-body system in a reproducible way is possible
on timescales shorter than the natural timescale given by the
energy differences of the internal many-body states. Similar
procedures will be relevant for a large class of schemes in the
context of quantum information and quantum metrology. In
addition, the ability to precisely prepare complex, highly excited
states makes our approach a valuable tool for the study of many-
body dynamics.

Generally, Ramsey interferometry using motional states
introduces a new tool to study out-of-equilibrium evolution of
coherent systems at the quantum level32. This may help to shed
light on the mechanisms responsible for the loss of coherence in
many-body systems, and in particular show the role of
interactions. As a specific example, our system can be viewed as
a leaking qubit exhibiting mean-field coupling and decoherence,
and could be used as a quantum simulator for solid-state qubits33.

In addition, fast and coherent manipulation of motional states
in a many-body quantum system offers many possibilities that go
far beyond Ramsey interferometry. It permits the implementation
of general gate operations, the encoding of information into
motional states34 and, more generally, opens up new perspectives
for the use of many-body systems as a viable element in quantum
technological applications.

Methods
Trapping potential and displacement. The one-dimensional trapping potential is
realized on an atom chip35 by a radially symmetric Ioffe–Pritchard field modified
by radio-frequency dressing20,36, as explained in detail in ref. 13. In the present
experiment, the AC current applied has a peak-to-peak amplitude IRF¼ 20 mA
with detuning d¼ � 54 kHz with respect to the Larmor frequency near the trap
minimum (n0¼ 824 kHz).

In the y-direction, where the shaking occurs, the potential is well approximated
by the 6th-order polynomial given in the main text. In the z-direction, it can be
described by a quartic polynomial of the form Vz ¼ az

2z2 þ az
4z4, with the

coefficients az
2 ¼ h�2;516 Hz=ð2r2

0;zÞ and az
4 ¼ h�17:1 Hz=r4

0;z , where
r0,z¼ 212 nm is the oscillator length in this direction. This gives a first-level spacing
Ez

01 ¼ h�2:58 kHz.
To create motional states superpositions, we shake the trap minimum along the

y-direction. This displacement is achieved by modulating the radio-frequency
currents with a low-frequency signal. The frequencies of this signal, on the order of
a few kilohertz, are much lower than the Larmor frequency of the atoms but higher
than the limit for adiabatic displacement of the wavefunction in the transverse
potential. This modulation displaces the potential minimum along y, following a
control trajectory calculated by OCT. The atomic cloud is shaken by this fast
potential displacement.

The effect of interactions is to shift the levels slightly, which requires to take
them into account in the optimization of the ramp.

First pulse cost function. The fidelity of the first pulse is expressed as
(R[/ctarget|c(T(1))S])2 instead of the more general |/ctarget|c(T(1))S|2.
The motivation to use the real part is related to the fact that we assumed the GPE
eigenstates |c0S, |c1S to be real-valued functions, and therefore |ctargetS is a real
function while |c(T(1))S is a complex function. Then, the relevant part of the
scalar product is only its real part, as shown below.

We took as goal state ctarget

��� i ¼ 1ffiffi
2
p 0j i þ eif 1y

�� i� �
.

If the final state at the time T after the application of the first pulse is

jcðTð1ÞÞi ¼ c0 jc0iþ c1eð� ifÞ jc1i;
with c0 and c1 being real numbers, then the square of the scalar product is

hctarget jcðTð1ÞÞi
���

���2¼ 1=2þ c0c1cosðfÞ;

while the real part squared is

< hctarget jcðTð1ÞÞi
h i� �2

¼ hctarget jcðTð1ÞÞi
���

���2

�ðc2
1Þ=2sinðfÞ2:

ð6Þ

The desired state corresponds to f¼ 2pn with nAZ; both definitions yield the
same results.

Fitting procedure and error estimation. To recover the wavefunction
superposition after the control pulse from experimental data, we fit the data with a
time-dependent momentum density along y. The numerical momentum density is
obtained by Fourier transform of an in-trap GPE simulation. Experimentally,
we can access the atomic density after 46 ms time-of-flight. The fast transverse
expansion of the cloud due to high confinement causes the atomic interactions to
become rapidly negligible, hence the expansion can be considered ballistic. In the
limit of infinite expansion time, the in-trap momentum distribution and the
density after time of flight are strictly equivalent. Here, the time of flight is suffi-
ciently long to make this assumption. If we express the momenta as wave numbers
ky, a distance dy in the experimental image then corresponds to dky¼ ady, with
a¼m/:tTOFE0.03 mm� 2. The simulated momentum distribution is slightly
rescaled on the k-axis and corrected for imaging broadening, then sampled to
match the experimental sampling time, t¼ 0.05 ms.

We fit the time-dependent momentum-space density with that obtained from
the state

ffiffiffiffiffi
p0
p

0j iþ ffiffiffiffiffi
p1
p

e� iy01 1j i þ ffiffiffiffiffi
p2
p

e� i y01 þ y12ð Þ 2j i, where p0, p1, p2, y01 and y12

are fit parameters. We chose to restrict the model to a three-states superposition
here. First, multi-mode simulations show that the main features of the
experimental data can be reproduced by a three-mode description similar to ref. 30.
Second, this assumption is justified by the fact that adding more states does not
improve nor modify much the output of the fit.

To obtain the combination of parameters most likely to have generated the
observed momentum distribution density, we use a simplex regression method that
searches the smallest possible residual and gives their corresponding best values for
the fit parameters. Once these parameters are obtained, we look for the uncertainty
of the fit by estimating the variances and co-variances of the different parameters
and deduce the confidence intervals of the fit.

We note that these fits are based on Gross–Pitaevskii simulations, which
represent a unitary evolution for a mean-field description of a system at zero
temperature. Although this model describes the main features of our data very well,
some discrepancy between the model and the experiment (for example, many-body
or finite temperature effects) may have systematic effects on the estimation of the
fidelity. It is nevertheless unlikely that these discrepancies have a qualitative effect
on the interferometer output.

Phase diffusion. We estimated the rate of many-body dephasing that could arise
from number fluctuations in the ground and excited states. We followed the
approach of ref. 30, and, assuming weak interaction, approximated the field
operator ĉ, describing the BEC by

ĉðyÞ ’ â0f0ðyÞþ â1f1ðyÞ: ð7Þ
Here the fi are the two lower-lying eigenstates of the non-interacting part of the

Hamiltonian (taken to be real and normalized to
R

|fi|2dy¼ 1), the âi are
annihilation operators associated with the modes and a 1D geometry along the
y-axis was assumed for simplicity. From the full many-body Hamiltonian
describing the condensate and equation (7), we obtain the following effective
two-mode Hamiltonian:

Ĥ2m ¼ DE Ĵz þU Ĵ2
z þ 4U01 Ĵ2

x ð8Þ
with

DE ¼ E01 �ðN � 1ÞðU00 �U11Þ; ð9Þ

U ¼ U00 þU11 � 2U01 ð10Þ
and

Uij ¼
1
2

g1D

Z
jfi j2jfj j2 dy; ð11Þ
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where we used the usual spin representation for the many-body two-level system

by introducing the operators Ĵx ¼ ðâ0ây1 þ ây0 â1Þ=2, Ĵy ¼ ðâ0ây1 � ây0 â1Þ=2i and

Ĵz ¼ ðây1 â1 � ây0 â0Þ=2, which satisfy angular momentum commutation relations.
This Hamiltonian resembles the Bosonic Josephson Hamiltonian in the presence of
an energy offset between the two modes, here given by the difference of chemical
potential between the ground and first excited states (first term / Ĵz). The second
term / Ĵ2

z , which comes from interactions, is responsible for ‘phase diffusion’
(dephasing). It leads to squeezing at short times37, generation of strongly non-
classical states38 and a loss of coherence at longer times29,39. The third term is
generally neglected in bosonic Josephson junctions due to the weak overlap
between the modes.

In the second term of equation (8), it is apparent that phase diffusion is reduced
compared to, for example, the case of a double-well system8, as the modes have a
significant spatial overlap. This is similar to the case of a spinor condensate in
which two spin states share the same external wavefunction and have similar
scattering lengths40,41. We can evaluate the phase diffusion rate if we assume, for
example, a binomial distribution of the atoms in each mode (that is, DĴz ¼

ffiffiffiffi
N
p

=2),
which is a fair assumption if the first pulse is performed quickly compared to the
other energy scales (in particular compared to interactions that may induce
squeezing). It is then given by29,39

R ¼ 2DĴzU
‘

: ð12Þ
We computed the two wavefunctions f0 and f1 in the trapping potential Vy

and obtained the energies U00/h¼ 0.34 Hz, U11/h¼ 0.26 Hz and U01/h¼ 0.15 Hz.
This yields U/h¼ 0.31 Hz, and a phase diffusion rate R¼ 52 mrad ms� 1. This rate
increases with atom number fluctuations and can become significant if the
fluctuations are much stronger than in the binomial case (Dn4� 20

ffiffiffiffi
N
p

, n being the
population difference between the modes). This could be the case, as both
modes overlap.

References
1. Mabuchi, H. & Khaneja, N. Principles and applications of control in quantum

systems. Int. J. Robust Nonlinear Control 15, 647–667 (2005).
2. Ramsey, N. Molecular Beams (Oxford Univ. Press, Oxford, 1956).
3. Ramsey, N. Experiments with separated oscillatory fields and hydrogen masers.

Rev. Mod. Phys. 62, 541–552 (1990).
4. Amy-Klein, A., Constantin, L., Butcher, R., Charton, G. & Chardonnet, C. h.

High-resolution spectroscopy with a molecular beam at 10.6 mm. Phys. Rev. A
63, 013404 (2000).
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