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Abstract: Patients diagnosed with neurofibromatosis type 2 (NF2) are extremely likely to develop
meningiomas, in addition to vestibular schwannomas. Meningiomas are a common primary brain
tumor; many NF2 patients suffer from multiple meningiomas. In NF2, patients have mutations in
the NF2 gene, specifically with loss of function in a tumor-suppressor protein that has a number of
synonymous names, including: Merlin, Neurofibromin 2, and schwannomin. Merlin is a 70 kDa
protein that has 10 different isoforms. The Hippo Tumor Suppressor pathway is regulated upstream
by Merlin. This pathway is critical in regulating cell proliferation and apoptosis, characteristics that
are important for tumor progression. Mutations of the NF2 gene are strongly associated with NF2
diagnosis, leading to benign proliferative conditions such as vestibular schwannomas and menin-
giomas. Unfortunately, even though these tumors are benign, they are associated with significant
morbidity and the potential for early mortality. In this review, we aim to encompass meningiomas
and vestibular schwannomas as they pertain to NF2 by assessing molecular genetics, common tumor
types, and tumor pathogenesis.

Keywords: neurofibromatosis type 2 (NF2); meningiomas; vestibular schwannomas

1. Neurofibromatosis Type 2 (NF2): Introduction and Genetic Overview

Neurofibromatosis type 2 (NF2) is an autosomal dominant condition caused by
pathogenic variants in the NF2 gene (NF2; MIM # 607379) causing loss of function of
the tumor suppressor protein, Merlin [1–3]. NF2 is characterized by central and peripheral
nervous system (CNS and PNS) tumors [3].

The incidence of NF2 is around one in 25,000 with a penetrance of 95% [4]. Over half
of patients with NF2 are reported to have a de novo mutation and around one-third are
mosaic [1]. Symptom onset is usually by age 20 with approximately 90% of patients having
the pathognomonic feature of the disease: bilateral vestibular schwannomas. Around 50%
of patients also have meningiomas [4]. Other common tumors include spinal schwannomas,
ependymomas, and dermal schwannomas [5].

Clinical diagnostic criteria for NF2 have evolved over time, and a new revision is due
to be published in the near future. The clinical diagnostic criteria published in 2017 are
detailed below in Table 1 [6], and tumor types are summarized in Table 1. Interestingly,
NF2 is genetically unrelated to the more common neurofibromatosis type 1 (NF1) which
is due to pathogenic variants of the tumor suppressor NF1 gene on chromosome 17. It is,
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however, closely related to schwannomatosis, due to variants in either INI1 (SMARCB1) or
LZTR1, which are closely located to NF2 on chromosome 22. As the predominant tumor
type in NF2 is the schwannoma (and not neurofibroma), there has been discussion that
the more appropriate name for NF2 might be Schwannomatosis Predisposition Syndrome
(SPS), merlin type.

Treatment of NF2 involves the combination of medical surveillance through physical
exam, audiometric testing, imaging, and surgical intervention when indicated. Patients are
managed by a multidisciplinary team including neurotologists, neurologists, audiologists,
oncologists, geneticists, neurosurgeons, and ophthalmologists [7].

Table 1. Clinical diagnosis criteria for neurofibromatosis type 2 (NF2) [6,8].

1. Bilateral vestibular schwannomas < 70 years of age.

2. Unilateral vestibular schwannoma < 70 years and a first-degree relative with NF2.

3. Any two of the following: meningioma, schwannoma (non-vestibular), ependymoma, cerebral
calcification, cataract AND first-degree relative to NF2 OR unilateral vestibular schwannoma and
negative LZTR1 testing. Note: recent data have excluded glioma in the criteria.

4. Multiple meningiomas and unilateral vestibular schwannoma or any two of the following:
schwannoma (non-vestibular), neurofibroma, glioma, cerebral calcification, cataract.

5. Constitutional or mosaic pathogenic NF2 gene mutation from the blood or by the identification
of an identical mutation from two separate tumors in the same individual.

2. NF2; Molecular Genetics

NF2 is a tumor suppressor gene comprised of 17 exons with 2 splicing isoforms
that is positioned on chromosome 22q12.2. It encodes the 595 amino acid protein, Mer-
lin [3]. Merlin is a member of the Ezrin/Radixin/Moesin (ERM) family of membrane–
cytoskeleton-linking proteins with an enigmatic role, although there is evidence to suggest
it is involved in stabilizing the membrane cytoskeleton interface by inhibiting signals
involving PI3kinase/Akt, Raf/MEK/ERK, and mTOR signaling pathways [7,9,10]. The
mechanism of tumorigenesis in NF2 has yet to be fully elucidated, although loss of het-
erozygosity involving allelic loss of NF2 is thought to be a likely mode, as evidenced by
work on skin tumors, vestibular schwannomas, and meningiomas in NF2 patients [11,12].
Other data have suggested an epigenetic role involving transcriptional inactivation of the
NF2 gene from hyper-methylation as another possible tumorigenesis mechanism [13].

Typically, NF2-affected family members experience the same type and location of the
NF2 germ-line variant, in which phenotypic expression of NF2 correlates amongst family
members. Intra-familial similarity and the severity of phenotype is significant as variations
in phenotype can be associated with mutations causing truncated protein expression [4].
Stochastic or epigenetic factors are certainly at play as evidenced by phenotypic variability
seen in monozygotic twins [14]. Severity is categorized by early age of onset, hearing loss,
and increased numbers of meningiomas [2,3]. Nonsense and missense variants are asso-
ciated with a more severe and mild phenotype, respectively, whereas splice-site variants
are more variable [15,16]. Incidentally, there are reports in the literature of mutations at
the 5-prime end of the NF2 gene that are associated with increased intracranial menin-
giomas [6]. This genotype-phenotype correlation highlights the importance of offering
genetic testing. Next-generation sequencing of all 17 coding exons of the NF2 gene is
the best molecular test with up to 90% variant detection rate with a positive NF2 family
history; a lower detection rate ranging between 25–60% is present in sporadic cases, likely
due to somatic mosaicism [1,17]. When genetic testing is offered early to patients with
suspected NF2, it provides useful prognostic information and a more tailored therapeutic
approach. Selvanatham et al. performed molecular genetic analysis on 268 NF2 patients
and found that those with nonsense variants had a more severe phenotype including more
meningiomas and spinal tumors. In fact, they were diagnosed at an earlier age, which sadly
may not result in an improved overall outcome but did allow earlier intervention [18].
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3. NF2: Tumor Types

The tumor types associated with NF2 including incidence, clinical presentation, his-
tological, imaging, and treatment/complications are summarized in Table 2 [4,19–21].
The neuroimaging hallmarks give rise to the acronym MISME, which describes multiple
inherited schwannomas, meningiomas, and ependymomas [22].

Table 2. Characteristics of NF2 tumor type.

NF2 Tumor Types % Clinical Presentation Histology Imaging Treatment Complications

Vestibular
Schwannomas ~90%

Tinnitus
Hearing loss

Ataxia

Antoni A, B regions
Verocay bodies

Hyalinzed vessels

Often bilateral. Slightly T1
hypointense (63%) or isointense

(37%). Heterogeneously T2
hyperintense (Antoni A:

relatively low, Antoni B: high),
cystic degenerative areas may

be present if large tumor.
Intense contrast enhancement

on T1 C+ (Gd)

Radiosurgery
Chemotherapy;
Bevacizumab

Facial nerve
injury

Malignant
transformation

Peripheral
Schwannomas

-Tumorlets
-Plexiform

~70%

Neuropathic pain
Loss of sensation

Weakness
Tumors on skin, head

and neck region
(Plexiform)

Antoni A, B regions
Verocay bodies

Hyalinzed vessels
Infiltration of nerve

T1: 75% are isointense, 25% are
hypointense. T2: more than 95%

are hyperintense, often with
mixed signal. Intense contrast
enhancement on T1 C+ (Gd)

Intraneural
dissection
Excision

Rarely undergo
malignant

transformation
although high
risk of nerve
infiltration

Meningiomas
~50%

(20% are
in kids)

Headache
Seizure

Fibrous morphology
Psamomma

Bodies
High mitotic index

Intense and homogeneous
enhancement. Frequent cystic

components
Can be multiple

Present in unusual locations:
craniocervical junction.

Surgical excision
Radiosurgery

Current clinical
trial: mTORC1/2

inhibitor
AZD2014

(NCT02831257,
NCT03071874)

Malignant
transformation

Invasion to
vascular brain

structures
Compression

effect

Ependymoma
Glial ~30% Asymptomatic

Perivascular
pseudorosettes

Ependymal rosettes

Usually spinal intramedullary
(not

intracranial/intraventricular).
“String of pearls” appearance

along the spinal cord and cauda
equina.

Monitoring/
surveillance

Surgical resection
if symptomatic

Malignant
transformation

is rare

Menigioangiomatosis rare

Headache
Seizures

Behavioral changes
Cortical blindness

Paresis

Plaque like
leptomeningeal and

perivascular
proliferation

Fibroblastic and
meningothelial
appearing cells

Cortical/subcortical white
matter mass characterized by

Ca++, enhancing
meningovascular proliferation.
Most common in temporal and

frontal lobes.

Surgical excision Intracerebral
hemorrhage

Glial micro
hamartomas Common Asymptomatic

Atypical pleomorphic
nuclei, Occasional
multi-nucleation,

Eosinophilic
cytoplasm

Cortical hyperintense
T2/FLAIR lesions

“Transmantle sign”

Surveillance and
monitoring None

Note: % refers to incidence.

4. NF2 Meningioma Pathogenesis

Meningiomas can be intracranial or spinal in NF2. These are common primary in-
tracranial dural-based tumors arising from arachnoid cap cells, with an incidence of
7–8/100,000 people/year; they account for 37.1% of primary intracranial tumors [23–25].
The clinical presentation of meningioma ranges from incidental discovery to headaches,
visual deficits, cranial nerve dysfunction, and seizures due to mass effect or cortical irrita-
tion (please see Figures 1 and 2 for an example of meningiomas in a patient). According to
World Health Organization (WHO) classification, 15 subtypes of meningioma exist, with
grades corresponding to histopathologic analysis [26,27]. However, studies have demon-
strated that WHO grading correlates poorly with prognosis as grade alone is not entirely
predictive of recurrence and malignant transformation [28,29], creating a role for molecular
genetics both in meningioma treatment and prognostication. An estimated 50–75% of
patients with NF2 develop meningiomas; in contrast to sporadic meningiomas, these are
often Grade II or III, have a worse prognosis, and higher rate of recurrence [30–32].
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Figure 1. 46-year-old woman with neurofibromatosis type 2 (NF2). Contrast-enhanced T1-weighted-Fat saturation MR 
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(black asterisk in (A)) and avidly enhancing meningiomas in the right anterior temporal convexity, sphenoid wing, and 
left lateral posterior fossa (white asterisks in (A)). Post-operative changes from right suboccipital craniotomy and 
mastoidectomy with residual meningioma (white arrows in (A)). Avidly enhancing dumbbell-shaped right C5 intradural 
schwannoma extending through right C5 foramen (B,C). Large avidly enhancing right paraspinal T10 schwannoma 
extending through right T10 foramen (D) with associated heterogenous T2 hyperintensity on axial T2-weighted image 
(G). Avidly enhancing intramedullary C6 ependymoma (E,F). Numerous multilevel tiny enhancing rounded nodules 
along the cauda equina (H,I) consistent with schwannomas which demonstrate T2 hypointensity on axial and sagittal T2-
weighted images (white arrows in (J,K)). 

Figure 1. 46-year-old woman with neurofibromatosis type 2 (NF2). Contrast-enhanced T1-weighted-Fat saturation MR
images (A,F,I) show avidly enhancing schwannoma involving left cerebellopontine angle and internal auditory canal (black
asterisk in (A)) and avidly enhancing meningiomas in the right anterior temporal convexity, sphenoid wing, and left lateral
posterior fossa (white asterisks in (A)). Post-operative changes from right suboccipital craniotomy and mastoidectomy
with residual meningioma (white arrows in (A)). Avidly enhancing dumbbell-shaped right C5 intradural schwannoma
extending through right C5 foramen (B,C). Large avidly enhancing right paraspinal T10 schwannoma extending through
right T10 foramen (D) with associated heterogenous T2 hyperintensity on axial T2-weighted image (G). Avidly enhancing
intramedullary C6 ependymoma (E,F). Numerous multilevel tiny enhancing rounded nodules along the cauda equina (H,I)
consistent with schwannomas which demonstrate T2 hypointensity on axial and sagittal T2-weighted images (white arrows
in (J,K)).
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Right panel: 40× H&E shows increased cellularity, prominent nucleoli, mitoses, and necrosis (as 
represented in the bottom right hand section and highlighted by the arrow in bold). 
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been found in most but not all VS in both sporadic and syndromic-associated tumors. 
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Figure 2. Immunohistochemistry of an atypical meningioma (WHO Grade II) from an NF2 patient.
Left panel: 40× magnification, MIB-1(Ki67) nuclear immunostain shows an elevated index (25%).
Right panel: 40× H&E shows increased cellularity, prominent nucleoli, mitoses, and necrosis (as
represented in the bottom right hand section and highlighted by the arrow in bold).

Loss of chromosome 22 has been widely implicated in the pathogenesis of menin-
gioma, sharing a common pathway for tumorigenesis with NF2 patients due to the presence
of neurofibromin on chromosome 22q12.2. Deletions, nonsense mutations, splice site muta-
tions, and translocations in NF2/Merlin are identified in 50–60% of the general population
of patients with meningiomas, and loss of chromosome 22 in tumor tissue can be seen in
40–80% of patients developing meningioma [23,24]. The exact mechanism by which loss
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of Merlin or chromosome 22 affects meningioma pathogenesis is not well understood, as
both have been implicated to have a role in cytoskeletal remodeling; indeed, the produc-
tion of junctional proteins E-cadherin and Zo-1 demonstrate a positive correlation with
NF2/Merlin expression [33]. Furthermore, loss of chromosome 22 has been widely shown
to activate oncogenic pathways with downstream targets such as Ras/mitogen-activated
protein kinase, Notch, and mammalian target of rapamycin (mTOR) [34]. Notably, Bi et al.
demonstrated that a mean of 23 NF2 mutations in high-grade gliomas compared to 11
in low-grade gliomas, suggesting a positive correlation between NF2 mutation rate and
meningioma grade; this has been corroborated by additional studies [23,30,33]. Interest-
ingly, a recent study by Angus and colleagues showed upregulation of erythropoietin
producing hepatocellular receptor A2 (EPH-RA2), a downstream target MEK, in NF2 null
mice; therapeutic interventions targeting such upstream signaling cascades of receptor
tyrosine kinases may prove efficacious in treatment of NF2 related meningiomas [35].

In addition to the downstream effects of germline mutations to NF2, it is worth men-
tioning that a number of sporadic mutations have been implicated in the pathogenesis
of meningioma. Several such mutations, including those to smoothened (SMO), tumor
receptor-associated factor 7 (TRAF7), and phosphatidylinositol-4,5-bisphosphate 3 kinase
catalytic subunit α (PIK3CA) are present in non-NF2 tumors and are mutually exclusive to
mutations in NF2 [31,36–40]. Other genomic mutations, such as those to the telomerase re-
verse transcriptase (TERT) promoter region, demonstrate co-occurrence with NF2 mutations.
While 6% of meningiomas possess TERT promoter mutations, nearly 80% of TERT muta-
tions in meningioma co-occur with NF2 mutations and are associated with higher tumor
grade and significantly decreased tumor-free progression [28]. The co-occurrence of such
mutations provides valuable targets for prognostic evaluation and therapeutic intervention.

Elucidating the mechanism behind meningioma pathogenesis at a genetic level in
neurofibromatosis 2 has clinical implications. A study by Clark et al. noted that NF2-
mutated meningiomas had a predilection for the posterior and lateral skull base, tentorium,
and cerebral falx, while sporadic mutations, such as those to TRAF7 and SMO, had a
tendency for anterior skull base presentation [31]. However, in NF2, meningiomas may
also occur in the spinal canal, optic nerve sheaths, and cerebral ventricles. Unlike sporadic
mutations, NF2 mutations are far more likely to produce multiple meningiomas and
occur in a younger population; the mean age of meningioma diagnosis is 30 years. By
age 70, the cumulative incidence of meningioma is 80% in patients with proven NF2
mutations [23,30,41,42]. Understanding the genomic and molecular pathogenesis of NF2-
mutated meningiomas will provide insight into meningioma tumorigenesis as a whole and
offer new avenues for efficacious therapies.

5. NF2 Vestibular Schwannoma Pathogenesis

Vestibular schwannomas (VS) are tumors derived from the Schwann cells of the
vestibular branches of the vestibulocochlear nerve (cranial nerve VIII). The most common
symptoms of VS are hearing loss, tinnitus, imbalance, facial numbness/paraesthesias,
and facial paresis. Although benign histologically, they may compress the brainstem
leading to hydrocephalus and neurologic emergency. Rarely, tumors may also cause
hydrocephalus through poorly understood mechanisms that may involve high protein
levels in the subarachnoid space [43]. Unilateral, sporadic tumors account for 95% of all
VS, with bilateral VS being diagnostic of NF2 [44]. When possible, sporadic and NF-2
related VS should be distinguished from schwannomatosis, which is a distinct clinical
and molecular entity which results in schwannomas throughout the body. Unlike NF2, it
rarely involves the vestibular nerves. This can be difficult to distinguish in patients who
present initially with non-vestibular schwannomas suggestive of shcwannomatosis and
later develop bilateral VS, establishing the diagnosis of NF2. It may also be difficult in
patients with non-vestibular schwannomas who are mosaic for NF2 [45].

Molecular studies have shown that VS develop as a result of inactivation of both
alleles of the NF2 tumor suppressor gene. Consistent with the autosomal dominant in-
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heritance pattern, patients with NF2 inherit one mutated copy of the NF2 gene, and loss
of heterozygosity (and all tumor suppressor function) in the Schwann cells allows for VS
development [46–52]. NF2 is highly penetrant; patients who inherit an abnormal NF2 gene
have a 95% chance of developing bilateral VS. Approximately 50% of NF2 patients have
no family history of NF2, suggesting a significant proportion of cases arise due to new
germ-line mutations, rather than through inheritance, and 33% of these patients exhibit
mosaicism, where the mutation takes place after conception and results in two separate cell
lineages which may make mutations difficult to detect in peripheral blood analysis [53,54].
Tumor sequencing with matched peripheral blood analysis in patients with unilateral
(sporadic) VS, demonstrate biallelic mutations in tumor specimens, which are not present
in peripheral blood consistent with a “two-hit” theory for sporadic tumor development,
which is consistent with the later presentation and less aggressive course of patients with
sporadic tumors compared to their NF2 counterparts (please see Figure 3 for an example of
NF2 VS) [55].

Int. J. Mol. Sci. 2021, 22, x 7 of 12 
 

 

detected, suggesting other post-translational events that can affect Merlin activity, or that 
some mutations are not being detected. The types of NF2 gene mutation has been loosely 
associated with mortality and disease severity in both NF2 associated and sporadic 
tumors [55,56]. For NF2 patients, nonsense or frameshift mutations which result in 
truncated protein products generally have more severe phenotype (earlier presentation 
and more aggressive tumors) than missense mutations [56], though not all studies have 
found such an association [47]. 

Though well-characterized as a tumor suppressor gene, the mechanisms behind 
Merlin’s tumor suppressor functions have not been fully elucidated. Overexpression of 
Merlin in mouse models limits cell growth and cell transformation by the ras oncogene; 
growth control is lost when NF2 is inactivated in Schwann and meningeal cells. Merlin is 
structurally similar to proteins of the erythrocyte 4.1-related superfamily. These proteins 
link the actin cytoskeleton to the cell membrane, and Schwann cells from NF2 tumors 
show significant alteration in the actin cytoskeletal organization. Merlin is also known to 
localize to the cell membrane-cytoskeletal interface. It requires a dephosphorylated state 
to assume its active form; this phosphorylation status is dependent on the upstream 
activity of cyclic-AMP dependent protein kinase A, p21-activated kinases, and myosin 
phosphotate-1 protein activity. At the cell membrane-cytoskeletal interface, Merlin has 
been shown to interact with various cytosolic proteins, cell membrane components, cell-
to-cell adhesion proteins, and cytoskeletal components. In addition to its actin-
cytoskeletal effects, evidence exists for a role in intracellular pro-mitotic/anti-mitotic 
processes. Merlin has been shown to affect various downstream mitogenic signaling 
pathways such as the phosphoinositide-3 kinase (PI3K) and the mitogen-activated protein 
kinase (MAPK) signaling pathways. These pathways are known to be involved in 
oncogenesis, as well as being critical for cell growth and proliferation [57–64]. 

 
Figure 3. 12-year-old boy with NF2. Contrast-enhanced T1-weighted-Fat saturation MR images 
(B,F) show avidly enhancing masses involving cerebellopontine angles and internal auditory canals 
(black asterisks in (B)) with associated T2 hypointensity on axial high resolution T2 FIESTA (white 
asterisks in (A)), consistent with bilateral vestibular schwannomas. Also noted are asymmetric 
enhancement and enlargement of right geniculate ganglion of right CN7 (white arrow in (B)) and 
right CN3 (black arrow in (C)) consistent with additional schwannomas. Large third ventricular 
meningioma with obstructing hydrocephalus (D). Additional left parafalcine and left sphenoid 
wing meningiomas are noted (arrowheads in (E,F)). 
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NF2 is a complicated neuro-cutaneous genetic disorder that can cause considerable 
morbidity (Figure 4). Apart from the vestibular schwannomas and meningiomas, 

Figure 3. 12-year-old boy with NF2. Contrast-enhanced T1-weighted-Fat saturation MR images (B,F)
show avidly enhancing masses involving cerebellopontine angles and internal auditory canals (black
asterisks in (B)) with associated T2 hypointensity on axial high resolution T2 FIESTA (white asterisks
in (A)), consistent with bilateral vestibular schwannomas. Also noted are asymmetric enhancement
and enlargement of right geniculate ganglion of right CN7 (white arrow in (B)) and right CN3 (black
arrow in (C)) consistent with additional schwannomas. Large third ventricular meningioma with
obstructing hydrocephalus (D). Additional left parafalcine and left sphenoid wing meningiomas are
noted (arrowheads in (E,F)).

The NF2 gene is located on chromosome 22 at 22q12.2, and codes for the protein Merlin,
which has also been called schwannomin [47,48]. Alterations in NF2 genes have been found
in most but not all VS in both sporadic and syndromic-associated tumors. Interestingly,
Merlin activity is nevertheless altered in cases where mutations are not detected, suggesting
other post-translational events that can affect Merlin activity, or that some mutations are
not being detected. The types of NF2 gene mutation has been loosely associated with
mortality and disease severity in both NF2 associated and sporadic tumors [55,56]. For
NF2 patients, nonsense or frameshift mutations which result in truncated protein products
generally have more severe phenotype (earlier presentation and more aggressive tumors)
than missense mutations [56], though not all studies have found such an association [47].

Though well-characterized as a tumor suppressor gene, the mechanisms behind
Merlin’s tumor suppressor functions have not been fully elucidated. Overexpression of
Merlin in mouse models limits cell growth and cell transformation by the ras oncogene;
growth control is lost when NF2 is inactivated in Schwann and meningeal cells. Merlin is
structurally similar to proteins of the erythrocyte 4.1-related superfamily. These proteins
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link the actin cytoskeleton to the cell membrane, and Schwann cells from NF2 tumors
show significant alteration in the actin cytoskeletal organization. Merlin is also known to
localize to the cell membrane-cytoskeletal interface. It requires a dephosphorylated state to
assume its active form; this phosphorylation status is dependent on the upstream activity of
cyclic-AMP dependent protein kinase A, p21-activated kinases, and myosin phosphotate-1
protein activity. At the cell membrane-cytoskeletal interface, Merlin has been shown to
interact with various cytosolic proteins, cell membrane components, cell-to-cell adhesion
proteins, and cytoskeletal components. In addition to its actin-cytoskeletal effects, evidence
exists for a role in intracellular pro-mitotic/anti-mitotic processes. Merlin has been shown
to affect various downstream mitogenic signaling pathways such as the phosphoinositide-3
kinase (PI3K) and the mitogen-activated protein kinase (MAPK) signaling pathways. These
pathways are known to be involved in oncogenesis, as well as being critical for cell growth
and proliferation [57–64].

6. The Current State and Future Directions for NF2 Related Meningiomas and
Vestibular Schwannomas

NF2 is a complicated neuro-cutaneous genetic disorder that can cause considerable
morbidity (Figure 4). Apart from the vestibular schwannomas and meningiomas, ependy-
momas and spinal schwannomas can also occur in this patient population, however, this
review is focusing on the first two diseases. More treatment options need to be available,
as the current options are not curative. Surgical resection can have recurrence, and the
current therapeutic options such as Bevacizumab or mTOR inhibitors do not produce a
long-lasting effect in these patients. As discussed in the prior sections, as the molecular
pathology is being unraveled, we will be able to design better drugs for the tumor types in
NF2 patients.
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The molecular pathogenesis of NF2 is complicated by the fact that the loss of function
of Merlin, a tumor suppressor protein that interacts with a whole host of integral signaling
pathways including Hippo, receptor tyrosine kinase, Ras, MAP kinase (mitogen-activated
protein kinase), p21-activated kinases, PI3 Kinase, Focal Adhesion Kinase, CD44, Rac/Rho
pathway for cell motility, c-Jun N-terminal kinases, and Wnt. Therefore, targeting Merlin is
extremely challenging (reviewed by Coy et al. [20]). Focusing on the molecular aberrations
in the multiple meningiomas found in NF2 is still in the process of being unraveled
as the genetic profiling of NF2 associated meningiomas is ongoing. However, a recent
study compared the molecular profiling of cranial and spinal meningiomas in NF2 [12].
Pemov et al. [12] state that 45–58% of NF2 patients have intracranial meningiomas and
20% have spinal meningiomas. They also clarify that meningiomas in NF2 patients are
usually benign, WHO Grade 1, and multiple. Unlike sporadic meningiomas, they found
a lack of mutations, the most obvious and apparent link is the inactivated NF2 gene.
Interestingly, there is an ongoing clinical trial (NCT02523014) that has recently closed to
accrual at UCSF looking at GSK2256098 (FAK inhibitor, also a target of Merlin) in NF2
progressive meningiomas.

Meningiomatosis, reviewed by Coy et al. [20], is associated with multiple menin-
giomas, and genetic analyses of these suggest that they are of clonal origin. These may
be rarely associated with malignant sarcomatous lesions, and some patients have been
reported to have an absence of germline NF2 or SMARCB1 mutations. In addition, menin-
giomatosis can demonstrate multiple recurrent chromosomal alterations including mono-
somy 22, 5q loss, and 6q gain [20]. Meningiomatosis is thought to occur through the
silencing of SMARCB1 expression and additional chromosomal alterations. Drugs such as
Pazopanib which acts on inhibiting intracellular tyrosine kinase of VEGFR and PDGFR
would be an interesting way to treat patients with meningiomatosis, as PDGFR and FGFR
pathways are dependent on SMARCB1 loss, and this agent is currently being looked at in a
cancer known as atypical teratoid rhabdoid tumor (ATRT) [65].

NF2-related vestibular schwannomas in the recurrent setting are often treated with
Bevacizumab [66]. Unfortunately, this often ends up failing, and the INTUITT-NF2 trial (In-
novative Trial for Understanding the Impact of Targeted Therapies in NF2, NCT04374305)
under the umbrella of the Children’s Tumor Foundation and Takeda Pharmaceuticals led
by Scott Plotkin (Massachusetts General Hospital) and Jaishri Blakely (Johns Hopkins
University) is underway to look at patients with vestibular schwannomas, ependymomas,
and meningiomas in the NF2 population. They are currently using Brigatinib, but have a
basket trial design, therefore, if the patient’s tumor does not respond, they will be eligible
for another agent in this trial.

Due to the complexity of care of NF2 patients, and other neurogenetic patients, often
clinical centers run a multidisciplinary clinic to address the issues of these patients (Figure 4).
NF2 patients tend to be managed by specialized family physicians, neurogeneticists, neuro-
oncologists, neuro-otologists, neurosurgeons, neuro-ophthalmologists, neuroradiologists,
social work, audiology, speech therapy, physical therapy, and occupational therapy. As
more personalized medicine approaches develop, there will be even more providers in-
volved in the clinical care of NF2 patients who have complex clinical needs. Resources
and insurances will all need to align in the increasing costs of taking care of patients with
complex needs. However, if there are ways to prevent the morbidities in NF2 patients in
the first place, such as gene therapy, morbidity would be less. Attempts are underway to
do this. Transgenic murine NF2 models are being utilized to study drugs [67,68]. Indeed,
MEK 1 and 2 inhibitors are being studied for NF2-related vestibular schwannomas [68]. In
addition, one might be able to leverage microsatellite instability in meningiomas [69] and
changes in MLH1 and the MSH2 genes may pave the way of trailing immunotherapy in re-
current meningiomas [23,70]. As previously discussed in the Children’s Tumor Foundation
forum, Dr. M. Wootton, CEO of NF2 Therapeutics, mentioned that they have a monkey
model of NF2 gene replacement, and based on this, he went on to state that the first human
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clinical trials for this NF2 transgene may start in 2022 or 2023. Therefore, the future of NF2
is evolving.
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