
Evaluation of Solvation Free Energies for Small Molecules
with the AMOEBA Polarizable Force Field

Noor Asidah Mohamed, Richard T. Bradshaw, and Jonathan W. Essex*

The effects of electronic polarization in biomolecular interac-

tions will differ depending on the local dielectric constant of

the environment, such as in solvent, DNA, proteins, and

membranes. Here the performance of the AMOEBA polariz-

able force field is evaluated under nonaqueous conditions by

calculating the solvation free energies of small molecules in

four common organic solvents. Results are compared with

experimental data and equivalent simulations performed

with the GAFF pairwise-additive force field. Although AMOE-

BA results give mean errors close to “chemical accuracy,”

GAFF performs surprisingly well, with statistically significantly

more accurate results than AMOEBA in some solvents.

However, for both models, free energies calculated in chloro-

form show worst agreement to experiment and individual

solutes are consistently poor performers, suggesting non-

potential-specific errors also contribute to inaccuracy. Scope

for the improvement of both potentials remains limited by

the lack of high quality experimental data across multiple

solvents, particularly those of high dielectric constant. VC 2016
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Introduction

Much effort has been devoted to advancing computational

techniques to predict free energies in biomolecular systems,

ranging from more theoretically rigorous (e.g., alchemical free

energy calculations) to less rigorous (e.g., continuum solvation,

docking and scoring) methods.[1] As with any computational

approach, accuracy in predicting experiment requires a syner-

gy of sufficient conformational sampling with an accurate

molecular mechanics potential energy function describing the

intermolecular interactions.[2] Many sampling issues have been

dealt with using intensive enhanced sampling methods cou-

pled to molecular dynamics (MD)[3–5] or Monte Carlo meth-

ods.[6,7] However, the issues associated with potential energy

function or force field accuracy are substantially more prob-

lematic and remain a major challenge in force field develop-

ment and molecular recognition applications.[8,9]

Within the range of fixed-point-charge, pairwise additive

MM force fields available for molecular simulation,[8,10–17] a

number of philosophies exist for the derivation of atomic par-

tial charges and calculation of electrostatic interactions. These

models often take account of polarization implicitly in the deri-

vation of charges, and are mainly parameterized to recreate

interactions in the aqueous phase. This limits their ability to

fully adapt to changes in environment. To improve the accura-

cy of interatomic potentials for biomolecular interactions, the

Atomic Multipole Optimized Energetics for Biomolecular Appli-

cation (AMOEBA) force field has been introduced.[18] AMOEBA

is an advanced potential energy function including a polariz-

able molecular mechanics model,[18–20] designed to directly

treat polarization effects by incorporating an explicit response

of induced atomic dipoles to the instantaneous molecular

environment. The ability of the AMOEBA force field to capture

these effects may be expected to result in parameters with

greater transferability than standard fixed-point-charge models,

and thereby give accurate predictions of interaction energetics

across a variety of systems.

Consequently, an evaluation of potential energy function

accuracy is needed to determine the quality of their perfor-

mance, particularly given the added computational cost of

explicit polarizable potentials. Commonly, solvation free energy

calculation approaches[20–26] have been performed to assess

force field properties. This is thanks to the availability of high

accuracy experimental data, and the straightforward computa-

tional methodologies for free energy prediction. As such, eval-

uating the accuracy of solvation free energy prediction is

often a crucial step for force field validation.

Water has been used as the solvent to assess the accuracy

of physical models in solvation free energy approaches (as

opposed to organic solvents) in most studies,[23,26–31] due to

the extensive experimental data available for the interaction

between a solute and water and its significant biological rele-

vance. However, to investigate the effect of electronic polariza-

tion in biomolecular systems, solvation free energies in

solvents other than water are worthy of consideration due to

the changes in dielectric environment that may occur in a bio-

molecular situation, for example, the difference between a pro-

tein interface and bulk solvent, or between a membrane

surface and the interior of a bilayer.
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Compared to the extensive studies performed with water,

there are comparatively few large-scale studies of organic sol-

vents. Recently, Caleman et al. evaluated the performance of

GAFF[32] and OPLS/AA[33] in organic solvents.[34] They bench-

marked the force fields by computing liquid properties such as

density, enthalpy of vaporization, heat capacity, surface tension,

isothermal compressibility, volumetric expansion coefficient, and

dielectric constant of �150 organic liquids. A more recent paper

by Genheden has calculated solvation free energies for approxi-

mately 150 small organic molecules, derived from the Minnesota

solvation database, using a simple all-atom/coarse-grained

hybrid model (AA/ELBA). This study showed good agreement

(<1.0 kcal mol21) of solvation free energies with experiment,

albeit in four related polar solvents and three related nonpolar

solvents.[35] In a larger study, Zhang et al. compared the perfor-

mance of GAFF with three different prediction methodologies

for solvation free energies (thermodynamic integration, a quanti-

tative structure-property relationship [QSPR] and the conductor-

like screening model for realistic solvation [COSMO-RS]), employ-

ing a wide range of organic solvents.[36] These studies involved

the evaluation of Gibbs solvation free energies for 228 organic

molecules in organic solvents compared against experimental

data. Based on their analysis, no significant difference in correla-

tion was shown between different prediction models with the

GAFF force field. However, the authors also highlighted the fact

that it is difficult for a fixed-point-charge force field such as

GAFF to accurately reproduce both liquid properties and solva-

tion properties simultaneously across a large number of solvents

due to the absence of explicit electronic polarization to take

into account changes in molecular environment.

To determine whether the explicit inclusion of polarization

in a potential energy function is able to improve the accuracy

of its free energy calculations over a much simpler and

cheaper energy function, here we evaluate the performance of

the AMOEBA model. Previously, AMOEBA performance has

been tested for hydration free energy predictions,[20,22,37,38]

but the additional computational cost of the AMOEBA poten-

tial over pairwise additive models has meant that large scale

studies, and free energies in solvents other than water, have

not traditionally been performed. In this paper, we evaluate

AMOEBA performance by calculating the solvation free ener-

gies of a set of small molecule solutes across a range of four

common organic solvents, giving a total of 54 solute-solvent

systems, each evaluated in triplicate. The test was carried out

using solvents of different dielectric constants representing a

variety of electrostatic environments to investigate the trans-

ferability of parameters between diverse systems. Manual

parameterization was performed for each solute following the

recommendations in a previous AMOEBA parameterization.[39]

Computational solvation free energies were then validated

against experimental data. In addition, we also compare

AMOEBA with solvation free energies generated using the

GAFF fixed charge model, to measure any improvements aris-

ing by incorporating an explicit polarization term. Ultimately,

statistical error analysis was carried out to validate the signifi-

cance of observed differences between calculated solvation

free energies for both force fields.

Methods

Dataset

A total of 21 small molecules (Fig. 1) with a variety of function-

al groups were selected in this study: six molecules had exper-

imental solvation free energies for all four nonaqueous

solvents (Fig. 1a), and 15 further molecules had experimental

solvation free energies for only toluene and chloroform solvent

(Fig. 1b). This choice of small molecules was taken from the

Minnesota solvation database[40] and Abraham et al., 1999.[41]

Although the Minnesota solvation database contains in excess

of 3000 data points, our dataset for this study was limited to

molecules for which (a) experimental solvation free energies

were available in multiple organic solvents, and (b) these mul-

tiple organic solvents had parameters available in the amoe-

ba09 or chloroalkane AMOEBA force fields.[39,42] Solvent

models in both force fields have previously undergone limited

validation including the calculation of liquid density and

enthalpy of vaporization to assess their suitability.[39,42]

Nonaqueous solvents

Considering the availability of experimental solvation free ener-

gies for a variety of different molecules, four common organic

solvents with a range of dielectric constants were chosen: tolu-

ene (e 5 2.38), chloroform (e 5 4.81), acetonitrile (e 5 36.64), and

dimethylsulfoxide (DMSO, e 5 47.24).[43] Here, all the AMOEBA

solvent models were prepared using the parameters taken from

amoeba09.prm[39] except for chloroform.[42] The most recent

AMOEBA chloroform parameters published by Ren and cow-

orkers,[42] which made use of the ForceBalance parameter opti-

mization protocol, were used.[44] For fixed-charge simulations,

solvent parameters were taken from Cieplak et al. (chloro-

form),[45] Grabuleda et al. (actetonitrile),[46] and Dupradeau et al.

(toluene and DMSO).[47] For consistency, the setup of solvated

systems was identical for both force fields, as explained in the

solvent box preparation section below.

Parameterization

Manual parameterization was performed to improve the con-

sistency and accuracy of the small molecule parameters for

AMOEBA. In manual parameterization, the parameters were

generated by following the standard AMOEBA parameteriza-

tion protocol[39] defined by Ponder and coworkers, using the

TINKER 6.3.3 package[48] and GAUSSIAN09 program.[49] Where

valence parameters (bond, angle, stretch-bend, out-of-plane,

and torsion), van der Waals parameters and atomic polariz-

abilities for the small molecules were already available, they

were taken directly from the TINKER amoeba09.prm force

field.[39] For small molecules that had not already been

parameterized in amoeba09, the multipole coordinate frames

and polarization groups were manually defined and the

valence parameters assigned according to the suggested

parameters using the TINKER valence program, refined by

comparison with parameters for similar atom types in amoe-

ba09. In all cases, atomic multipole parameters for molecules

were derived from QM calculations performed with
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GAUSSIAN09[49] using three steps.[50] Essentially, the AMOEBA

parameterization procedure requires only the initial coordi-

nates of a molecule to assign the entire AMOEBA potential

for that molecule. First, the initial structure of each molecule

was optimized quantum mechanically at the HF/6-31G* level

using GAUSSIAN09.[49] A single-point energy calculation was

carried out subsequently at the MP2/6-311G(1d, 1p) level of

theory followed by a Distributed Multipole Analysis facilitated

by the Gaussian Distributed Multipole Analysis (GDMA) pro-

gram[51] of Stone to compute an initial set of atomic multi-

poles, using the original DMA procedure.[52] This was

continued by a further single point calculation of the

molecular electrostatic potential using a larger basis set

(MP2/aug-cc-pVTZ). Finally, the AMOEBA dipole and quadru-

pole parameters were optimized by fitting to the QM electro-

static potential from the latter single point calculation.

At the same time, the small molecules were also parameter-

ized for the GAFF fixed-point charge force field as a compari-

son. All the parameterization for the small molecules was

performed following the standard GAFF fixed-point-charge

parameterization procedures. The ANTECHAMBER program[53]

from the AMBER 14 package was used to derive the fixed-

point-charge parameters of small molecules for the MD simula-

tions, implementing AM1-BCC atomic charges.[54,55] Generated

parameters for all solutes are available freely as an online

dataset.[56]

Figure 1. The structures of small molecules selected in this study. a) Dataset of small molecules for toluene, chloroform, acetonitrile and DMSO solvent.

b) Dataset of additional small molecules for toluene and chloroform solvent.
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Free energy calculations

The solvation free energies of small molecules in four different

solvents were calculated by adopting the protocol for hydra-

tion free energy calculations from Shi et al.[37] The estimated

solvation free energies of each molecule were computed

based on the thermodynamic cycle (Fig. 2) for solvation free

energy in explicit nonaqueous solvent molecular dynamics

simulations. The overall solvation free energy is denoted by:

DGsolv 5 2DGdecoupling;sol 2 DGdischarging;sol 1 DGdischarging;vac

(1)

Three sets of calculations were required: (i) the discharging of

molecule in solvent, (ii) the decoupling of van der Waals (vdW)

interactions between solute and environment in solvent, and

(iii) the discharging of solute in vacuum. For the evaluation of

DGsolv for molecules in each solvent, MD simulations were run

for both AMOEBA and GAFF force fields by applying a similar

system setup. Finally, Bennett’s Acceptance Ratio (BAR)[4,57] was

used to compute free energy differences for each perturbation.

Nonaqueous solvent box preparation

A cubic box of solvent with approximately � 40 Å dimension

on each side, containing � 400 to 800 molecules, was first pre-

pared for each solvent using TINKER utilities.[48] The number of

solvent molecules inserted in the box varied depending on

the size of solvent molecule and the experimental density

required. The solvent box was then minimized with the steep-

est descent algorithm for 2500 steps and heated to 300 K at

constant volume using NVT MD over a 50 ps time period, fol-

lowed by 200 ps equilibration to 1 atm at constant pressure in

the NPT ensemble. A Berendsen barostat was applied to con-

strain the pressure with coupling time set at 2 ps.[58] This sim-

ulation was run with 1 fs time steps using the Velocity Verlet

integrator in TINKER. A Nos�e–Hoover thermostat[59,60] was

employed to constrain the temperature to 300 K with a cou-

pling time parameter, from which the Nos�e-Hoover chain

masses are set in TINKER, of 0.2 ps. Final temperature and den-

sity equilibrated structures were used as solvent box inputs for

the following series of solvation free energy calculations.

Production simulation details

AMOEBA MD simulations for solvation free energy calculations

utilized either the AMBER 14[61] or TINKER 6.3.3 packages[48]

depending on the solute/solvent system under investigation.

All systems were initially prepared in TINKER[48] by soaking

each molecule in a periodic box of pre-equilibrated solvent,

generated as above, using the XYZEDIT utility of TINKER. Initial

structures and parameters were then converted to AMBER for-

mat for subsequent minimization, equilibration and simulation,

using the tinker_to_amber utility of AMBER 14. However, sol-

utes or solvents that included a “Z-Bisector” multipole local

frame (DMSO, Acetonitrile, Methylamine, Trimethylamine) could

not be converted as the “Z-Bisector” frame is not implemented

in AMBER 14. Instead, these simulations were performed with

an equivalent procedure in TINKER 6.3.3. Details of both proto-

cols are provided below. All simulations were performed in

triplicate, using the same starting structure but a different ran-

dom number seed for the thermostat.

Solution phase simulations in AMBER used the pmemd.a-

moeba program and were performed as follows. Initially, the sys-

tems underwent minimization for 2500 steps, of which the first

1000 steps were run with a steepest descent algorithm, and the

next 1500 steps with a conjugate gradient algorithm. For each

system, simulations were then performed in the NVT ensemble,

heated slowly to 300 K over 50 ps, followed by another 100 ps

of pressure equilibration using NPT at 300 K and 1 atm. A time-

step of 1 fs and a velocity Verlet integrator was used to propa-

gate dynamics. To maintain the temperature and pressure, the

systems were treated using a Langevin thermostat and Berend-

sen barostat, respectively.[58,62] A different random seed for the

Langevin thermostat was applied for each independent repeat

simulation. van der Waals (vdW) interactions were evaluated

explicitly up to a 9 Å cutoff with an analytical long-range correc-

tion. Long-range electrostatic interactions for all the systems

were treated using a Particle Mesh Ewald (PME) summation,[63]

with a real-space cutoff of 8 Å. The PME calculation used fifth

order B-spline interpolation. At each step the atomic induced

dipoles were converged until the root-mean square change was

below 0.01 D/atom. Finally, the last configuration of the NPT sim-

ulation was used as the starting point for equilibration in all the

intermediate k states with AMOEBA.

A total of 11 intermediate state simulations with k 5 1.0, 0.9,

0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, and 0.0 were applied to elec-

trostatic interactions for discharging the solute in vacuum and

in solvent.[37] k 5 1 refers to a fully interacting solute and k 5 0

to a noninteracting solute. However, for calculating the free

energies of decoupling solute vdW interactions in the solvent, a

different spacing of intermediate states was used with k 5 1.0,

0.9, 0.8, 0.75, 0.7, 0.65, 0.6, 0.5, 0.4, 0.2, and 0.0.[37] Furthermore,

to allow the potential to disappear smoothly as the intermedi-

ate simulations progressed to zero, a soft-core Halgren buffered

14-7 van der Waals term[64] as previously described by Shi

Figure 2. Thermodynamic cycle[37] adopted for calculating the solvation

free energy of small molecules in four different nonaqueous solvents. The

simulations involve three sets of calculations run in vacuum and in solvent

(square box). Black circles represent a fully charged solute interacting with

its environment, while the circle with no fill denotes a discharged and

completely decoupled system. The gas phase intermolecular interactions

(vdW decoupling) do not need to be evaluated because there is no interac-

tion between the solute and the environment in vacuum.
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et al.[37] was applied. For each value of k, 2 ns of constant pres-

sure molecular dynamics were performed, using an identical

protocol to the NPT pressure equilibration step. Atomic coordi-

nates of the system were saved every 1 ps and the first 200 ps

of each window were discarded as equilibration.

Solution phase simulations in TINKER[48] were performed

identically to those in AMBER except for the following minor

changes. Minimization in TINKER was performed using a

default minimization algorithm, limited memory Broyden–

Fletcher–Goldfarb–Shanno (BFGS) Quasi-Newton optimiza-

tion[65] for 2500 steps. Additionally, the Nos�e–Hoover thermo-

stat[59,60] was employed during MD simulations instead of the

Langevin thermostat[62] of AMBER 14. All the other protocol

options, including the k windows applied, were identical.

All the gas phase simulations were performed in TINKER.[48]

In this simulation, a single solute molecule only was simulated

for 200 ps using a stochastic integrator with a time step of 0.1

fs and a temperature of 300 K. The induced dipoles were con-

verged to 1 3 1026 D/atom. Coordinates were saved every 0.1

ps. For free energy analysis, the first 20 ps were discarded. In

all case, BAR was used to evaluate the free energy changes

between the neighboring states (ki and ki 1 1).

For the GAFF simulations an identical protocol was imple-

mented except that an 8 Å direct vdW cutoff was used rather

than 9 Å. Importantly, the PMEMD and SANDER modules

included in AMBER 14 were used for the GAFF simulations

with identical k windows employed throughout for both force

fields. For free energy calculations, BAR was used as imple-

mented in the PYMBAR PYTHON package[66] for GAFF fixed-

point-charge results, while an in-house script, BAR-amber[67]

was used to analyze the results for the AMOEBA simulations.

Statistical error analysis

The error analysis and significance testing suggested by Mob-

ley et al.[21] was employed to evaluate the calculated solvation

free energies in four solvents simulated with both the AMOE-

BA and GAFF force fields. The agreement of estimated solva-

tion free energies with experiment was evaluated using mean

unsigned error (MUE), mean signed error (MSE), Pearson corre-

lation coefficient (R), coefficient of determination (R2) and Ken-

dall’s tau coefficient (s) across three replicates. In addition,

1000 iterations of bootstrapping with replacement were per-

formed to estimate the 95% confidence intervals on these val-

ues. Finally, a Student’s paired t-test was applied to determine

the significance of differences between MSE errors generated

with AMOEBA and GAFF assuming both are normally distribut-

ed. A Wilcoxon signed-rank test was used to similarly compare

MUE since they are severely non-normally distributed. These

tests will indicate whether the errors of our predictions are

substantially different between different force fields.

Results and Discussion

Solvent comparison

The calculated solvation free energies of each solute in all four

solvents, with the associated standard error and unsigned

error to experiment, are provided in Table S1–S4 in the Sup-

porting Information. The error in each estimated value of D
Gsolv corresponds to the standard error in the mean across

three repeats. The small standard error for AMOEBA and GAFF

simulations in all datasets (�0.1 kcal mol21) provides no evi-

dence to indicate inadequate conformational sampling and

hence we assessed the simulations to be of appropriate

length. Figure 3 compares AMOEBA and GAFF solvation free

energy results across all four solvents directly with those of

experiment, while Table 1 provides summary metrics of the

same results.

The mean unsigned error to experiment for calculated solva-

tion free energies across all solvents is approximately 1.22 kcal

mol21 for AMOEBA and 0.66 kcal mol21 for GAFF (Supporting

Information Tables S1–S4). The largest MUE is in chloroform sol-

vent for both force fields as shown in Table 1. In terms of MSE

both force fields underestimate solvation free energies (i.e.,

show positive MSE) particularly for the ammonia solute simulat-

ed with AMOEBA in toluene and chloroform (Supporting Infor-

mation Tables S1 and S2). Predominantly, the AMOEBA MSE in

all solvents is slightly larger than that of GAFF, as shown in

Table 1.

Interestingly, the results of solvation free energies with

GAFF often give better correlation to experimental data based

on comparison of the four solvents in Figure 3 and Table 1.

The best agreement was given in toluene with R2 0.90 (Fig. 3a)

while the worst R2 of 0.53 was observed in acetonitrile (Fig.

3d). Similarly to the MUE metrics above, chloroform solvation

free energies for small molecules using AMOEBA showed the

worst correlation to experimental values with R2 0.26 (Fig. 3c).

The best R2 for AMOEBA of 0.84 was in DMSO, and may be

due to a consistent underestimation of solvation free energy

calculated across the whole dataset, as suggested by the linear

regression line observed in Figure 3d.

To allow performance comparison of AMOEBA and GAFF in

different environments, the results of each solvent were also

compared using their Kendall s coefficients, which examined

agreement in ranking of solvation free energies between theo-

ry and experiment. Kendall s allowed the determination of a

clear order of performance for all solvents in the two different

force fields. With AMOEBA, toluene, DMSO and acetonitrile

perform well (overall s values of 0.74, 0.73, and 0.73, respec-

tively), while chloroform again performs worst with only 0.23.

For GAFF, s value for toluene indicates the best agreement in

predicted rankings (s 5 0.87) followed by chloroform (0.77),

acetonitrile (0.73), and DMSO (0.47). It should be borne in

mind that the small dataset sizes for acetonitrile and toluene

(n 5 6) may lead to large fluctuations in s and R with small

changes in results, as demonstrated by the broader confidence

intervals for these measures.

Statistical error analysis

Since the available experimental dataset is very small, it is diffi-

cult to assess the performance of the force field based on the

comparison of mean metrics. Statistical confidence intervals

estimated via bootstrapping allow a more relevant comparison
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between metrics to be made. Bootstrapping with replacement

was performed for 1000 iterations, and the 95% confidence

intervals in all metrics were calculated from the underlying dis-

tributions. Additionally a Student’s paired t-test and Wilcoxon

signed-rank test were performed using the original signed and

unsigned error distributions (respectively) for AMOEBA and

GAFF, to assess whether differences between force fields were

statistically significant. Table 1 shows the ranges in these

Table 1. Summary of performance metrics for calculated solvation free energies with the AMOEBA polarizable force field and the GAFF fixed-point-

charge force field in all four solvents.

Solvent

Metrics Toluene Chloroform Acetonitrile DMSO

AMOEBA force field

MUE (kcal mol21) 0.67� 0.92 �1.30 1.23� 1.68� 2.09 0.48� 0.73� 0.88 0.74� 1.12� 1.46

MSE (kcal mol21) 0.37� 0.73� 1.14 0.12� 0.90� 1.57 0.10� 0.65� 0.88 0.20� 0.99� 1.4

R 0.74� 0.86� 0.92 0.18� 0.51� 0.79 21.00� 0.89� 0.99 20.63� 0.91� 1.00

R2 0.53� 0.74� 0.85 0.03� 0.26� 0.62 0.15� 0.79� 0.97 0.17� 0.84� 1.00

Kendall s 0.53� 0.74� 0.88 20.12� 0.23� 0.51 0.33� 0.73� 1.00 20.09� 0.73� 1.00

GAFF Force Field

MUE (kcal mol21) 0.32� 0.48� 0.68 0.68� 0.92� 1.23 0.21� 0.43� 0.67 0.27� 0.61� 0.98

MSE (kcal mol21) 20.14� 0.10� 0.40 0.18� 0.56� 1.01 20.44� 0.03� 0.41 20.68� 0.16� 0.58

R 0.89� 0.95� 0.98 0.78� 0.91� 0.96 21.00� 0.73� 0.93 20.05� 0.82� 0.99

R2 0.80� 0.90� 0.95 0.60� 0.83� 0.92 0.00� 0.53� 0.85 0.00� 0.68� 0.97

Kendall s 0.72� 0.87� 0.96 0.59� 0.77� 0.88 20.09� 0.73� 1.00 20.23� 0.47� 1.00

Upper and lower bounds estimated as 95% confidence intervals in the mean using bootstrapping for 1000 iterations with replacement.

Figure 3. AMOEBA (blue) and GAFF (black) calculated DGsolv for small molecules in toluene, chloroform, acetonitrile and DMSO against experimental DGsolv.

Line of perfect agreement, y 5 x, shown as dashed line. Linear regression in each solvent plot gives the following equations: a) AMOEBA (y 5 0.752

x 2 0.4375), GAFF (y 5 1.012 x 1 0.153) b) AMOEBA (y 5 0.571 x 2 1.435), GAFF (y 5 1.217 x 1 1.722) c) AMOEBA (y 5 1.169 x 1 1.452), GAFF (y 5 0.822

x 2 0.813) and d) AMOEBA (y 5 1.436 x 1 2.986), GAFF (y 5 1.164 x 1 0.907). [Color figure can be viewed at wileyonlinelibrary.com]
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metrics computed in all solvents for both AMOEBA and GAFF.

Looking at the results for MUE and MSE of solvation free ener-

gies provided in all solvents, the magnitude of the associated

ranges remains similar between AMOEBA and GAFF, sugges-

ting that the performance across solvents is consistent in

terms of error.

Regarding the t-test and Wilcoxon signed-rank test results

(Table 2), evaluating AMOEBA and GAFF differences in MSE

and MUE, there is a significant difference between AMOEBA

and GAFF MSE for all solvents except chloroform (significance

threshold of p 5 0.05). However, analysis of MUE distributions

showed significant differences only in chloroform and toluene.

DMSO and acetonitrile yield no significant difference between

their very similar range of MUE.

Analysis of the performance

Generally, the examination of results in Table 1 reveals that

overall the AMOEBA polarizable force field performs well, but

slightly worse than GAFF when compared to the experimental

data. There are a number of molecules found to give the larg-

est errors to experiment across all the solvents. Ammonia has

a consistently underestimated (too positive) DGsolv in both sol-

vents for which its solvation free energy was evaluated. This

trend was observed for both AMOEBA and GAFF force fields,

suggesting a non-potential-specific systematic error. This may

therefore suggest a doubt in the accuracy of the experimental

data. The experimental free energies of solvation for our sol-

utes were calculated in one of two ways: (i) using direct parti-

tion coefficients between gas phase and liquid phase, or (ii)

using partition coefficients between water and nonaqueous

solvents, combined with hydration free energies. However, pre-

dominantly the latter approach was used—experimental meas-

urements were determined by combining both experimental

values for aqueous hydration free energies and partition coeffi-

cients measured between water and nonaqueous liquids.[40]

The average uncertainty in experimental values of solvation

free energies reported by the authors of the Minnesota solva-

tion database is � 0.2 kcal mol21 for the subset used in this

study.[40,68,69] However, this uncertainty is likely to be non-

normally distributed amongst the members of the database,

such that individual molecules may have larger or smaller

errors in their experimental DG estimates. The experimental

errors for specific molecules are not provided by the

Minnesota solvation database, but the consistently poor per-

formance of a molecule across solvents and force fields stud-

ied, such as in the case of ammonia, may suggest a larger

than average experimental error for that solute.

Apart from this, one of the areas that may have an impact

on the accuracy of solvation free energy calculation is the

parameterization. Both solute and solvents need to be well

parameterized to give the correct solvation free energy esti-

mates. For AMOEBA, we have shown elsewhere how small

changes in parameterization methodology can give significant

differences in hydration free energies.[38] However, owing to the

simplicity of the molecules constituting the dataset used here,

it is difficult to introduce further systematic modifications to the

solute parameterization protocol without fundamental change

to the underlying parameterization philosophy (e.g., by fitting

to solvent–solute interaction energies). Our aim here has been

to follow the optimum AMOEBA parameterization protocols

closely. In particular, multipole coordinate frames and polariza-

tion groups were manually defined, valence parameters were

taken from the established amoeba09 parameter set, and atom-

ic multipoles were fitted to molecular ESP calculated using the

recommended large basis set (aug-cc-pVTZ). Thus, parameteriza-

tion on the whole was performed as per well-established

guidelines.[37–39]

There may also be occasions where parameterization

remains challenging. In our case, the largest errors to experi-

ment for AMOEBA solvation free energy predictions are mostly

from ammonia, n-octane and hexanoic acid molecules. The

simplest of the molecules studied, such as ammonia, may be

highly sensitive to small parameter changes. If the potential of

each atom interacting with the solvent is even slightly overes-

timated, this may contribute to the significant overestimation

of the solvation free energies for ammonia in chloroform and

toluene. Additionally, parameters for n-octane or hexanoic acid

may be affected by the conformation or conformations used

in the multipole generation process. For these molecules with

extended chains there are many conformations that are low in

energy and visited during the MD simulation. It is challenging

to select the correct low energy conformation for multipole

assignment for those molecules. Unlike other studies, we did

not attempt to include multiple conformations in the ESP fit-

ting process, as the majority of molecules studied had single,

fairly rigid, well-defined low energy conformations. Beyond sol-

ute parameters, as results for small molecules in chloroform

were consistently the worst compared to other solvents, the

AMOEBA solvent models also needed to be considered. Liquid

phase tests do exist in the paper describing the chloroform

potential, including density, and heat of vaporization, but they

are fairly simple.[42] These properties have also been evaluated

for other solvent models used here.[39,45–47] Nevertheless, it

should be noted that these measures only validate solvent-

solvent interactions and do not assess the accuracy of solute–

solvent interactions, as would be necessary for accuracy in our

solvation free energy calculations.

Sampling is also a common issue when running molecular

dynamics simulations. Considering the molecules are fairly

small, it is not surprising that they quickly converge, as

Table 2. Calculated p-values of statistical tests between mean signed

(Student’s paired t-test) and unsigned error (Wilcoxon signed-ranked test)

distributions for AMOEBA and GAFF.

Solvent

p-Value Toluene Chloroform Acetonitrile DMSO

Unsigned Error 0.0071 0.0087 0.2489 0.1730

Signed Error 0.0015 0.4363 0.0098 0.0028

Significant differences (p< 0.05) denoted in bold. GAFF and AMOEBA

perform identically in terms of MUE for acetonitrile and DMSO, and in

terms of MSE in chloroform. For all other metrics GAFF performed

better.
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demonstrated by the small uncertainties observed for the

majority of molecules. Notably n-octane and hexanoic acid

may be exceptions to this rule, as demonstrated by the higher

than average standard errors observed in their estimates, par-

ticularly in chloroform (Supporting Information Table S2). The

sampling of different conformations to reach equilibrium may

have been problematic during the short timescales simulated

here. However, variance in estimates due to differential sam-

pling between repeats did not increase the error systematically

between solvents. Moreover the increased uncertainty in pre-

dictions it caused was not the predominant driver of poor

agreement in chloroform, where other solutes had equal or

greater error to experiment.

As noted above, GAFF typically performed well for most

functional groups with better accuracy to experiment com-

pared to AMOEBA. This improvement spanned both polar and

nonpolar solvents, and solutes containing a multitude of func-

tional groups. There was also no clear consistency in observed

errors for particular solute functional groups; however, given

its size, the current dataset is limited in its ability to discern

trends in functional groups. The largest functional group sub-

set, amines, consisted of five compounds (Ammonia, aniline,

methylamine, diethylamine, and trimethylamine), for which

experimental data was only available in the nonpolar solvents

toluene and chloroform. An extended study on a broader

dataset would be required to investigate functional group

trends further.

The solvent models used in fixed-point-charge simulations

with GAFF solute parameters had not been optimized for sol-

vation free energy calculations during their respective parame-

terizations.[45–47] It is somewhat surprising, therefore, that all

solvents showed consistently reasonable agreement with

experiment. In general therefore, these results may suggest

that explicit electronic polarization may not be crucial for

good agreement with experiment. Here, all nonaqueous sol-

vents investigated have dielectric constants smaller than water.

In this type of environment, the effect of molecular polariza-

tion on solvation free energies may be less, and a fixed-point-

charge model of electrostatic interaction may be sufficient.

Evaluation with a nonaqueous solvent with higher dielectric

constant than water, such as formamide (dielectric con-

stant 5 111),[43] would provide further information on the

effect of an explicit treatment of polarization in different envi-

ronments. However, computational nonaqueous solvation free

energy studies are hampered by the scarcity of suitable experi-

mental data for multiple solutes across multiple solvents.

Therefore, while it remains unknown if an explicit representa-

tion of polarization may be required for accuracy in more com-

plex electrostatic environments, the simple systems studied

here perhaps are better represented by simple force fields

rather than a thorough application of polarization terms as

incorporated in the AMOEBA force field.

Conclusions

Overall, both force fields estimated nonaqueous solvation free

energies well, with only the AMOEBA chloroform and DMSO

results exhibiting MUE above the 1.0 kcal mol21 limit often

considered as “chemical accuracy” in free energy calculations.

Our findings that chloroform solvation free energies have the

largest errors to experiment, despite reasonable correlation for

GAFF, are consistent with the recent results of Zhang et al.[36]

GAFF showed statistically significant improvements in

unsigned error over AMOEBA for the 21-solute datasets of tol-

uene and chloroform, and in signed error for all but chloro-

form. This improvement is likely a combination of two factors.

First, the GAFF force field, first established in 2004,[32] is now a

well-developed and well understood small molecule force field,

whose solute parameters (beyond the independently derived

point charges) have undergone multiple rounds of refinement

and been used in multiple other free energy investigations

and blind challenges.[21,27,31,70,71] This extensive history of test-

ing and development is clearly beneficial for GAFF perfor-

mance, as demonstrated here and in the other recent

solvation free energy studies described above. In contrast

AMOEBA parameters, both solvent and solute, have not been

tested as extensively or empirically adjusted to recreate ther-

modynamic properties. This is particularly highlighted by the

relatively poor AMOEBA performance in chloroform. While

AMOEBA parameters provide an excellent description of the

electrostatic environment surrounding the chloroalkanes,

including r-hole effects, bulk phase thermodynamic properties

were not included as targets in the parameter optimization

process.[42]

Second, as discussed, the low dielectric solvents (and often

simple solutes) tested here may not require the additional rigor

of a polarizable force field for accurate free energy estimates.

AMOEBA has previously been shown to recreate instantaneous

fluctuations in electric fields in nonpolar solvents, and the

resulting shifts in the vibrational spectroscopy of probe groups,

far more accurately than a fixed-charge model.[72] Nevertheless,

from our work it appears that the simpler electrostatics repre-

sentation used by GAFF and many other force fields may be

sufficient for standard thermodynamic metrics (such as solvation

free energies) in low polarity environments.

Evaluation of more challenging solutes and solvents is, how-

ever, extremely limited by a lack of relevant experimental data

for comparison. The Minnesota solvation database is a well-

curated resource and has been used in the development of

multiple solvation schemes. However, its dataset of> 3000

entries does not include any solvation free energies in solvents

of higher dielectric than water.[40] Additionally, only a limited

number of neutral solutes have their solvation free energies

measured in multiple solvents. These difficulties in the curating

of solvation free energies for force field evaluation are well

known and have led to the use of alternate metrics with more

abundant experimental data, such as solubility or distribution

coefficient calculations, in recent tests.[73,74] These metrics pro-

vide promising ways of evaluating multiple protocols in blind

tests, but, as demonstrated here, there remains a role for com-

putationally more straightforward absolute free energy calcula-

tions. Despite these challenges, our broad comparison of

potential functions across a range of systems identifies clear

opportunities for force field improvements, and we believe
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further work should ideally focus on the context of high field

environments, where requirements for polarization may be

more apparent.
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[30] M. Udier-Blagović, P. Morales De Tirado, S. A. Pearlman, W. L.

Jorgensen, J. Comput. Chem. 2004, 25, 1322.

[31] D. Shivakumar, E. Harder, W. Damm, R. A. Friesner, W. Sherman, J.

Chem. Theory Comput. 2012, 8, 2553.

[32] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, J. Comput.

Chem. 2004, 25, 1157.

[33] W. L. Jorgensen, J. Tirado-Rives, Proc. Natl. Acad. Sci. USA 2005, 102,

6665.

[34] C. Caleman, P. J. Van Maaren, M. Hong, J. S. Hub, L. T. Costa, D. Van

Der Spoel, J. Chem. Theory Comput. 2012, 8, 61.

[35] S. Genheden, J. Chem. Theory Comput. 2016, 12, 297.

[36] J. Zhang, B. Tuguldur, D. Van Der Spoel, J. Chem. Inf. Model. 2015, 55,

1192.

[37] Y. Shi, C. J. Wu, J. W. Ponder, P. Y. Ren, J. Comput. Chem. 2011, 32, 967.

[38] R. T. Bradshaw, J. W. Essex, J. Chem. Theory Comput. 2016, 12, 3871.

[39] P. Y. Ren, C. Wu, J. W. Ponder, J. Chem. Theory Comput. 2011, 7, 3143.

[40] Marenich, A. V.; Kelly, C. P.; Thompson, J. D.; Hawkins, G. D.; Chambers,

C. C.; Giesen, D. J.; Winget, P.; Cramer, C. J.; Truhlar, D. G. Minnesota

Solvation Database-version 2012, University of Minnesota, Minneapo-

lis, 2012. Available at: http://comp.chem.umn.edu/mnsol/ (accessed on

July 29, 2016); A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Chem. The-

ory Comput. 2012, 9, 609.

[41] M. H. Abraham, J. A. Platts, A. Hersey, A. J. Leo, R. W. Taft, J. Pharm.

Sci. 1999, 88, 670.

[42] X. Mu, Q. Wang, L. P. Wang, S. D. Fried, J. P. Piquemal, K. N. Dalby, P.

Ren, J. Phys. Chem. B 2014, 118, 6456.

[43] D. R. Lide, CRC Handbook of Chemistry and Physics, 84th ed.; 2003–

2004, Vol. 53; CRC Press, 2003.

[44] L. P. Wang, J. Chen, T. Van Voorhis, J. Chem. Theory Comput. 2013, 9,

452.

[45] P. Cieplak, J. Caldwell, P. Kollman, J. Comput. Chem. 2001, 22, 1048.

[46] X. Grabuleda, C. Jaime, P. A. Kollman, J. Comput. Chem. 2000, 21, 901.

[47] F. Y. Dupradeau, A. Pigache, T. Zaffran, C. Savineau, R. Lelong, N.

Grivel, D. Lelong, W. Rosanski, P. Cieplak, Phys. Chem. Chem. Phys.

2010, 12, 7821.

[48] J. Ponder, TINKER: Software Tools for Molecular Design; Washington

University School of Medicine: St. Louis, MO, 2001.

[49] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J.

R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H.

Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G.

Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.

Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T.

Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J.

Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J.

Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J.

Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,

V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.

Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin,

K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J.

Dannenberg, S. Dapprich, A. D. Daniels, €O. Farkas, J. B. Foresman, J. V.

Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01; Gaussian,

Inc.: Wallingford, CT, 2009.

[50] J. C. Wu, G. Chattree, P. Ren, Theor. Chem. Acc. 2012, 131, 1138.

[51] A. J. Stone, J. Chem. Theory Comput. 2005, 1, 1128.

[52] A. Stone, J. Chem. Phys. Lett. 1981, 83, 233.

[53] J. Wang, W. Wang, P. A. Kollman, D. A. Case, J. Mol. Graph. Modell.

2006, 25, 247.

[54] A. Jakalian, B. L. Bush, D. B. Jack, C. I. Bayly, J. Comput. Chem. 2000,

21, 132.

[55] A. Jakalian, D. B. Jack, C. I. Bayly, J. Comput. Chem. 2002, 23, 1623.

[56] Mohamed, N. A.; Essex, J. W.; Bradshaw, R. T. Underlying data for

“Evaluation of solvation free energies for small molecules with the

AMOEBA polarizable force field.” Available at: http://dx.doi.org/10.

5281/zenodo.59203 (accessed on August 1, 2016).

[57] C. H. Bennett, J. Comput. Phys. 1976, 22, 245.

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2016, 37, 2749–2758 2757

info:doi/10.1002/jcc.24500
http://comp.chem.umn.edu/mnsol/
http://dx.doi.org/10.5281/zenodo.59203
http://dx.doi.org/10.5281/zenodo.59203
http://onlinelibrary.wiley.com/


[58] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, J. R.

Haak, J. Chem. Phys. 1984, 81, 3684.

[59] S. Nos�e, J. Chem. Phys. 1984, 81, 511.

[60] W. G. Hoover, Phys. Rev. A 1985, 31, 1695.

[61] D. A Case, V. Babin, J. T. Berryman, R. M. Betz, Q. Cai, D. S. Cerutti, T. E.

Cheatham, T. A. Darden, R. E. Duke, H. Gohlke, A. W. Goetz, S. Gusarov,

N. Homeyer, P. Janowski, J. Kaus, I. Kolossv�ary, A. Kovalenko, T. S. Lee,

S. LeGrand, T. Luchko, R. Luo, B. Madej, K. M. Merz, F. Paesani, D. R. Roe,

A. Roitberg, C. Sagui, R. Salomon-Ferrer, G. Seabra, C. L. Simmerling,

W. Smith, J. Swails, R. C. Walker, J. Wang, R. M. Wolf, X. Wu, P. A.

Kollman, AMBER 14; University of California: San Francisco, 2014.

[62] M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids; Oxford Uni-

versity Press: New York, 1987.

[63] T. Darden, D. York, L. Pedersen, J. Chem. Phys. 1993, 98, 10089.

[64] T. A. Halgren, J. Am. Chem. Soc. 1992, 114, 7827.

[65] R. H. Byrd, J. Nocedal, R. B. Schnabel, Math. Program 1994, 63, 129.

[66] M. R. Shirts, J. D. Chodera, J. Chem. Phys. 2008, 129, 1–10.

[67] P. Ren, BAR-amber; Available at: http://biomol.bme.utexas.edu/wiki/

index.php/Research_ex:Amber (accessed on July 29, 2016)

[68] A. Nicholls, D. L. Mobley, J. P. Guthrie, J. D. Chodera, C. I. Bayly, M. D.

Cooper, V. S. Pande, J. Med. Chem. 2008, 51, 769.

[69] M. T. Geballe, A. G. Skillman, A. Nicholls, J. P. Guthrie, P. J. Taylor, J.

Comput. Aided. Mol. Des. 2010, 24, 259.

[70] J. P. M. J€ambeck, A. P. Lyubartsev, J. Phys. Chem. B 2014, 118, 3793.

[71] C. J. Fennell, K. L. Wymer, D. L. Mobley, J. Phys. Chem. B 2014, 118,

6438.

[72] S. D. Fried, L. P. Wang, S. G. Boxer, P. Ren, V. S. Pande, J. Phys. Chem. B

2013, 117, 16236.

[73] S. Liu, S. Cao, K. Hoang, K. L. Young, A. S. Paluch, D. L. Mobley, J.

Chem. Theory Comput. 2016, 12, 1930.

[74] S. Genheden, J. W. Essex, J. Comput. Aided. Mol. Des. Doi:10.1007/

s10822-016-9926-z (in press).

Received: 1 August 2016
Revised: 5 September 2016
Accepted: 7 September 2016
Published online on 19 October 2016

FULL PAPER WWW.C-CHEM.ORG

2758 Journal of Computational Chemistry 2016, 37, 2749–2758 WWW.CHEMISTRYVIEWS.COM

http://biomol.bme.utexas.edu/wiki/index.php/Research_ex:Amber
http://biomol.bme.utexas.edu/wiki/index.php/Research_ex:Amber
info:doi/10.1007/s10822-016-9926-z
info:doi/10.1007/s10822-016-9926-z

	l

