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Infectious Diarrhea 

Pathogenesis and Risk Factors 

J. ROBERT CANTEY, M.D. 
Charleston, South Carolina 

Our understanding of the pathogenesis of infectious, especially 
bacterial, diarrhea has increased dramatically. New etiologic 
agents, mechanisms, and diseases have become known. For exam- 
ple, Escherlchla coli serogroup 0157 is now known to cause acute 
hemorrhagic colitis. Also, E. coli serogroups that produce Shiga 
toxin are recognized as etiologic agents In the hemolytic-uremic 
syndrome. The production of bacterial diarrhea has two major fac- 
ets, bacterial-mucosal interaction and the induction of intestinal 
fluid loss by enterotoxins. Bacterial-mucosal interaction can be 
described In stages: (1) adherence to eplthelial celi microvilli, which 
is often promoted by or associated with phi; (2) close adherence 
(enteroadherence), usually by classic enteropathogenic E. coli, to 
mucosal epithellal cells lacking microvilli; and (3) mucosal invasion, 
as with Shigella and Salmonella infections. Further large strides in 
understanding lnfectlous diarrhea are likely with the cloning of viru- 
lence genes if additional host-specific animal pathogens become 
available for study. 

The past few years have witnessed an explosion in the number of publi- 
cations exploring many aspects of infectious diarrhea. This review will 
examine the present status of our understanding of pathogenesis. 

GUT BARRIERS TO INFECTIOUS AGENTS 

Nonspecific host barriers to infection are summarized diagramatically in 
Figure 1. The first barrier to be encountered in the passage of the infec- 
tious agent from the oropharynx is gastric acidity, which is sufficient to kill 
or inhibit many Enterobacteriaceae [l]. Gut motility is important in pre- 
venting infectious agents from approaching the mucosa, as is evident 
from the fact that animals given opiates to decrease motility experience 
diarrhea with infectious agents to which they would not ordinarily be sus- 
ceptible [2]. The “unstirred water layer,” a zone of retarded diffusion of 
solutes in the intestine [3], could slow the movement of infectious agents 
toward the mucosal epithelium. The layer of intestinal mucus would also 
interfere. Beneath the mucous layer is the glycocalyx, which is anchored 
in the plasmalemma of the epithelial cell and consists of long strands of 
protein with carbohydrate side chains [4]. Once the infectious agent pen- 
etrates the glycocalyx, it could adhere directly to the plasmalemma or 
invade the epithelial cell. 
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PATHOGENESIS OF VIRAL INFECTIONS OF THE 
GASTROINTESTINAL TRACT 

Infections due to rotavirus, Norwalk virus, and coronavirus are the best 
studied of the viral enteritides. Viral particles can be found in absorptive 
epithelial cells of the upper small bowel during rotavirus and coronavirus 
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Figure 1. Schematic representation of host barriers faced 
by intestinal pathogens. MEC = mucosal epithelial cell. 

infections [5-71. The jejunum is the major site of infection, 
but the ileum may also be involved [8-l 11. Intestinal villus 
shortening, crypt hypertrophy, increased epithelial cell 
turnover, and acute inflammation all occur [7,8,10-151. 
Epithelial cell microvilli are shortened, blunted, and de- 
creased in number [7,14,15]. The deficiency of brush 
border disaccharidase and sodium/potassium-ATPase 
activity that is thought to produce diarrhea in viral 
gastrointestinal infections is a reflection of the increase in 
immature crypt-type enterocytes on the villus epithelium 
[8-l 0,13,15]. Little is known about viral-mucosal epithelial 
cell interaction, except that specific receptors on the epi- 
thelial cell seem necessary in Norwalk virus diarrhea [la]. 

PATHOGENESIS OF BACTERIAL INFECTIONS dF THE 
GASTROINTESTINAL TRACT 

Bacterial-mucosal interaction may be divided into several 
stages: adherence to intact microvilli, adherence to the 
surfaces of epithelial cells that have lost their microvilli, 
termed “enteroadherence,” and invasion of the mucosal 
epithelial cells. There are likely other stages, but exam- 
ples are not well documented. Current evidence indicates 
that bacteria that produce diarrhea also synthesize some 
form of enterotoxin. The following comments focus on the 
bacterial-mucosal interactions that are best understood. 
Bacteria That- Are Confined to the Lumen. Adher- 
ence to intact microvllli: The mechanisms and relevant 
surface structures of the interaction of Vibrio cholerae with 
human and animal intestinal epithelium remain poorly 
understood, partly because study has been hampered by 
the lack of pathogenicity of V. cholerae in animals. Such 
studies as have been done indicate that V. cholerae ad- 

heres to gut epithelial cells in order to produce diarrhea 
[17-221. Surface structures important to adherence are 
unknown. Although it may adhere, V. cholerae type 01 
does not invade. Ultrastructural studies of human and ani- 
mal cholera reveal minimal changes in gut epithelial cells 
and microvillus border [23-251. 

More is known about the pathogenesis of enterotoxi- 
genie Escherichia coli diarrhea, as host-specific animal 
pathogens-and, thus, good animal models-are readily 
available. Enterotoxigenic E. coli can be seen adhering to 
intact microvilli in ultrastructural studies [28]. Those that 
cause diarrhea in pigs were the first bacteria demon- 
strated to possess pilus (fimbrial) adherence ligands [271. 
The pilus or fimbria [28-311 is a filamentous surface pro- 
tein that is 0.5 to 2 pm long, approximately 7 nm in diame- 
ter, and composed of 15 to 20 kilodalton repeating units 
with an aggregate molecular weight in excess of one mil- 
lion. There are two major groups of pili. The first is the 
common or type 1 pilus that is associated with mannose- 
sensitive nonspecific adherence to red cells or various 
other dells [28,31]. The second group includes pili thought 
to mediate adherence to specific cells in specific species, 
the so-called colonization factor antigens [32]. The genes 
of the type 1 pili usually reside on the bacterial genome, 
whereas the genes for the latter pili usually reside in plas- 
mid DNA. The porcine E. coli pili were initially believed to 
be thermolabile polysaccharide antigens and were la- 
beled K88 antigens [33]. The ability of K88-positive enter- 
otoxigenic E. coli to cause diarrhea in pig(lets) was shown 
to be increased by the K88 antigen. Since that time, other 
adherence pili of enterotoxigenic E. coli have been de- 
scribed, including K99 in calves, lambs, and occasionally 
piglets [34-381, 987 in pigs [35,37,38], F41 in calves, 
lambs, and piglets [39-421, and CFA I and II in humans 
and infant rabbits [32,43-451. The K88 pilus increases 
adherence in the upper small bowel, whereas the K99 and 
987 pili increase adherence in the distal small bowel. In- 
creased in vivo adherence and diarrhea1 attack rate is cor- 
related with in vitro adherence to gut mucosal epithelial 
cells and partially purified gut epithelial cell brush border 
[48-521. 

Pilus adherence ligands are limited in variety in ani- 
mals, in contrast to the human species, in which a large 
stable of ligands still does not account for the majority of 
enterotoxigenic E. coli. The lack of a completely satisfac- 
tory in vitro adherence assay for human-associated spe- 
cies of enterotoxigenic E. coli has led to an array of as- 
says and different, often overlapping, pilus typing 
schemes (Table I). The two major schema are those of 
Evans et al [43,44] and Deneke et al [53-551. 

My reasons for referring to adherence as pilus-associ- 
ated, rather than being due to pili, are several. First, con- 
sider Table I. Human strains of E. coli adhere to animal 
tissues [43,44], and animal strains adhere to human tis- 
sues [52,56]. If bacteria can show preference for proximal 
or distal small bowel, why do they show lack of specificity 
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concerning species? Perhaps the adherence assays are 
measuring a characteristic that is not related to adherence 
in vivo in the preferred species. Additionally, there are 
major differences among laboratories, which may reflect 
shortcomings of the assays. For example, in one study, 
K88-positive bacteria but not K99-positive bacteria ad- 
hered to human ileostomy cells [56]. In a different labora- 
tory, K99-positive but not K88-positive bacteria adhered to 
human jejunal cells [52]. 

Another reason for concern is the following. Studies 
with both human and animal strains of bacteria have used 
bacteria whose virulence characteristics, such as pili, 
have been deleted by exposure of the parent bacterium to 
nonselective mutagens. In no case has the mutant been 
carefully examined as to possible associated changes in 
outer membrane proteins, ability to grow in the anaerobic 
environment of the gut, and other variables. The same 
can be said for transfer of pilus-associated plasmids. The 
plasmids are often quite large, and they contain more 
genes than would likely be necessary for pilus synthesis. 
How might these additional genes change the recipient 
bacterium? 

Enteroadherent bacteria: E. coli, in humans, usually 
members of the classic enteropathogenic E. coli sero- 
groups that adhere closely to epithelial cells lacking mi- 
crovilli, have been termed enteroadherent [571 or entero- 
effacing [58]. The phenomenon of clos& adherence of 
enteropathogenic E. coli was first reported in cesarian- 
delivered monocontaminated pigs given a 10” inoculum 
of serogroup 055 E. coli [59]. The histopathologic features 
and characteristics of the disease were reported in detail 
and postulated to be a previously unrecognized mecha- 
nism of E. coli diarrhea in rabbits given a lo6 inoculum of 
rabbit-specific enteroadherent E. coli strain RDEC-1 [60- 
621. Similar histopathologic findings have since been re- 
ported in humans infected with enteropathogepic E. coli 
serogroups 0111, 0119, and 0125 E. coli [63-651. The 
bacteria first interact with intact microvilli of mucosal epi- 
thelial cells of the distal ileum and colon [62]. The microvilli 
form round bodies and disappear [62]. The bacteria then 
adhere closely (approximately 11 nm [Sl]) to the epithelial 
cell surface, which tends to cup the bacterium by forming 
pedestal-like structures [62,64] (Figure 2). Invasion of the 
epithelial cells does not occur. The RDEC-1 strain ad- 
heres first to M cells in the epithelium of the Peyer’s 
patches [57], but it is not known whether human strains do 
the same. In an autopsy series, infants dying of serogroup 
0111 E. coli diarrhea had lymphoid hyperplasia, but close 
adherence of bacteria was not noted [66]. 

Human strains of enteropathogenic E. coli have been 
found to adhere to Hep-2 and more recently HeLa cells in 
culture with greater frequency than non-enteropathogenic 
E. coli strains [67-691, providing investigators with a use- 
ful diagnostic and epidemiologic tool. Serotype 0111 and 
0119 E. coli strains isolated from patients whose jejunal 
biopsy specimens revealed typical close adherence are 

TABLE I Adherence Pilus Berogroups of 
Human Enterotoxigenic E. coli Strains and 
Assays Used for Their Detection 

Adherence pill of Evans et al 
CFA I 

Infant rabbit intestine (431 
Intestinal epithelial tissue culture+ [51] 
Jejunal cell [52] 
lleal brush border [49] 
Duodenal cell [50] 

CFA II 
Infant rabbit intestine [44] 
Jejunal cell [52] 
Duodenal cell [50] 

Serogroups of Thorne and Deneke [53-551 
Serogroup I 

Buccal epithelial cells 
Serogroup II (CFA I) 

Buccal epithelial cell 
lleostomy cell 

Serogroup Ill (CFA II) 
Buccal epithelial cell 
lleostomy cell 

Additional serogroups not shown 

‘References for assays. 
vissues or cells from humans unless otherwise stated. 

among strains adhering to Hep-2 or HeLa cells [64,65]. As 
a result of this correlation, Hep-2 cell adherence has come 
to be accepted as an in vitro characteristic of enteroadher- 
ent E. coli. Not all enteroadherent E. coli associated with 
diarrhea are enteropathogenic E. coli serotypes, at least 
in the case of traveler’s diarrhea [70]. 

The adherence ligand of the RDEC-1 strain is plasmid- 
mediated, highly specific for the rabbit, and is either a 
pilus structure or is on the same plasmid and cotrans- 
ferred with pilus expression [71]. An idea of the forces 
involved in the early stage of adherence of the RDEC-1 
strain to intact microvilli may be gathered by studies in 
which piliated RDEC-1 strain bacteria caused much larger 
rabbit ileal cell brush borders to aggregate in large visible 
clumps [72]. Human strains of enteroadherent E. coli do 
not appear to be piliated under the culture conditions used 
thus far [73]. RDEC-1 pili are expressed in one medium 
and suppressed in another [62,71,72], so it may be a mat- 
ter of finding the right set of culture conditions. The ability 
of human enteroadherent E. coli to adhere to Hep-2 cells 
is associated with and can be transferred to another bac- 
terium with a large plasmid [74]. 
Invasive Bacteria. The pathogenesis of shigellosis has 
been the subject of much research, particularly by Formal 
and his colleagues at Walter Reed Army Institute of Re- 
search [75-771. The Shigella bacterium adheres to and 
invades mucosal epithelial cells of the distal small bowel 
and colon. In an elegant series of experiments, one plas- 
mid and three sites on the bacterial genome necessary for 
virulence traits of shigellae, including invasion of HeLa 
cells, mucosal inflammation, a positive Sereny result, and 

June 28, 1985 The American Journal of Medicine Volume 78 (suppl8B) 87 



MANAGEMENT AND PREVENTION OF INFECTIOUS DISEASES-CANTEY 

production of fluid in the rabbit ileal loop by Shigella (flex- 
neri) have been localized [78,79]. When these genes are 
instilled in an E. coli K12 strain, it exhibits all of the viru- 
lence properties of a fully virulent Shigella. The genes 
necessary for invasion of HeLa cells are located on a 
large 140 megadalton plasmid that causes minicells to 
synthesize outer membrane proteins, which by inference 
are important in HeLa cell invasion [80]. The his region of 
the bacterial genome, which codes, among other things, 
for 0 antigen synthesis, is important for mucosal inflam- 
mation [79]. Studies by Wantanabe et al [81,82] indicate 
that a small plasmid, which codes for a 41,000 megadal- 
ton protein involved in the formation of 0 side chains, is 
important for production of a positive Sereny result by a 
Shigella flexneri type 1 strain. Together, these latter data 
confirm a role for surface polysaccharides in virulence of 
shigellae but do not indicate a role in adherence. Shigel- 
lae have not been shown to possess any type of pilus 
protein that might be important in adherence. Thus, al- 
though the stages of pathogenesis of shigellosis have 
been clearly delineated, the structures relevant to each 
stage of pathogenesis have not been determined. 

Salmonellae adhere to mucosal epithelium in the proc- 
ess of invading it, a process that has been well described 
using electron microscopic techniques [83]. Microvillus 
border and epithelial cells are altered, although not se- 

Figure 2. Cecal tissue taken from a rab- 
bit with enteroadherent E. co/i strain 
RDEC-1 diarrhea. The tissue was treated 
with fertitin-conjugated RDEC-l-specific 
IgG but was not stained after embed- 
ment The fertitin-labeled bactetia are 
closely associated with the lumenal sur- 
face of a mucosal epithelial cell that has 
been denuded of microvilli. Several of the 
bacteria are cupped with the pedestal- 
like structures common in tissues in- 
fected with enteroadherent E. co/i. 
Bar = 1 CL. 

verely, in the process of invasion. The bacterium prefers 
the Peyer’s patch [84,85], as does the rabbit strain of en- 
teroadherent E. coli [571. Invasion and adherence are as- 
sociated with a 80 megadalton plasmid [88]. Salmonella 
typhimurium exhibits type 1 pilj (mannose-sensitive) that 
are associated with an increased infectivity in the mouse 
[871. Salmonellae can adhere to Henle cells or adhere to 
and invade HeLa cells in tissue culture, a characteristic 
that is mannose-resistant and not thought to be due to pili 
[88-901. The surface features involved in adherence and 
invasion of Salmonella are not known. Vi antigen, a sur- 
face polysaccharide of Salmonella typhi that interferes 
with the ability of anti-0 antigen serum to react with the 0 
antigen [91] (a similar antigen is a feature of enteropatho- 
genie serotypes of E. coli), increases the virulence of S. 
typhi strains for human volunteers in an unknown fashion 
WI. 
BACTERIAL ENTEROTOXINS 

Adherence phenomena are, in general, species-re- 
stricted. In contrast, enterotoxins show no preference 
concerning species, a characteristic that has greatly facili- 
tated their study. Vibrio cholerae and, to a lesser extent, 
enterotoxigenic E. coli synthesize enterotoxic material in 
such quantity that the enterotoxin activity can be easily 
detected in culture supematant. It is uncertain whether the 
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toxins are actively excreted or released into the medium 
with membrane material [93]. Cholera toxin has been 
highly purified, has a molecular weight of approximately 
92,000 daltons and is known to be composed of three 
subunits, Al, A2 and B. Subunit Al is an enzyme and 
ADP-ribosylates GTP-regulatory protein, a component of 
the adenylate cyclase system. The result is an increase in 
intracellular cAMP levels, which elicit the specific biologic 
response of the cell exposed to the toxin. Subunit A2 
plays a role in toxin internalization. The B subunit, of 
which there are five per molecule, is the ligand thought to 
be responsible for binding cholera toxin to GM1 ganglio- 
side in the plasma membrane of cells (any cell). Labile 
toxin of E. coli is similar to cholera toxin in most respects. 
The effect of both toxins on intestinal villus cells is the 
inhibition of sodium absorption and hence of chloride and 
water. In crypt cells, sodium secretion is increased, with 
the consequent loss of chloride and water. Details of this 
can be found in several reviews [94-97. 

Stable toxin ST of E. coli, in contrast to cholera toxin 
and E. coli labile toxin, is not an enzyme and has a molec- 
ular weight of about 2,000 daltons [98]. It exists in two or 
perhaps more forms, STa and STb [QQ-1011. STa, which 
is synthesized by both human and animal strains and has 
been sequenced, acts by stimulating guanylate cyclase, 
which produces an increase in cGMP [lo1 -1051. ST is 
specific for intestinal cells, where it inhibits absorption of 
fluid and electrolytes. It appears to produce some chloride 
secretion as well [105]. STb-producing strains are usually 
of porcine origin. The mode of action of STb, which is 
different from that of STa, is unknown. 

Salmonella infection results in an elevation of CAMP in 
gut tissues, but it is not clear whether the increase is due 
to an enterotoxin or to the effects of invasion [108,107]. 
Studies of Salmonella lysates indicate that both cytotoxins 
and enterotoxins are present [108-l lo], but published 
data are conflicting as to their nature. 

Shiga toxin, first recognized as a toxin of Shigella dys- 
enteriae 1 in 1903 [l 111, is a protein toxin that is cytotoxic 
for HeLa cells and Vero cells, neurotoxic in mice and rab- 
bits, and enterotoxic in the rabbit ileal loop [112], and has 
been highly purified in several laboratories [113-l 18). In 
contrast to cholera toxin, Shiga toxin has an adverse ef- 
fect on epithelial cells when injected into the rabbit ileal 
loop [117]. The molecular weight of the native toxin is 
probably in the range of 70,000 daltons [114,116]. Crude 
data suggest the possibility of an A subunit with an ap- 
proximate molecular weight of 30,000 daltons and a much 
smaller B subunit [118]. The toxin binds to a glycoprotein 
on the (HeLa) cell surface, is translocated into the cell in 
an energy-dependent step, and binds to and inactivates 
the 60s ribosomal subunit [l 1 Q-l 211. 

The exact role of this toxin in Shigella diarrhea remains 
uncertain. However, in monkeys given S. flexneri by 
mouth, diarrhea developed before dysentery and was 
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TABLE II Bacterial Strains Containing Shiga Toxin 

No detectable Shiga toxin 
enteropathogenic E. coli (1)’ 
enterotoxigenic E. coli (1) 
Pseudomonas aeruginosa (1) 

Trace amount of Shiga toxin 
E. coli K12 (1) 
E. coli, normal flora (1) 

Low to moderate amount of Shiga toxin 
S. typhimurium (1) 
E. coli, diarrhea associated, untyped (1) 
E. coli, 0143, diarrhea associated (1) 
enterotoxigenic E. coli (2) 
enteropathogenic E. coli (2) 
S. flexneri 2a, strain M4243 (1) 

Large amount of Shiga toxin 
enteropathogenic E. coli, 026 and 0157, 

bloody diarrhea strains (4) 
E. coli S-22-l 0103, diarrhea associated (1) 
S. dysenteriae, type 1, strain 60R (1) 
01 V. cholerae (MO strains tested) 
Non-01 V. cholerae (1) 
Vibrio parahaemolyticus (3) 

Adapted from [124-1261. 
‘Numbers in parentheses are numbers of strains tested. 

accompanied by jejunal colonization but not invasion, and 
there was secretion of water into the jejunum [122]. When 
the bacteria were given directly into the cecum, dysentery 
occurred, but there was no diarrhea, and water transport 
was normal in the jejunum [123]. These two observations 
comprise the only evidence for a role of Shiga toxin in 
shigellosis, but it is believed that such a role exists. 

In a series of publications, O’Brien and co-workers 
[124-l 261 have shown that a wide variety of bacteria that 
cause diarrhea also produce Shiga toxin (Table II). In fact, 
only three of the many strains of bacteria tested thus far 
have not produced toxin. The key to being able to find the 
toxin in lysates of so many different bacteria was an ob- 
servation by Dubos and Geiger [128] in 1946 that inor- 
ganic iron in the medium decreased the yield of Shiga 
toxin. When O’Brien and LaVeck [127] removed iron from 
the medium, the Shiga toxin was more easily detected. 
The question of the precise role for the Shiga toxin in bac- 
terial diarrhea is critical if the full impact of ,the work of 
O’Brien and colleagues is to be known, especially since 
many of the bacteria listed in Table II produce other potent 
enterotoxins, including cholera toxin, 

Hemorrhagic colitis, due to E. coli serogroup 0157 
(129,130], and hemolytic-uremic syndrome, associated 
with infection with several E. coli serogroups, but espe- 
cially serogroups 026 and 0157 [131,132], are two syn- 
dromes in which it seems highly likely that Shiga toxin will 
be important in pathogenesis. These E. coli produce large 
amounts of Shiga toxin (Table II). It is worth noting that E. 
coli 026 was initially reported to synthesize Vero cell toxin 
[133,134] as was the E. coli associated with hemolytic- 
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uremic syndrome. In fact, the Vero cell cytotoxin could 
easify be detected in the feces [131]. It is now thought that 
the Vero and Shiga toxins are one and the same 
[125,132]. 

Some years ago, lysates of several enteropathogenic 
E. coli serogroups were said to cause net transport of 
water into the lumen in a rat jejunal perfusion assay [135]. 
The same E. coli was known to cause diarrhea in humans 
[136]. The question that must now be answered is 
whether the jejunal perfusion assay measures Shiga toxin 
or some other, as yet uncharacterized, toxin. 

PROTOZOAN DIARRHEA 

Entamoeba histolytica dysentery is the best understood of 
the protozoan diarrheas. The only histopathologic study of 
in vivo interaction of E. histolytica-mucosal epithelial cell 
interaction is an ultrastructural study in germ-free guinea 
pigs inoculated intracecally with E. histolytica and enteric 
flora of a human patient with acute amebic colitis [13fl. In 
that model, with its obvious limitations, the amebas ap 
proached the epithelial cell, the microvillus border disap 
peared, the epfthelial cell became detached from the lam- 
ina propria and adjoining epithelial cells, and the amebas 
invaded by passing between the detached epithelial cells. 
Guerrant and colleagues [136,139] have examined the in 
vitro interaction of axenic amebas with Chinese hamster 
ovary cells and have described several stages in the inter- 
action: adherence, extracellular cytolysis of the Chinese 
hamster ovary cell, and phagocytosis of the lysed cell. 
Adherence but not phagocytosis was inhibited by N- 
acetyl-D-galactosamine. The work of other investigators 
corroborates these studies [140-1421. 

E. histolytica possesses a cytotoxin, probably a prote- 
ase enzyme, the quantity of which is correlated with viru- 
lence 1143-1461. It has been suggested that this material 
is important in the tissue destruction produced by the in- 
vading amebas. E. histolytica also has enterotoxic activity. 
Some type of enterotoxic activity has been described in 
amebic preparations in three different laboratories, includ- 
ing our own [143,147,146]. 

Our understanding of the pathogenesis of Giardia infec- 
tions is too sketchy to be worthy of comment. The same is 
true for the Cryptosporidium, except that it has a histo- 
pathologic picture similar to that of enteroadherent E. coli. 
It adheres closely to mucosal epithelial cells in areas lack- 
ing microvillus border in patients with the acquired im- 
mune deficiency syndrome [149]. 

RISK FACTORS FOR INFECTIOUS DIARRHEA 

Risk factors may be categorized as environmental or 
host-specific in origin. The impact of the environment re- 
flects the fact that the usual route of spread of diarrhea1 
diseases is fecal-oral. The spread may be from person to 
person or there may be an intermediate step, such as 
contamination of water or food with infected feces. Living 

conditions, which often reflect socioeconomic conditions, 
have a major impact on diarrhea1 attack rates. A recent 
study in Brazil identified the unavailability of sanitary facili- 
ties and crowding in the poorer families as particular risk 
factors [150]. The quality and quantity of water are also 
quite important [151]. Locale and season of the year influ- 
ence the prevalence and attack rates for specific patho- 
gens. For example, enterotoxigenic E. coli is more com- 
mon in the tropics in the summer, whereas rotavirus 
diarrhea is more common in temperate zones in the fall 
and winter. 

Host behavioral patterns can be quite important and do 
not always reflect poor personal hygiene due to lack of 
education. For example, amebiasis is more common 
among male homosexuals [152]. Firemen and policemen 
scuba diving off Long Island had a high incidence of proto- 
zoan diarrheas, probably due to diving in polluted waters 
without a mask that completely covered the face [153]. 

Host physical factors may be specific or nonspecific. 
Decreased gastric acidity increases the risk for infectious 
diarrhea because acid conditions have an adverse impact 
on bacterial growth [l]. Malnutrition is known to increase 
diarrhea1 attack rates [ 154,155]. 

Specific host factors include receptor and immunologic 
status. Enterotoxigenic E. coli strains show restricted spe 
ties specificity. Animal enterotoxigenic E. coli strains are 
not known to infect humans. Human enterotoxigenic E. 
coli strains do not cause diarrhea in animals without major 
manipulation of the animal host. Species specificity is pre- 
sumably due to the presence of specific receptors on 
mucosal epithelial cells. Specificity can vary within a spe- 
cies. Some strains of pigs have a decreased affinity for the 
K66 adherence ligand that is reflected in a decreased di- 
arrheal attack rate [156]. On the other hand, host species 
is not as important for some pathogens, such as Salmo- 
nella. The presence of receptors may also be age-related. 
The RDEC-1 enteroadherent E. coli does not adhere to 
ileal brush borders until the rabbits are 20 days old [157]. 

Finally, immunologic status is important. The suscepti- 
bility of weanling animals and human infants to infectious 
diarrhea is well known and is thought to be due to the lack 
of protective mucosal antibody that, prior to weaning, was 
supplied in the maternal milk [150,156,159]. Severe im- 
munosuppression, whether due to immunosuppressive 
drugs or infection, is a recognized risk factor. Bone mar- 
row transplant recipients are susceptible to a variety of 
infectious agents that produce diarrhea [160]. Debilitating 
cryptosporidial diarrhea, heretofore unknown, is common 
among patients with the acquired immune deficiency syn- 
drome [149]. 

THE FUTURE 

It is obvious that there has been a dramatic resurgence of 
interest in pathogenesis of infectious diarrheas. The inter- 
action of infectious agents with mucosal surfaces is a 
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