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SUMMARY

Accumulating evidence indicates that stem cells (SCs) possess immunomodulatory, anti-inflammatory, and prohealing properties. The
mechanisms underlying these functions are being investigated with the final goal to set a solid background for the clinical use of SCs
and/or their derivatives. Specialized proresolving lipid mediators (SPMs) are small lipids formed by the enzymatic metabolism of poly-
unsaturated fatty acids. They represent a leading class of molecules that actively and timely regulate the resolution of inflammation
and promote tissue/organ repair. SC formation of these mediators as well as expression of their receptors has been recently reported,
suggesting that SPMs may be involved in the immunomodulatory, proresolving functions of SCs. In the present review, we summarize
the current knowledge on SPMs in SCs, focusing on biosynthetic pathways, receptors, and bioactions, with the intent to provide an
integrated view of SPM impact on SC biology. STEM CELLS TRANSLATIONAL MEDICINE 2019;8:992–998

SIGNIFICANCE STATEMENT

Harnessing stem cells (SCs) for immunoregulatory and regenerative purposes represents a pivotal goal in SC-related therapeu-
tics. A proper knowledge of SC capability to release and/or respond to agents that promote the resolution of the inflammatory
response as well as tissue/organ repair is key to develop innovative approaches, based on SCs, to treat diseases characterized
by ongoing unresolved inflammation.

INTRODUCTION

In recent years, the involvement of stem cells (SCs) in inflam-
mation resolution and tissue/organ protection programs has
been established by numerous in vitro and in vivo studies
(reviewed by Munir et al.) [1]. Such evidence has fueled great
interest into the possibility to use SCs for the treatment of dis-
eases characterized by ongoing chronic inflammation. To this
end, a better knowledge of the mechanisms involved in SC
modulation of the immune-inflammatory response is needed.

The resolution of inflammation is a well-organized process
orchestrated by a variety of mediators released by bone marrow
(BM), blood, and resident cells [2]. It is now established that the
termination of an acute inflammatory event is an active process
governed by the timely formation of proresolving mediators.
Among these, the so-called specialized proresolving lipid media-
tors (SPMs), which originate from the enzymatic metabolism of
polyunsaturated fatty acids, that is, arachidonic acid (AA),
eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and

docosapentaenoic acid (DPA), represent a large class of small
lipid molecules with well-documented potent proresolving
bioactions in vitro and in vivo [3]. Differently from classical
anti-inflammatory molecules, SPMs modulate, without completely
suppressing, proinflammatory mechanisms while reprogramming
the host immune response to promote tissue and organ repair
and return to homeostasis [3].

We recently uncovered SPM biosynthesis by SCs from the
human periodontal ligament (hPDLSC) as well as receptor-
mediated modulation of hPDLSC functions by the SPM lipoxin
(LX)A4 (see below) [4]. These results suggest that SPMs and
related receptors may play a role in SC biology. In this article,
we will review the current literature on the impact that SPMs
and related receptors may have on SC biology, focusing on two
main questions:

1. Do SCs generate SPMs as part of their proresolving program?
2. Do SPMs exert proresolving actions by modulating SC recruit-

ment and functions?
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SPM BIOSYNTHESIS AND BIOACTIONS

SPMs Derived from AA

LXs and Aspirin-Triggered LXs
LX (an acronym of “lipoxygenase interaction products”) A4 and
B4 were the first SPMs identified by Serhan et al. as derived
from the enzymatic conversion of AA by the cooperation of
different lipoxygenases (LOs) during cell–cell interactions [5].
At least three enzymatic pathways lead to the formation of LX.

A main biosynthetic pathway involves the cooperation
between leukocyte 5-LO and platelet (PLT) 12-LO. In peripheral
blood polymorphonuclear (PMN) leukocytes, AA is metabolized by
5-LO to synthesize leukotriene (LT)A4, which is transferred to inter-
acting PLT at sites of injury or thrombosis, where 12-LO converts
LTA4 into LX [6–8]. In vivo, this pathway accounts for LX generation
during coronary angioplasty and strenuous exercise [9, 10].

In mucosal tissues, 15-LO, abundantly present in epithelia,
converts AA into 15-hydro(peroxy)-eicosatetraenoic acid (15-H
[p]ETE). Following diapedesis and interactions of white blood
cells with epithelial cells, 15-H(p)ETE is taken up by leukocyte
5-LO to produce LXA4 and B4 [11]. Notably, human alveolar
macrophages (MΦ) expressing 15-LO and 5-LO are singular cell
sources of LX in the airways [12].

A third LX biosynthetic route is initiated by cyclooxygenase
(COX)-2. In vascular endothelial and colonic epithelial cells, acety-
lation by aspirin makes COX-2 a “lipoxygenase-like” enzyme
capable of introducing a single hydroxyl-group at C15 of AA with
the R configuration. The resulting 15R-HETE is a substrate for
5-LO expressed by leukocytes interacting with endothelial and
epithelial cells. As a result, epimeric LXA4 and B4 are produced
and termed 15-epi-LX or “aspirin triggered” LX (ATL) [13]. ATL
biosynthesis can be triggered by statins and pioglitazone [14–16]
as well as by COX-2 acetylation by sphingosine-1-phosphate in
neural tissues [17]. Evidence of ATL generation in humans follow-
ing aspirin administration has been provided by independent
studies [18, 19].

SPMs Derived from EPA
E-Series Resolvins
Studies by Serhan et al. first showed that in human endothelial
cells exposed to hypoxia or inflammatory cytokines, aspirin-
triggered (AT) COX-2 utilizes EPA to generate 18R-hydro(per-
oxy)-eicosapentaenoic acid (HEPE) [20]. This intermediate can
be further modified by leukocyte 5-LO into Resolvin (Rv, from
“resolution phase interaction product”) E1 [21].

Interestingly, 18R-HEPE is the dominant isomer in plasma
from human volunteers taking EPA, whereas aspirin promotes
18S-HEPE as well as 18R-HEPE production following dietary
supplementation of EPA [22]. Both 18R-HEPE and 18S-HEPE
can be converted to the corresponding 18R-RvE1 or 18S-RvE1
by 5-LO and LTA4 hydrolase [21] and cytochrome P450 [20,
23]. Reduction of 18-HEPE leads to the formation of RvE2 [24],
whereas 12/15-LO in eosinophils converts this intermediate
into 18R-RvE3 and epimeric 18S-RvE3 [25].

SPMs Derived from DHA
D-Series Resolvins
Metabololipidomic analyses of murine resolving exudates and
human cells identified a novel set of dihydroxy- and trihydroxy-
DHA derivatives that proved highly potent in dampening

inflammation in vivo and in vitro and were named D-series
Resolvins (RvD) [26].

Enzymatic pathways underlying their biosynthesis have been
defined. For instance, RvD1 can be generated by transcellular
exchanges between endothelial cells and PMN involving 15-LO
that converts DHA into 17S-hydroperoxy-DHA and 5-LO that
catalyzes conversion into RvD1 [26]. In the presence of aspirin-
acetylated COX-2, DHA is converted into 17R-hydroperoxy-DHA
giving rise to AT-RvD1 [27]. RvD1, AT-RvD1, and RvD2 [28] are the
best characterized members of the RvD family, whereas the com-
plete stereochemistry and some bioactions of other members
of this family (i.e., RvD3-6 and corresponding AT-epimers) have
been recently established (reviewed by Serhan) [29].

(Neuro)Protectins
In addition to RvD, DHA can be converted into a second family
of dihydroxy-containing SPMs termed protectins (PD). PD gener-
ated in neural tissues are also called neuroprotectins in order to
emphasize the site of their beneficial actions (e.g., protection of
retina and brain from injuries). The founding member of this
family was initially identified as a 10,17S-docosatriene [30] and
termed PD1. A 17R epimer of PD1 is formed in the presence of
acetylated aspirin and termed AT-PD1 [31].

Maresins
A fourth family of SPMs from DHA are maresins (from macro-
phage mediator in resolving inflammation). Two members of
this family, MaR-1 and MaR-2, are produced by MΦ and PLT-
PMN through the action of 12-LO [32].

SPMs Conjugated in Tissue Regeneration
Recent studies by Serhan et al. have identified distinct families
of SPMs arising from the conjugation of epoxy-DHA to gluta-
thione (GSH) in exudates, tissues, and body fluids (including
human blood and breast milk). In view of their tissue protec-
tive actions held in vivo, this set of cysteinyl-SPMs is referred
as “SPM conjugated in tissue regeneration” (CTR).

Upon direct conjugation of GSH to 13,14-epoxy-maresin (an
intermediate of MaR-1 and MaR-2 biosynthesis) by GSH transfer-
ase, also known as LTC4 synthase, and sequential cleavage of
peptide bonds by peptidases, the following maresin conjugated
in tissue regeneration (MCTR) are formed: MCTR1 (13-glutathi-
onyl-14-hydroxy DHA), MCTR2 (13-cysteinylglycinyl-14-hydroxy
DHA), and MCTR3 (13-cysteinyl-14-hydroxy DHA) [33–35]. In
addition, attack of GSH at the 7,8-epoxide intermediate of RvD
yields resolvin conjugate in tissue regeneration 1 (RCTR1) that is
in turn cleaved into RCTR2 by γ-glutamyltranspeptidase and into
RCTR3 via peptidases [3, 36]. Finally, conjugation of GSH at C16
of 16S,17S-epoxy-protectin methyl ester produces protectin con-
jugated in tissue regeneration 1 (PCTR1), which is converted into
PCTR2 and PCTR3 [37].

SPMs Derived from DPA

In mammalian cells, ω-3 DPA is an ω-3 fatty acid precursor of
DHA that serves as a biological substrate for the biosynthesis
of SPM congeners of D-series Rv, MaR, and PD. Main members
of the ω-3 DPA SPM family are RvD1n−3 DPA, MaR1n−3 DPA [38],
and RvD5n−3 DPA [39]. Finally, bioactive molecules derived from
DPA carrying an OH-group at carbon 13 and biosynthesized
upon nitrosylation of COX-2 by statins have been identified
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and named 13-series resolvins (RvT) [40]. The SPM biosyn-
thetic pathways are summarized in Figure 1.

Bioactions

SPMs share a wide array of target cells, including leukocytes, PLTs,
lymphocytes, endothelial and vascular smooth muscle cells, epithe-
lial and mesangial cells, osteoclasts, and microglial cells (reviewed
by Recchiuti et al.) [41], thus modulating a large number of func-
tions of these cells and their interactions. For instance, select
SPMs limit the release of proinflammatory chemokines and cytokines
as well as the expression of adhesion molecules, leukocyte trans-
epithelial and transendothelial migration, reactive oxygen species
(ROS) production, and PLT aggregation, while promoting the M2 phe-
notype of macrophages, efferocytosis and bacterial killing, nitric oxide,
and prostacyclin release [41]. SPMs and their stable analogs have
consistently demonstrated proresolving and tissue protecting
activities in numerous experimental diseases including acute lung
injury, peritonitis, colitis, sepsis, periodontitis, arthritis, cystic fibro-
sis, asthma, acute lung injury, eye diseases, obesity and diabetes,
renal fibrosis, ischemia/reperfusion, and vascular injury [41].

SPM GENERATION BY SCS

Direct evidence of SPM generation by human SCs isolated from
the periodontal ligament (hPDLSC) has been recently provided

by a collaborative study between our group and Dr. Serhan’s
laboratory [4]. Using liquid chromatography–tandem mass spec-
trometry metabololipidomics, we detected hPDLSC production
of resolvins (both D and E series), PD1, MaR, LX, and ATL. Inter-
estingly, prostaglandin (PG)E2 was the most abundant lipid
mediator formed by hPDLSC [4]. Although PGE2 is released in
the early phases of inflammation and carries proinflammatory
bioactions, it is also pivotal to start resolution [42] and to
orchestrate immunosuppression in the postresolution phase of
inflammation (reviewed by Feehan and Gilroy) [43]. Along these
lines, PGE2 has been identified as a main determinant of the
immunoregulatory functions of SCs from varying sources [44].

SPMs were also detected in mouse BM mesenchymal stro-
mal cells (MSCs) ex vivo-preconditioned with carbon monoxide
before administration to a mice model of polymicrobial sepsis
induced by cecal ligation [45]. SPM production was associated
with increased survival, alleviation of organ injury, improved bac-
terial clearance, and inflammation resolution. Notably, silencing
of LO pathways (5-LO and 12/15-LO), which regulate SPM bio-
synthesis, resulted in loss of these therapeutic benefits.

Together with the evidence that stem cells (e.g., embryonic
SCs, iPSC, hematopoietic SCs) express enzymes involved in SPM
biosynthesis [46–48] and are abundant in SPM precursors (i.e.,
AA, EPA, and DHA) [49], these observations indicate that genera-
tion of SPMs may represent one of the mechanisms underlying
the anti-inflammatory, immunoregulatory properties of SCs. Thus,

Figure 1. Specialized proresolving lipid mediator biosynthetic pathways. Main biosynthetic routes, key enzymes, and structures are illus-
trated (see text for details).
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SPM profiling in SCs may provide valuable predictive information
regarding their proresolving potential. On the other hand, more
studies are needed to determine whether SPMs are generated
during documented SC interactions with cells mainly involved in
the immune-inflammatory response, such as B lymphocytes, den-
dritic cells, natural killer cells, neutrophils, and macrophages [2,
50–52]. Along these lines, Fang et al. demonstrated LXA4 forma-
tion during coculture of human BM-MSC with human alveolar
epithelial type II cells, suggesting that LXA4 formation is involved
in the resolution of acute lung injury promoted by BM-MSC [53].

Moreover, the intraperitoneal administration of amnion epi-
thelial cells, a stem-like population isolated form the human pla-
centa (hAECs), 24 hours after bleomycin challenge enhanced
LXA4 formation as well as the expression of the LXA4 receptor
(see below), which in turn stimulated macrophage phagocytic
activity and induced T-cell suppression, thus promoting resolu-
tion of lung injury [54].

Thus, SCs can influence local SPM concentration either by
individual biosynthesis, which can be modulated by agents
present in the local milieu, including SPMs and their precur-
sors [4, 45], or by interacting with other cell types. As a result,
proresolving, tissue-repairing pathways are promoted.

IMPACT OF SPMS ON SC BIOLOGY

Early work showed radioprotection by the LX precursor LTA4
as well as by LXB4 of mouse hematopoietic SCs [55]. In
another study, Stenke et al. demonstrated that LXs are formed

in the human BM and suggested that LXs may participate in
the regulation of human myelopoiesis [56]. More recently,
LXA4 has been proposed as regulator of neural SC proliferation
and differentiation [57]. Moreover, PD1 supplementation of
mouse embryonic SC potently promotes neuronal and cardiac
differentiation [49]. We observed stimulation of hPDLSC prolif-
eration, migration, and wound healing by LXA4 [4]. Similar
results were obtained with SCs from the dental apical papilla
(SCAP), which express the LXA4 receptor (see below). In this
model, LXA4 also inhibited chemokine and growth factor secre-
tion, enhancing the immunomodulatory properties of periph-
eral blood mononuclear cells [58]. These results suggest that
modulation of resident SCs may account for the beneficial
actions of SPMs in periodontal disease [59]. A schematic rep-
resentation of known SPM pathways and bioactions in SCs is
illustrated in Figure 2, whereas Figure 3 depicts a schematic
representation of the impact that exogenous or endogenous
SPMs may have on SC pathophysiology.

SPM RECEPTORS AND SCS

SPM intracellular signals are transduced by specific receptors,
belonging to the G protein-coupled receptor type and termed
ALX/FPR2, DRV1/GPR32, DRV2/GPR18, ERV1/ChemR23, and
GPR37. ALX/FPR2, also termed FPRL1, FPR2, and FPR2/ALX, was
the first to be identified as a receptor for a SPM. Studies by Fiore
et al. demonstrated LXA4-specific binding to this receptor in
PMN [60]. Subsequent work determined that other proresolving

Figure 2. Specialized proresolving lipid mediator (SPM) biosynthesis and bioactions in stem cells (SCs). Direct evidence of SPM biosyntheis
has been so far obtained in human periodontal ligament stem cells (hPDLSC) and in mouse bone marrow mesenchymal stromal cells (BM-
MSC) preconditioned with carbon monoxide (CO) in the presence of arachidonic acid or docosahexaenoic acid, as well as coincubated with
alveolar epithelial cells. In these last models, SPMs generated by SCs exerted protective actions on organ injury, thus promoting mice
survival, bacterial clearance, and inflammation resolution. Direct SPM modulation of SCs functions was observed in mouse and human
BM-MSC, mouse neural stem cells, mouse embryonic stem cells, hPDLSC, and SCs of the human dental apical papilla (SCAP) where LXA4
stimulated proliferation, migration, and wound healing capacity, while reducing chemokine and growth factor secretion.
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mediators, namely Annexin A1 and RvD1, activate ALX/FPR2 [61,
62]. Although in vitro studies demonstrated that this receptor is
also recognized by a variety of peptides, including SAA, antimi-
crobial (LL37) and viral peptides (reviewed by Romano et al.)
[63] in vivo transgenic [64] and KO [65] mouse models consis-
tently support the proresolving nature of ALX/FPR2. We recently
characterized genetic and epigenetic regulatory mechanisms of
ALX/FPR2 expression [66, 67], and showed that this receptor is
present in hPDLSC, where it conveys proliferative and migration
signals by LXA4 [4].

Consistent with our findings, Viswanathan et al. reported
FPRL1 expression by human BM mesenchymal SCs [68]. The
activation of this receptor by N-formyl methionyl leucyl phenyl-
alanine enhanced cell adhesion and migration [68]. FPR2
expression was uncovered in rat neural SCs, where it promotes
migration and neuronal differentiation by modulating the PI3K-
AKT signaling and ROS generation [69, 70].

Recently, ALX/FPR2 expression has been detected in SCAP
[58]. The activation of this receptor by LXA4 stimulated SCAP
proliferation, migration, wound healing capacity, and immuno-
modulatory functions, while inhibiting cytokine, chemokine,
and growth factor secretion [58].

In addition to SCs from different origin, the ALX/FPR2 recep-
tor is expressed by progenitor cells. For instance, its activation by
the WKYMVm peptide stimulated chemotactic migration, angio-
genesis, and proliferation ability of human endothelial colony for-
ming cells, thus promoting ischemic limb salvage [71]. Moreover,
FPR2-dependent mobilization of circulating angiogenic cells con-
tributed to myocardial protection and neovascularization in a
murine model of myocardial infarction [72].

Notably, FPR2 KO in mice was associated with reduced
number of Lin−c-Kit+Sca-1+ myeloid precursors as well as with
reduced expansion of this cell population following airways

exposure to heat-inactivated bacteria [73]. Along these lines,
emergency granulopoiesis was inhibited by FPR2 deficiency in
mouse [74]. Altogether, these results indicate that the LXA4
receptor may play a role in stem and progenitor cell prolifera-
tion and homing and that signals conveyed by this receptor
may influence immunomodulatory functions of SCs.

Little is currently known regarding the involvement of other
SPM receptors in SC biology. Expression of DRV2/GPR18, which is
recognized by RvD2 [75], has been reported in lymphoid progeni-
tors and its requirement for the development and reconstitution
of thymus-derived intestinal intraepithelial lymphocytes in the
steady-state and after BM transplantation has been proposed
[76]. On the other hand, BM-derived MSCs express the ChemR23
receptor, which is activated by RvE1 [20]. However, the impact of
RvE1 on MSC pathobiology is unknown. Recently, binding and acti-
vation of second messengers by PD1 to the human GPR37 recep-
tor has been uncovered [77]. GPR37 is broadly expressed in brain
tissues and leukocytes and can be activated by the neurotrophic
peptide prosaposin. Interestingly, GPR37 is highly expressed in
mouse neural progenitor cells [78]. Moreover, prosaposin is
secreted by marrow stromal-derived neural progenitor cells and
protects neural cells by apoptosis [79]. Whether GPR37 as well
as other SPM receptors are expressed on SCs where they can
convey SPM-induced bioactions remains to be fully investigated.

CONCLUSION

As the stem cell era is rapidly approaching the phase of clinical
application, the need for better characterization and definition
of SC properties becomes urgent. It has been clearly demon-
strated that SCs possess immunomodulatory, anti-inflammatory,
pro-healing functions and that they exert these functions largely

Figure 3. Scheme of specialized proresolving lipid mediator (SPM) involvement in stem cells (SCs) pathobiology. SPM binding to its cog-
nate receptor expressed by SCs (top-left) in conjunction with SPM generation by SCs (top-right) can regulate SC-governed pathways
involved in immunoregulation, inflammation resolution, and tissue repair through interactions with blood as well as resident cells (center).
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by paracrine mechanisms involving the release of mediators as
well as extracellular vesicles [80]. It has been also suggested that
preconditioning of SCs can enhance their beneficial effects.
These are key points that need more extensive investigation. In
this respect, the still limited evidence that SCs can generate
SPMs and express SPM receptors, and that SPMs can modulate
SC functions is relevant and opens new perspectives in SC biol-
ogy and translational medicine.
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