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INTRODUCTION. 

One of the methods most frequently used to estimate the concen- 
tration of bacteriophage in a fluid medium is that of serial dilution. 
If several parallel titrations of the same solution are made by this 
method, it will be found usually that the results are not entirely con- 
sistent; that, although in most cases the number of tubes in which 
the bacteria dissolve will be the same, let us say n, a few cases will 
yield n ± 1. 

Dr. Bronfenbrenner,* of The Rockefeller Institute, in whose labora- 
tory many thousands of such titrations have been made on solutions 
of various degrees of concentration, estimates that, if the dilution 
factor be .1, about 85 per cent of such parallel runs yield the same 
value of n. This degree of consistency is about 40 per cent higher 

t h a n  one would expect if it is true, as is quite generally believed, that 
bacteriophage exists in the state of particles, a single one of which is 
sufficient when added to a culture of susceptible bacteria to start the 
destructive processes. 

Dr. Bronfenbrenner's estimate is based largely on the general 
impressions gained by himself and his coworkers in the course of much 
experimental work rather than on definite records. The discrepancy 
between this estimate and the results of analysis is so great, however, 
that it deserves consideration. I t  should be checked by experiment. 
If the predictions of theory are upheld, it would constitute an interest- 
ing verification of the simple particulate hypothesis. If not, it would 
require a further consideration of the hypotheses on which the analysis 

t I am indebted to Dr. Bronfenbrenner for his kindness in furnishing the material 
on which this paper is based. 
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is based, which in itself might  p rove  to be of interest.  I na smuch  as 

the labor  involved in making  the experiments  is ve ry  great,  such a 

check can best  be made  as a by-produc t  of f i t rat ions made  for o ther  
pu rposes .  A brief presenta t ion of the analysis together  wi th  a dis- 

cussion of the hypotheses  on which it  is based, may ,  therefore, be  of 
interest.  

The Serial Dilution Method. 

The method will be explained briefly by an example. We put 10 cc. of the 
solution to be titrated, which contains broth as well as bacteriophage, into the 
first of a series of test-tubes; into each of the other tubes, we put 9 cc. of sterile 
broth. We now remove 1 co. of the fluid from the first tube and introduce it into 
the second. After very thorough stirring, we remove 1 co. from the second tube, 
using a clean pipette, and put it into the third tube. We continue this process 
indefinitely, in so far as the theory is concerned. The expectation of bacteriophage 
in any tube is, therefore, exactly one-tenth as great as that for the preceding 
tube. The quantity, .i, is called the dilution factor. Susceptible bacteria are 
now put into each of the tubes. In the first n tubes, they dissolve; in all of the 
others, they live and multiply. 10" - I is taken as a measure of the concentration 
of the original solution. 

Statistical Treatment of the Problem. 

I t  will be assumed for the present  tha t  the presence of one or more  

particles of bacter iophage in any  tube always results in the dissolution 
of all of the bacteria,  tha t  particles neither dissociate nor coalesce 

during the process of dilution, and tha t  none of the part icles are lost 
by  adsorption or otherwise. The  effects of changing these hypotheses  
in various ways  will be discussed later. 

Let x = the exact number of particles of bacteriophage placed in the first 
tube, 

p, = the probability that the last (most dilute) tube in which the bacteria 
dissolve will be the nth tube of the series, and 

a = the dilution factor. 

In  wha t  follows, it  will be assumed tha t  a = .1 unless otherwise 

s ta ted .  
The  probabi l i ty  tha t  the (n-F1)th tube  receives a particular one of 

the particles originally in the first tube  is a - ;  the probabi l i ty  tha t  it 
does not receive it is 1 - as; and the probabi l i ty  tha t  it receives none 
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of the original x particles is, therefore, (1 - a") ~. Likewise, the prob- 
abil i ty tha t  the n th  tube receives none is ( 1 -  a"- t) , .  These prob- 
abilities are not  independent,  however; whenever  the n th  tube re- 
ceives none the ( n + l ) t h  tube must also receive none. In  every  other  
case in which the ( n + l ) t h  received none, the n th  must  have received 
some, and it  must  have retained them. Therefore,  the probabili ty,  
which is in effect p, ,  tha t  the n th  retains at  least one and the ( n + l ) t h  

receives none is given by  

p .  = (1 - ~ , ) ,  - ( t  - . , - ~ ) ~  <t~ 

If  x and n are infinite, xa" being finite, this equat ion m a y  be wri t ten 

p. = e-  x~. _ e-  x~- - ! (2) 

These are the fundamental  equations with which we shall have to 
deal in what  follows. 

The Maximum Value of p. for Small Values of n. 

Let P .  =- this maximum value of p,, and 
X.  --- the value of x which corresponds to P.. 

If  n -- 1, it  is obvious tha t  X1 = 1. Tube  1 must  retain at  least one 
particle, and the smaller the number  of particles it receives, the less 
the probabi l i ty  tha t  it  will lose one of them to Tube  2. Equat ion  (1) 
shows, then, tha t  P l  = 1 - a which is .9. 

I f  n > 1, we can find between what  two consecutive integral values 
of x the desired value lies by  treat ing x as a continuous variable. 
Accordingly, we set D~P, equal to zero. From equation (1), we find 
that  

~ P .  = ( i  - a . )  ~ log ,  (1 - a - )  - (1 - ~ .  - ' ) ~  1 %  (1 - ~ .  - 1) .  

Setting this expression equal to zero, simplifying, and writing X .  in 
place of x, we have 

log  [ -  log  (1 - a -  - 1)1 - log  [ -  log (1 - ~-)] 
X,, = log (1 -- a") -- log (1 - a " -  1) (3) 

in which the base of logari thms is arbi t rary.  
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Column 2 of Tab le  I contains the values of X .  found by  set t ing a 
equal to .1, and n equal  to 2, 3, and 4 in equat ion (3), and Column 3 
contains the corresponding values of P .  found by  subst i tut ing X ,  in 

equat ion (1). These quant i t ies  cannot  be less than  the t rue values  
corresponding to the best  integral  values of X , .  Inspect ion of Column 

3 shows tha t  as n increases f rom 1 to 4, P .  apparen t ly  approaches  a 
l imiting value very  rapidly.  To  make  sure of this, we mus t  find the 

va lue  of P .  when n is infinite. 

TABLE I. 

, 1 2  1 3 1 ,  ' 6 7 1 8  
a = , i  a ~ .09 

1 

2 
3 
4 

oo 

Xn Pn X'n 

1.000 .900 7.27 
24.60 .706 76.6 

255.0 .698 770. 
2558. .697 

.697 

PPn Pn 

.466 
• 463 .604 
• 463 .602 

• 463 .602 

e ~  

• 910 
• 720 

.717 

p' 

• 469 
.467 

• 467 

X~ is the value of x corresponding to P,,, the maximum value of p, which in 
turn is the probability that the last (most dilute) tube in which bacteria dissolve 
is the nth tube of the series. 

X ' ,  is the value of x for which p,  - p,  + i. At this point, p',, the degree of 
consistency of parallel runs, has a minimum value. 

p.  is the mean value of p, over the range of values within which p.  is greater 
than p with any other subscript. 

The Value of P ,  When n Is Infinite. 

From equat ion (2), we find tha t  

Dxpn = a n - 1  e -  x a n - I  _ an e _ x a  n 

set t ing this expression equal to zero, simplifying, and writ ing X ,  for 
x, we find 

- -  l o g  a 

X. = a " -  ' (1 - a) 
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Mter  substituting this expression for x in equation (2), and simplifying, 
it appears that 

P® -~ a 1-~ - a 1-~ (4) 

The value of P .  given in Column 3 was found by setting a equal 
to .1 in equation (4). 

The Value of p'. for Small Values of n. 

Between X.  and X.+I, there must be a value of x for which p.  = 
P.+I. We denote this value by Xt.. When x = X' . ,  the degree of 
consistency of titrafions of samples containing the same number of 
particles will have a minimum value inasmuch as it is equally probable 
that a run will yield either n or n + l .  The value of p,  corresponding 
to X~. will be denoted by p r .  We proceed to find the values of X~.. 
Setting the expression given by equation (1) for p, equal to a similar 
expression for p,+l, rearranging terms, and writing X' ,  for x, we have 

[. ,-o" 

Equation (5) shows that X'~ = 7.27. For higher values of n, the 
equation cannot be solved for Xt.  explicitly, but the values of X' .  can 
be found to any desired degree of approximation as follows: We set 
the quantity inside the brackets equal to zero, thus - -  

log 2 X t 
. log (1 - ~ - +  ~) - log 0 - ~") (6) 

Having found a value of Xt,  for any small value of n from equation 
(6), we use this value as the exponent of the first parenthesis of equa- 
tion (5). This gives a new value of the quantity inside the brackets 
slightly different from zero, and consequently a new equation like 
equation (6) except that the figure 2 is replaced by a quantity slightly 
less than 2. This process could be carried on indefinitely but inspec- 
tion shows that the true final value of X ' ,  cannot differ from the value 
first found from equation (6) by as much as .1 of 1 per cent for any 
value of n. We. therefore, use equation (6) and ignore the error in- 
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volved. Column 4 of Table I contains the values of X ' ,  thus found 
and Column 5 contains the corresponding values of p l  found by sub- 
stituting the values in Column 4 together with the corresponding 
values of n in equation (1). Inasmuch as X'~ must, in fact, be an 
integer, these values are slightly too small. The error is certainly 
negligible if n is 2 or more. 

The Value of p',, When n Is Infinite. 

To make sure that p'.  approaches a limiting value as n increases, 
we find the value of p'~ when n is infinite. As in the preceding 
section, we first set p~ equal to P.+t to find Xt~. Using equation (2) 
for the purpose, writing XP. for x, and introducing a new variable, y, 
such that 

log, y 
X t = (7) 

s a s - t  ( 1 - -  a)'  

we find that 

Equation (8) is the analogue of equation (5), and the value of y can 
be found by the same method of approximation. Inspection shows, 
as before, that 

1 

y -- 2 ~ (9) 

gives log y with a maximum error of .1 of 1 per cent. Substituting 
this value of y in equation (7), we have 

X ,  n _ log, 2 (10) 

a* (t  - a) 

and this expression when substituted in equation (2) gives 

l 1 

1~'~ = 2 a - i  _ 2a(a - t) (11) 

p'® is, therefore, equal to .463 with an error of less than .1 of 1 per 
cent. 
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The Value of p ,  for Small Values of n. 

If we are working with solutions of a great variety of degrees of 
concentration, we are justified in considering the mean value of p.  
for the values of x which lie between X ' .  - 1 and X', .  This quantity 
is denoted by  p.. If n is greater than 1, we may treat x as a contin- 
uous variable without introducing an appreciable error. We simply 
integrate p.dx (using equation (1) for the purpose) between the limits 
X ' . -  1 and X'. ,  and divide by  the difference of the limits. We find, 
thus, that 

p t e 

1 |(I - a-) x -  - (1 - a") x " - '  

L = X:--  X . _ ,  ~ ~ 0 : °-"i 

' ' i 
(1 --  a n - l )  X n  --  ( l  - -  a n - l )  X n - 1  

- ~ O- = o~--§  ~ (1,.) 

The values of p~ for n = 2 and n = 3 shown in Column 6 were found 
by  substituting the figures of Column 4 together with the appropriate 
values of n in equation (12). 

The Value of p ,  When n Is Infinite. 

As before, we integrate p~dx from X ' ,  - ~ to X ' ,  (using equation (2)) 
and divide by the difference of the limits. X ' ,  is given by equation 
(10) and X ' ,  - 1 is a similar expression with the value of n reduced by 
one unit. After integrating, substituting these expressions for the 
limits, and simplifying, it comes out that 

Poo -'- ioge 2 2"d-x-i-t + a .  2 a(a - 1"----'--) _ (1 -[- a)  2 a - i (13) 

which proves to be .602. 

The Effect of Altering the Dilution Factor. 

In the preceding pages, a has been taken as .1. Increasing the 
value of a would result in a lowering of the values of the various p's; 
and conversely a decrease in the value of a would have the opposite 
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effect. To make sure that a slight change in the dilution factor could 
not produce a great change in the results, I have recalculated Pn and 
p r  taking .09 for a. The results are shown in Columns 7 and 8. If 
we set a equal to zero in equation (13), we find that the limiting value 
of p ® is .722. 

DISCUSSION. 

In the foregoing, it has been necessary to deal with x as a continuous 
variable and to consider the case in which x is infinite. One must be 
careful not to confuse these analytical devices with the idea that the 
active substance is itself infinitely divisible; they were used simply for 
the purpose of studying equations (1) and (2) which are based on the 
particulate hypothesis. The low values of the p's in Table I are 
brought about by the fact that, however nicely the active substance 
may be divided by serial dilution in the first stages where the number 
of particles per cc. is great, a time comes as the dilution continues 
when the number of particles per cc. is so small that the probability 
variations are considerable. I t  is by the indications at this point 
that the state of affairs in the first tube is judged. 

In practice, n is much greater usually than 1 or 2. We may, there- 
fore, ignore these two cases. We take a as .1. Table I shows that a 
value 10 per cent lower makes little change in the results; we may, 
therefore, ignore the effects of slight errors of dilution. 

The table shows that if n > 2 all of the p's are practically indepen- 
dent of n. I t  makes little difference, then, whether a particular tube, 
(the first tube as we have taken it) receives exactly x particles, whether 
it is made from a parent tube the concentration in which is ten times 
as great, or whether it is merely a sample of stock solution. 

I t  appears from Column 3 that, with a fortunate choice of the 
solution to be titrated, about 70 per cent of parallel runs might yield 
the same value of n. On the other hand, if the choice were unfortu- 
nate, less than half of them would yield the same value of n. In the 
long run, working with a great variety of solutions, we should expect 
60 per cent to yield the same value. The discrepancy between this 
figure and Dr. Bronfenbrenner's estimate, 85 per cent, based on the 
actual yield of the method in practice is, in Dr. Bronfenbrenner's 
opinion, too great to be ignored. 
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I t  will be remembered that our analysis of the problem was based on 
the simple assumption that only one particle need be put  into a tube in 
order to dissolve the bacteria in it. I t  has not been assumed that the 
particles are alike. The particles may be moleculesmall alikc or 
they may consist of particles of foreign matter on the surfaces of which 
one or more of the ultimate units of bacteriophage have been adsorbed. 
We have required only that particles neither divide nor coalesce 
during the process of dilution (only the second of these processes 
would make P- greater). I t  is, of course, conceivable that, in con- 
centrated solution, a change of concentration might have some influ: 
ence on such particles, but  it is hard to imagine how any such change 
could take place during the process of serial dilution after a point has 
been reached where there are only from one to ten particles in 10 cc. 
of broth. Such changes in the first part of the series would have a 
profound effect on the accuracy of estimates made by the method, 
but  none on the degree of consistency of the results. 

I t  is conceivable that the interaction of a bacterium and a particle 
of bacteriophage is, in itself, a matter of probability. The particle 
may be inactive, or it may attach itself to a bacterium which is not 
susceptible. I t  is reasonable to assume that, of the whole number of 
bacteria added to each tube, a constant fraction are susceptible. We 
may say, then, that there is a certain constant probability, q, that any 
particular unit of bacteriophage will act effectively. This could have 
been taken into account very easily in deriving equations (1) and (2), 
thus--if,  instead of considering the probabilities, a" - 1 and a", that a 
particular unit of bacteriophage would be transferred to the nth and 
( n + l ) t h  tubes respectively, we had considered the probabilities that 
the particular unit would act effectively in these two tubes, we should 
have found them to be a ~ - I q and a"q respectively, q may now be 
replaced by  some unknown positive power of a. I t  is evident, there- 
fore, that the effect of introducing q is to increase the value of n. This 
means that the limiting values of the p's remain unchanged and that 
the values of the p's for small values of n, are, for the same value of n, 
more nearly in coincidence with the limiting values than they would 
be if q were not introduced; in other words, if n is greater than 2, the 
introduction of q is without appreciable effect. 

We have next to consider adsorption losses. During the process of 
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stirring and transferring fluid, some of the particles must come in 
contact with the surfaces of the tube and the pipette and it may be 
that some or all of them adhere to the glass. Although this would 
not necessarily render the particles inactive, it would effectively pre- 
vent transferring them to the next tube. Such losses, if they exist, 
must be very small. Dr. Bronfenbrenner 1 has found that a very 
dilute solution (corresponding approximately to Tube n - 2) gives 
the same value of n whether it is titrated immediately after preparation 
or after having been kept in glass for 72 hours. This means that, 
during the 10 minutes required to make a transfer, only a very small 
fraction, certainly much less than 10 per cent, of the whole number of 
particles in the tube will be adsorbed. Since the fraction is so small, 
and since the transfers to successive tubes require about the same 
length of time, we may say that there is a definite probability, Which 
is the same for all of the transfers, that any particular unit of bacterio- 
phage, which has been transferred to any tube, will escape adsorption 
until the transfer of fluid to the next tube has been made. This 
probability may be combined with the dilution factor, a, to give a new 
and slightly smaller value of a. If 10 per cent of the particles were 
lost at each transfer, a would be reduced from .1 to .09. Table I 
shows that the corresponding increases in the values of the p's amount 
to only 2 or 3 per cent. 

If, therefore, it is true that when one active particle of bacteriophage 
comes in contact with a susceptible bacterium, all of the bacteria in 
the tube dissolve, ~ve are justified in expecting that, in the long run, 
about 60 per cent of parallel runs will yield the same value of n. This 
figure will remain unaltered whatever value we assign to the proba- 
bility either that a particle is by nature inactive, or that it is taken up 
by a bacterium which is not susceptible; and it will change only 
slightly as a result of the greatest adsorption losses which we have 
reason to consider. 

If experiment should show definitely that the serial dilution method 
yields results with a degree of consistency much greater than 60 per 
cent, the most obvious explanation of the discrepancy will be that one 
particle is not usually sufficient to cause the dissolution of all of the 
bacteria in the tube, even though it is active and comes in contact 
with a susceptible bacterium. This idea is not seriously in conflict 
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with the most important feature of the particulate hypothesis as 
usually understood, i.e. that one particle can start the process of 
dissolution. It  is conceivable that a single infected bacterium may 
not be able to produce enough particles of bacteriophage to infect all 
of the others within the time during which the bacteria remain 
susceptible. 

SUMMARY. 

1. The theory of the serial dilution method of titration of bacterio- 
phage has been worked out on the basis of the simple particulate 
hypothesis. 

2. I t  has been shown that, if the dilution constant is .1, only about 
60 per cent of parallel runs on the same solution should give the same 
end-point, the average being taken over a great number of titrations 
of each of a great variety of solutions. 

3. The discrepancy between this figure, 60 per cent, and Dr. Bron- 
fenbrenner's estimate, 85 per cent, is considerable. 

4. Inasmuch as the particulate hypothesis is well founded, no 
explanation of the discrepancy is suggested. 


