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Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related
death. Sorafenib is approved by the U.S. Food and Drug Administration to be a first-line
chemotherapy agent for patients with advanced HCC. A portion of advanced HCC
patients can benefit from the treatment with sorafenib, but many patients ultimately
develop sorafenib resistance, leading to a poor prognosis. The molecular mechanisms
of sorafenib resistance are sophisticated and indefinite. Notably, non-coding RNAs
(ncRNAs), which include long ncRNAs (lncRNAs), microRNAs (miRNAs) and circular
RNAs (circRNAs), are critically participated in the occurrence and progression of
tumors. Moreover, growing evidence has suggested that ncRNAs are crucial
regulators in the development of resistance to sorafenib. Herein, we integrally and
systematically summarized the molecular mechanisms and vital role of ncRNAs impact
sorafenib resistance of HCC, and ultimately explored the potential clinical
administrations of ncRNAs as new prognostic biomarkers and therapeutic targets
for HCC.
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BACKGROUND

Hepatocellular carcinoma (HCC) is the paramount form of primary liver cancer, accounting for 75-
85% (1). And it is deemed as the second leading cause of cancer-related deaths worldwide, with high
probability of metastasis and lethality. Hepatitis B virus (HBV) or hepatitis C virus (HCV) infection,
which stimulates chronic inflammation in the liver, is considered to be a dominating risk factor of
HCC (2). Meaningfully, detecting early and taking treatment timely can obtain relatively long
survival in HCC patients. However, patients are often diagnosed at an advanced stage because of the
complex etiology, latent onset, difficulty in diagnosis and rapid progression of HCC. At this stage,
chemotherapy is a major available palliative treatment (3), but chemotherapeutic drugs are prone to
develop resistance during the course of HCC treatment.

Sorafenib is a first-line chemotherapeutic agent approval by the US Food and Drug
Administration to treat the advanced HCC through inhibiting angiogenesis and cell proliferation (4).
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As a kinase inhibitor of multiple targets, it is capable of blocking
tumor cell multiplication via restraining the activation of Raf-1, B-
RAF and kinases in Ras/Raf/MEK/ERK pathway. In addition,
sorafenib inhibits the generation of tumor blood vessels via
regulating platelet-derived growth factor receptor (PDGFR-b),
Fms-like tyrosine kinase (FLT-3), hepatocyte factor receptor
(C-Kit), vascular endothelial growth factor receptor (VEGFR) 2,
VEGFR-3 and other tyrosine kinases (5). However, patients are
vulnerable to develop resistance to sorafenib during treatment,
resulting in poor outcomes, so further studies are needed to
investigate the precise mechanisms of sorafenib resistance (6).

Only 2% of human genome is composed of protein-coding
sequences, the rest are non-coding sequences (7). Non-coding
RNAs (ncRNAs) principally consist of miRNAs, lncRNAs and
circRNAs, which are widely associated with the transcription and
post-transcription regulation, and also exert a critical action in
the occurrence and development of cancer, as well as resistance
of sorafenib (8). Herein, we discussed the molecular mechanisms
of sorafenib resistance and the role of ncRNAs in this process
(Figure 1), thus providing new ideas to antagonize sorafenib
Frontiers in Oncology | www.frontiersin.org 2
resistance, enhance the efficacy of sorafenib, and improve the
outcome of HCC patients.
MECHANISMS OF SORAFENIB
RESISTANCE IN HCC

Some individuals with HCC do not respond to sorafenib in
clinical practice, and even if some patients do respond initially,
they quickly become refractory (9), mainly due to the primary
and acquired resistance to sorafenib. The primary mechanisms
of the resistance to sorafenib are summarized here, more details
are given in Tables 1, 2.

Primary Resistance
The primary resistance of HCC to sorafenib, existing prior to
drug treatment, is attributed mainly to the genetic heterogeneity
(63), while the precise mechanism is still unclear. Epidermal
growth factor receptor (EGFR), is the most well-studied target
related to the primary resistance to sorafenib. EGFR, located at
FIGURE 1 | Overview of the mechanisms of ncRNAs involved in HCC resistance to sorafenib and dysregulated ncRNAs’ differential expression in sorafenib resistant
HCC cells. Numerous miRNAs, lncRNAs and circRNAs are implicated in sorafenib resistance through regulating the expression of downstream target genes and
affecting drug transport, metabolism, cell multiplication, autophagy, apoptosis, cell cycle, EMT, tumor microenvironment, and gene modifications.
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the surface of epithelial cells, when bound to its ligands, can
result in the activation of downstream pathways, thereby
regulating cell proliferation (64). Over half of the patients
diagnosed with HCC have aberrant EGFR/HER3 activation
and over-expression of EGFR and its ligands (particularly the
dual regulated ligands), which suppress the antitumor capacity of
sorafenib. The efficacy of sorafenib can be improved when
sorafenib combined with RNA interference agents inhibiting
Frontiers in Oncology | www.frontiersin.org 3
EGFR/HER-3 phosphorylation. Studies suggested that activated
EGFR may be a promising predictor of primary sorafenib
resistance in HCC cells, and overexpression of EGFR or its
ligands may result in continuous activation of EGFR
downstream pathways and subsequent resistance to sorafenib
(65). Additionally, another downstream pathway of EGFR, the
Ras/Raf/MEK/ERK pathway, is activated in sorafenib-resistant
patients, further corroborating the vital action of EGFR in
TABLE 1 | miRNAs and sorafenib resistance in HCC.

miRNAs Expression Effects on sorafenib resistance Target Mechanism References

miR-423-5p up-regulated Inhibiting GADD45B autophagy (10, 11)
miR-142-3p down-regulated Promoting HMGB1, ATG5, ATG16L1 autophagy (12, 13)
miR-221 up-regulated Promoting Caspase-3 apoptosis (14)
miR-541 down-regulated Inhibiting ATG2A/RAB1B autophagy (15)
miR-30e-3p down-regulated Promoting TP53/MDM2, EpCAM, PTEN, p27 CSCs (16)
miR-486-3p down-regulated Inhibiting FGFR4, EGFR AKT activation (17)
miR-122 down-regulated Inhibiting SERPINB3 HIF-2a/CSCs (18, 19)
miR-30a-5p down-regulated Inhibiting CLCF1 AKT activation (20)
miR-1226-3p down-regulated Inhibiting DUSP4 JNK-Bcl-2 axis (21)
miR-552 up-regulated Promoting PTEN AKT activation (22)
miR-124 down-regulated Inhibiting CAV1 CSCs (23)
miR-181a up-regulated Promoting RASSF1 MAPK (24)
miR - 222 up-regulated Promoting PI3K/AKT AKT activation (25)
miR-378a-3p down-regulated Inhibiting IGF-1R EMT (26)
miR-744 down-regulated Inhibiting PAX2 EMT (27)
miR-374b down-regulated Inhibiting hnRNPA1/PKM2 glycolysis (28)
miR-21 up-regulated Inhibiting PTEN AKT activation (29, 30)
miR-375 down-regulated Inhibiting AEG-1 AKT activation (31)
miR-223 down-regulated Promoting FBW7 apoptosis (32)
miR-145-5p down-regulated Inhibiting HDAC11 metabolism (33)
miR-96 up-regulated Promoting TP53INP1 apoptosis (34)
miR-494 up-regulated Promoting p27, puma, PTEN, mTOR AKT, CSCs (35, 36)
miR-21-5p down-regulated Inhibiting EZH2 NOTCH1 (37)
miR-26a-1-5p down-regulated Inhibiting EZH2 NOTCH1 (37)
miR-3609 down-regulated Inhibiting EPAS-1 metabolism (38)
miR-101/122/125b/139 up-regulated Promoting IGF1R apoptosis (39)
miR-193b down-regulated Inhibiting Mcl-1 apoptosis (40)
miR-1 down-regulated Inhibiting PD-L1 apoptosis (41)
miR-137 down-regulated Inhibiting ANT2 CSCs (42)
miR-216a/217 up-regulated Promoting PTEN, SMAD7 EMT (43)
July 2
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TABLE 2 | lncRNAs and sorafenib resistance in HCC.

lncRNAs Expression Effects on sorafenib resistance Interact with Target Mechanism References

SNHG1 up-regulated Promoting miR-21 SLC3A2 transfer (44)
HANR up-regulated Promoting miR-29b ATG9A autophagy (45)
FAM225A up-regulated Promoting miR-130a-5p CCNG1 apoptosis (46)
NEAT1 up-regulated Promoting miR-149-5p AKT1 Akt activation (47)
HEIH up-regulated Promoting miR-98-5p PI3K/AKT Akt activation (48)
SNHG16 up-regulated Promoting miR-140-5p FEN1 EMT (49, 50)
KCNQ1OT1 up-regulated Promoting miR - 506 PD - L1 apoptosis (51)
MALAT1 up-regulated Promoting miR-140-5p Aurora-A EMT (52, 53)
H19 up-regulated Promoting miR-675 miR - 675 EMT (54)
FOXD2-AS1 down-regulated Inhibiting miR-150-5p TMEM9 transfer (55)
TTN-AS1 up-regulated Promoting miR-16-5p cyclin E1 Akt activation (56)
NEAT1 up-regulated Promoting miR-204

miR-335
miR-149-5p

ATG3
c-Met-AKT

autophagy apoptosis
AKT activasion

(57, 58)

POIR up-regulated Promoting miR-182-5p FOXF2 EMT (59)
TUC338 up-regulated Promoting / RASAL1 gluconeogenesis (60, 61)
VLDLR up-regulated Promoting / ABCG2 transfer (62)
rticle 696705

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hu et al. ncRNAs in HCC Sorafenib Resistance
sorafenib resistance. The down-regulation of pERK may
contribute to sorafenib resistance.

In addition, mitogen-activated protein kinase (MAPK) levels
affect the susceptibility of HCC cells to sorafenib. Recent research
has also demonstrated that c-Jun N-terminal kinase (JNK),
another member of MAPK family, has great potential to
predict the sorafenib sensitivity (65). Furthermore, sestrin2
(SESN2), an important component of the sestrin stress‐
inducible protein family, participates in tumorigenesis and
development by regulating a variety of downstream pathways,
among which MAPK and AKT are closely associated with cell
multiplication and metabolism (66). Upregulation of SESN2
confers primary resistance to sorafenib in HCC cells by
activating AKT (67). Additionally, HCC patients with
overexpressed VEGFA are significantly susceptible to sorafenib.
VEGFA can stimulate stromal cells to secrete hepatocyte growth
factor to induce tumor progression, suggesting that VEGFA may
be a promising predictor of response to sorafenib in patients with
HCC (68).

In summary, it is highly prospective to further explore the
mechanism of primary resistance to sorafenib, identify
biomarkers that predict sorafenib sensitivity, and then
personalize the therapy for patients with different sensitivities
to save the economic and time costs of ineffective treatment. It is
also helpful in seeking new therapeutic targets and exploring
novel strategies to combine sorafenib with other targeted drugs
for more effective treatment.

Acquired Resistance
Acquired sorafenib resistance can be induced under a variety of
conditions, including reduced drug intake, enhanced
intracellular drug metabolism, increased excretion, changes in
molecular targets affecting the activation/inactivation of
pathways, changes in DNA repair mechanisms, dysfunction of
cell cycle-related proteins and tumor microenvironment
regulation (69). Here we summarized several of the latest and
most recognized mechanisms of acquired sorafenib resistance.

The Solute Carrier (SLC) Family
The human SLC superfamily transporter plays an important role
in sorafenib uptake. Previous study has shown that SLC22
(organic cationic/anion transporter) is down-regulated in HCC
and is closely related to sorafenib resistance. Moreover, down-
regulated expression of SLC22A1 in human HCC is related to its
DNA methylation (70). Therefore, demethylation agents
targeting SLC22A1 methylation are promising for the
treatment of patients resistant to sorafenib (71).

ATP Binding Box (ABC) Transporters Family
Removal of drugs from the cytoplasm is an important method of
drug resistance. The ABC transporter is one of the largest family of
membrane transporters. The genetic variants of ABC transporter
genes, such as the ABCB family, the ABCC family and the ABCG2
family is related to clinical chemotherapy resistance (72). An in vitro
research illustrated that the accumulation of sorafenib was lower in
cells with ABCC2 overexpression than in cells with normal ABCC2
expression, suggesting that sorafenib resistance may be related to
Frontiers in Oncology | www.frontiersin.org 4
ABCC2 (MRP2) variation. Furthermore, downregulation of ABCC2
expression has the potential to restore sensitivity to sorafenib (73).

EGFR
EGFR/HER3 activation is associated with both primary and
acquired drug resistance (74). The combination of gefitinib,
which can down-regulate EGFR/HER3 expression, with
sorafenib has been shown to increase tumor inhibition and
prevent sorafenib resistance, demonstrating the role of EGFR/
HER3 inhibition in the HCC treatment.

AKT Activation
The sustained action of sorafenib induces AKT activation, which
further leads to resistance of HCC cells to sorafenib. AKT
inhibition reverses sorafenib resistance by converting
protective cellular autophagy into a cell-death mechanism.
GDC0068, a new ATP competitive inhibitor of pan-AKT, acts
synergistically with sorafenib in inhibiting the development of
sorafenib-resistant HCC. Moreover, the combination of
sorafenib with arsenic trioxide (ATO), an AKT-inhibited anti-
cancer agent, enhances the anticancer activity of sorafenib
against HCC (75). Furthermore, it has been found that the
application of hepatocyte growth factor (HGF) in sorafenib
treated HCC cells can activate the proto-oncogene MET, re-
stimulate the downstream AKT and extracellular regulated
protein kinases (ERK1/2) pathways, therefore inhibiting
apoptosis. HCC cells treated by HGF can also induce the
expression of early growth response protein (EGR1), which has
strong correlation with sorafenib resistance. Taken together,
HGF induced MET activation promotes the sorafenib
resistance in HCC via AKT/ERK1/2-EGR1 pathway (76).

Hypoxia-Inducible Factors (HIF)
In patients continuously exposed to sorafenib, the anti-
angiogenic effect of sorafenib causes a decrease in
microvascular density, leading to intracellular hypoxia and
favoring the selection of resistant cells adapted to the hypoxic
microenvironment. Clinical studies suggest that overexpression
of HIF-1 and HIF-2 in HCC patients is a reliable marker of poor
prognosis (77). Therefore, sorafenib combined with HIF
inhibitor therapy is a potential approach to overcome sorafenib
resistance. It is important to note that HIF-1 and HIF-2
compensate for each other, and the removal of one HIF-
subtype increases the expression of the other HIF-subtype.
Hence, targeting both HIF-1 and HIF-2 is more effective.

Metallothionein (MT) -1G
Sorafenib activates the transcription factor nuclear factor
erythrocyte 2-related factor 2, thus inducing the MT-1G
expression. Downregulation of MT-1G was shown to improve
the anticancer action of sorafenib both in vitro and in vivo.
Knockdown of MT-1G by RNA interference increased the
glutathione consumption and the lipid peroxidation, resulting
in sorafenib-induced ferroptosis, which is a novel approach to
regulate cell death (78). In summary, MT-1G may be a key
regulator of sorafenib-resistant cells in human HCC and is a
hopeful therapeutic target.
July 2021 | Volume 11 | Article 696705
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Cancer Stem Cells (CSC)
Tumorigenicity and chemoresistance of tumor cells can be
increased by the acquisition of CSC characteristics. CD13,
CD24, CD44, CD90, CD133 and EpCAM are potential
markers for the enrichment of CSCs in HCC. CD133+ cells
activate the AKT/PKB axis and Bcl-2 cell survival response, thus
promoting chemoresistance (79). CD44 also contributes to the
formation of sorafenib resistance and can serve as a predictor of
sorafenib efficacy. Moreover, Nanog is a gene essential for self-
renewal of CSCs in HCC. It has been shown that in sorafenib-
resistant HCC cells, Nanog expression is promoted by the
destabilization and significant downregulation of the
transactivation response element RNA binding protein 2, as a
result of autophagy-lysosomal protein hydrolysis, promoting the
sorafenib resistance of HCC cells (80). In addition, the
interaction between cyclin-dependent kinases 1 (CDK1) and
the pluripotent transcription factor octamer binding
transcription factor 4 has a crucial action in differentiation of
embryonic stem cells. It has revealed that blocking the CDK1/
PDK1/b-catenin pathway by the CDK1 inhibitor RO3306
improves the therapeutic efficacy of sorafenib in a preclinical
HCC model (81). Overall, CSCs-based studies are expected to
reverse resistance to sorafenib and improve its efficacy.

Activator of Thyroid and Retinoic Acid
Receptors (ACTR)
ACTR is a crucial oncogenic factor in HCC. It is also significantly
elevated in sorafenib-resistant HCC cells in mice transplant
models of HCC, increasing sorafenib resistance by modulating
the Warburg effect. Cancer cells produce energy mainly through
glycolysis. ACTR not only interacts with c-myc, a key regulator
of the Warburg effect, to promote glycolysis to occur, but also
promotes glucose uptake, ATP and lactate production, decreases
extracellular acidification and oxygen consumption, thus
inhibiting sorafenib sensitivity. Knockdown of ACTR decreases
the expression of glycolytic enzyme and is associated with a
better prognosis (17). Hence, ACTR is expected to be a
prospective target for reversing sorafenib resistance.

Autophagy
Autophagy exerts a protective effect on tumor cells, and the
EFGR/Ras/MAPK pathway, mammalian target of rapamycin
(mTOR) pathway, p53 pathway and HIF-1 signaling pathway
are several pathways that regulate autophagy in cancer cells (82).
Inactivation of the mTOR pathway has been reported to induce
resistance to sorafenib in HCC cells. P70S6K and 4E-BP1 are
downstream proteins of mTORC1, and their activity can be
inhibited by sorafenib in turn (83). The main upstream inducer
of mTORC1 is the PI3K/AKT pathway, and inhibition of AKT
reverses the acquired sorafenib resistance in HCC patients,
converting protective autophagy into cell death. Moreover,
PSMD10 translocates into nucleus and binds to heat shock
transcription factor (HSF1), initiating ATG7 transcription,
increasing autophagy, and promoting sorafenib resistance. This
is a hallmark of poor outcome in HCC patients (84). In addition,
N6-methyladenosine (M6A)-modified FoxO3 mRNA is
downregulated in hypoxic environments, activating autophagy
Frontiers in Oncology | www.frontiersin.org 5
and promoting sorafenib resistance during HCC treatment (85).
In conclusion, autophagy is a self-protective mode of HCC cells
and a facilitator of sorafenib resistance. Regulating the upstream
and downstream pathways of autophagy and converting
protective autophagy into apoptosis may be effective
approaches for HCC therapy.

Epithelial-Mesenchymal Transition (EMT)
EMT is known to be a key process in cancer development,
promoting cell migration, and is also associated with resistance
to sorafenib. There may be a negative correlation between EMT
and the efficacy of sorafenib (86). Galactosin-1 induces EMT in
HCC through activating FAK/PI3K/AKT signaling pathway to
enhance sorafenib resistance and is a biomarker for predicting
sorafenib sensitivity. Sorafenib inhibits the occurrence of EMT,
which in turn impairs the efficacy of sorafenib. It has been shown
that zinc finger protein 703 may be a promising target for cancer
therapy by directly binding to and transfecting the CLDN4
promoter to activate the expression of CLDN4, inducing EMT
and inhibiting the sensitivity of HCC cells to sorafenib (87).

The above-mentioned resistance mechanisms of sorafenib
can help us to have a deeper understanding of the reasons for
the poor chemotherapeutic effect of HCC, and to explore more
targets to reverse the resistance of sorafenib for better
therapeutic effect.
MiRNAs AND SORAFENIB RESISTANCE
OF HCC

miRNAs are a category of short non-coding RNAs (about 20nt)
that bind to the 3’-untranslated region (3’ UTR) of mRNA, act as
mRNA sponges to absorb mRNA and regulate the expression
levels of downstream genes, participate in several physiological
processes, influence cancer-associated pathways, and also
contribute to the formation of the resistance to sorafenib
(Table 1) (83).

Acting on Autophagy
MiR-423-5p is closely associated with treatment sensitivity.
Statistical analysis revealed an increase in secretion of miR423-
5p in 75% of patients after 6 months of sorafenib treatment.
Further experiments has showed that the proportion of cells in
the S phase of the cell cycle in HCC cells is markedly elevated
after transfection with miR-423-5p (10). miR-423-5p has been
revealed to promote autophagy and ultimately induce drug
resistance by targeting growth arrest and DNA damage
inducing b protein (GADD45B) (11). miR-142-3p is a tumor
inhibitor miRNA that suppresses HCC cell invasion and
migration by repressing the expression of the high mobility
histone B1 (HMGB1) gene (12). It has also been shown to be
an autophagy-regulating miRNA. miR-142-3p upregulation can
decrease autophagy by targeting autophagy-related 5 (ATG5)
and autophagy-related 16-like 1 (ATG16L1), thereby increasing
the sensitivity of HCC cells to sorafenib and enhancing the
apoptosis induced by sorafenib. PU.1 transcription factor can
July 2021 | Volume 11 | Article 696705
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up-regulate the miR-142-3p expression. Targeting the PU.1-
miR-142-3p-ATG5/ATG16L1 axis may be an effective
therapeutic strategy to reverse cytoprotective autophagy and
overcome sorafenib resistance (12, 88).

Acting on Apoptosis
Overexpression of miR-221 activates caspase-3 thereby
reversing the resistance of HCC cells to sorafenib and
inducing apoptosis in HCC cells. In sorafenib-resistant cells,
the activation of insulin-like growth factor 1 receptor (IGF-
1R) triggered downstream EGFR pathway RAS/RAF/ERK
signaling, resulting in the reduced miR-221 expression and
poor therapeutic efficacy (14). Besides, miR−223 targets FBW7
to enhance the resistance of HCC cells to sorafenib and
inhibit apoptosis. In addition, liver tumor-initiating cells (T-
ICs) play a vital part in the occurrence, development, drug
resistance and recurrence of HCC (32). In liver T-ICs, miR-96
down-regulates TP53INP1, inhibits HCC cell apoptosis, and
promotes HCC cell resistance to sorafenib (34). Furthermore,
enhancers of zeste 2 multimeric complex 2 subunit (EZH2)
inhibit HCC cell apoptosis and promote sorafenib resistance
by suppressing the expression of miR-101, miR-122, miR-125b
and miR-139 thereby regulating insulin-like growth factor
1 receptor (IGF1R) levels (39). In HBV-positive HCC cells,
MCL-1 level is elevated and miR-193b is markedly down-
regulated. Upregulation of miR-193b can restore cellular
sensitivity to sorafenib and promote sorafenib-induced
apoptosis (40). Moreover, NRF-2/miR-1 axis-regulated
programmed death ligand-1 (PD-L1) inhibits apoptosis of
HCC cells, enhances sorafenib resistance and promotes
tumor progression (39).

Acting on AKT Activation
MiR-30a-5p expression is decreased in HCC tissues, inhibits
the PI3K/AKT axis, targets CLCF1, and then increases the
sensitivity of HCC cells to sorafenib (20). MiR-375, which is
also down-regulated in HCC, inhibits AKT activation by
targeting AEG-1, suppresses tumor angiogenesis in HCC, and
reverses the sorafenib resistance of HCC (31). miR-486-3p,
similarly down-regulated, activates AKT by targeting FGFR4
and EGFR, leading to the sorafenib resistance in HCC patients
(17). Down-regulation of miR-222 significantly inhibits the
proliferation, migration and invasion of HepG2 cells (human
hepatocellular cancer cell line, as HCC model) (89) and induces
apoptosis. It regulates the expression of phosphorylated PI3K
and AKT, thereby enhancing the sorafenib resistance of HCC
(25). Moreover, miR-552 promotes hepatic T-IC amplification
and decreases the sensitivity of HCC cells to sorafenib. It acts by
targeting PTEN to affect AKT activation (22). Furthermore,
exosome miR-21 modulates the TETS/PTENP1/PTEN pathway
to facilitate the development of HCC, and also inhibits
autophagy-mediated sorafenib resistance via the PTEN/AKT
pathway (29, 30). Besides, miR-494 is related to stem cell
phenotypes and promotes the progression of HCC. It
enhances the sorafenib resistance of HCC cells via targeting
PTEN, a crucial protein that inhibits the activation of
AKT (35).
Frontiers in Oncology | www.frontiersin.org 6
Other Pathways
MiR-30e-3p affects tumor development via the MDM2/TP53
axis, and EpCAM, PTEN and P27 are its additional targets that
together exert miR-30e-3p’s role in promoting tumor
malignancy. In sorafenib-treated HCC patients, increased
circulating miR-30e-3p levels predict the progression of
sorafenib resistance (16). Likewise, miR-181a promote
sorafenib resistance. Studies have reported that HepG2 cells are
more sensitive to sorafenib than Hep3B cells and that miR-181a
expression levels are lower in HepG2 cells. miR-181a directly
targets and reduces the expression of MAPK signaling factor,
RASSF1, an inhibitor of sorafenib resistance, thereby reducing
sorafenib efficacy (24). Furthermore, miR-216a/217 expression
level is increased in HCC and induces EMT via targeting PTEN
and Smad7, leading to sorafenib resistance and cancer
recurrence (43).

The above are miRNAs that promote sorafenib resistance,
miRNAs that enhance sorafenib sensitivity is introduced in this
paragraph. First, inhibitors of EZH2 can target Notch1 through
Notch1-related miRNAs, such as miR-21-5p, miR-26a-1-5p, and
act on the corresponding HCC stem cells to reduce sorafenib
resistance (37). Second, in most HCC patients, miR-122 is down-
regulated. It has been shown that miR-122 targets SERPINB3
and its low expression is related to SERPINB3 activity and CSC
phenotype in HCC cells. Moreover, miR-122 have a crucial
action in inhibiting sorafenib resistance by regulating the
expression of HIF-2a (18). Third, miR-1226-3p is lowly
expressed in HCC cells, and it promotes the sensitivity of HCC
cells to sorafenib by downregulating DUSP4 and affecting the
JNK-Bcl-2 pathway (21). Fourth, miR-124 acts on CAV1 to
regulate HCC CSC proliferation, thereby inhibiting sorafenib
resistance (23). Fifth, a study has found that LXR increases the
sensitivity of sorafenib in HCC by activating miR-378a
transcription. MiR-378a is downregulated in HCC, it targets
IGF-1R and inhibits EMT, thereby suppressing sorafenib
resistance (26). Sixth, miR-744 affects the expression of PAX2,
thus inhibiting the multiplication of HCC cells and sorafenib
resistance (27). Seventh, miR-374b inhibits the progression of
HCC and re-sensitizes HCC cells to sorafenib through
antagonizing the PKM2-related glycolysis pathways (28).
Eighth, downregulation of miR-145-5p and promoter
hypomethylation mediated HDAC11 overexpression affects the
metabolism of HCC cells and tissues, and facilitates the
metastasis of HCC cells and their resistance to sorafenib (33).
Ninth, miR-3609 retards the sorafenib clearance in HCC cells
through regulating EPAS-1 and inhibiting activation of the
gestation hormone X receptor pathway (38). Last but not least,
miR-137 upregulation reverses CSC phenotype and sorafenib
resistance in HCC by degrading ANT2 (42).
LncRNAs AND SORAFENIB RESISTANCE
OF HCC

LncRNA is a class of RNAs, over 200 nucleotides in length, with
no protein-coding action. It can not only act as a sponge for a
July 2021 | Volume 11 | Article 696705
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variety of miRNAs, but also interact with one or more RNA-
binding proteins (RBPs) to be involved in multiple biological
processes by regulating cell proliferation, apoptosis, metastasis,
and invasion (90, 91). In recent years, its effects on the
occurrence, migration, prognosis, recurrence and chemoresistance
of cancers have become a hotspot of research (Table 2).

Acting on Autophagy
LncHANR expression is increased in HCC. It serves as a sponge for
miR-29b ang inhibits its expression, thus affecting the expression of
autophagy-related protein 9A antibody (ATG9A), the target
protein of miR-29b, and ultimately enhancing autophagy-
associated sorafenib resistance (45). LncNEAT1 can promote the
development of multiple cancers including HCC. lncNEAT1 serves
as a sponge for miR-204, upregulates ATG3 expression, a target
gene of miR-204, promotes autophagy, and facilitates the sorafenib
resistance of HCC (57).

Acting on AKT Activation
LncSNHG1 is remarkably upregulated in HCC tissues and cells,
promoting HCC invasion and leading to poor patient prognosis.
Further mechanistic studies revealed that sorafenib can induce
miR-21 translocation to the nucleus, which promotes lncSNHG1
expression, thereby upregulating solute carrier family 3 member
2 (SLC3A2) leading to AKT activation and ultimately to
sorafenib resistance (92). Conversely, downregulation of
SNHG1 enhances the effect of sorafenib. LncNEAT1, which
also plays a pro-oncogenic role, is significantly increased in
HCC cells. It inhibits the efficacy of sorafenib by targeting
miR-149-5p and regulating the miR-149-5p/AKT1 axis (47).
Furthermore, NEAT1 inhibits the sensitivity of HCC cells to
sorafenib via modulating miR-335/c-Met (58). In addition,
lncHEIH is also markedly upregulated in sorafenib-resistant
HCC cells. HEIH acts as a sponge for miR-98-5p to activate
the PI3K/AKT pathway, thereby enhancing sorafenib resistance
(48). Besides, lncTTN-AS1 expression is upregulated in HCC
cells, and lncTTN-AS1 acts as a sponge for miR-16-5p to inhibit
its expression, thereby upregulating cyclinE1, the target protein
of miR-16-5p, and activating the PTEM/AKT signaling pathway,
ultimately leading to resistance of HCC cells to sorafenib (93).

Acting on Apoptosis
LncFAM225A is up-regulated in HCC tissues and sorafenib-
resistant HepG2/SOR cells, and inhibition of FAM225A
significantly inhibits the resistance of HepG2/SOR cells to
sorafenib. Further studies have revealed that FAM225A
interacts with miR-130a-5p to negatively regulate CNG1
expression, thereby inhibiting apoptosis and promoting
sorafenib resistance of HCC cells (46). Besides, lncKCNQ1OT1
has been revealed to correlate with the sorafenib resistance and
immune escape of HCC cells. In HCC tissues resistant to
sorafenib, KCNQ1OT1 serves as a ceRNA for miR-506 and
elevates the expression of PD-L1, leading to immune escape of
HCC cells. Knockdown of KCNQ1OT1 could alter the tumor
microenvironment, inhibit T-cell apoptosis and promote HCC
cell apoptosis, thus inhibiting HCC cell resistance to sorafenib
and cell metastasis (51). Furthermore, by restraining miR-335
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expression, lncNCNEAT1 suppresses c-Met-AKT signaling
pathway-mediated sorafenib resistance of HCC cells. In
contrast, upregulation of miR-335 or knockdown of c-Met
resists the antiapoptotic activity of NEAT1 in HCC cells (58).

Acting on EMT
LncSNHG16 is closely associated with HCC invasiveness and poor
outcome of patients, and its expression is dramatically increased in
HCC cells. Additionally, SNHG16 can serve as an endogenous
sponge of miR-140-5p and up-regulate flap endonuclease 1 (FeN1),
an oncogene in a range of cancers, which is also involved in the
pathological process of HCC, thereby reducing the sensitivity of
HCC cells to sorafenib and affecting the therapeutic effect (49).
Previous study has confirmed that silencing FeN1 restrains the
EMT of HCC cells, thereby suppressing HCC progression and
metastasis (50). In summary, SNHG16 regulates the EMT of HCC
cells through affecting the miR-140-5p/FeN1 axis, thereby
promoting the sorafenib resistance of HCC.

The lncMALAT1 expression is increased in sorafenib-resistant
HCC tissues, and enhances the multiplication, migration and EMT
of HCC cells, thus affecting the development and progression of
HCC. It has shown that MALAT1 as a sponge for miR-140-5p and
promotes the expression of the serine/threonine protein kinase
Aurora-A, which maintains genomic integrity and participate
mitosis. Up-regulated Aurora-A is related to poor outcome of
HCC patients and induces a variety of malignant phenotypes in
HCC (52, 53). In addition, lncH19 expression is negatively related
to sensitivity of HCC cells to sorafenib. Knockdown of lncH19 can
improve the sensitivity of HCC cells to sorafenib by inhibiting
EMT (54). Notably, H19 can upregulate the expression of miR-675
to promote EMT. What’s more, through serving as a sponge for
miR-182-5p, lncPOIR inhibits the expression of miR-182-5p and
promotes EMT, thereby suppressing sorafenib sensitivity and
promoting HCC development. Knockdown of lncPOIR reverses
the EMT and the sorafenib resistance of HCC cells (59).

Acting on Other Pathways
It is shown that LncFOXD2-AS1 is significantly reduced in HCC
cells. FOXD2-AS1 affects the transmembrane protein 9 (TMEM9)
by suppressing miR-150-5p expression, thereby reversing sorafenib
resistance in HCC (55). In contrast, lncTUC338 is highly expressed
in HCC cells and tissues. Down-regulation of TUC338 suppresses
tumor growth by increasing the expression of Rasal1, while
enhancing the sensitivity of HCC cells to sorafenib via inhibiting
gluconeogenesis (60, 61). Knockdown of lncVLDLR reduces the
expression of ABCG2, an important transporter, thereby
restraining drug efflux and enhancing sensitivity of HCC cells to
sorafenib. lncVLDLR may be a novel target to improve the efficacy
of sorafenib (62).
CircRNAs AND SORAFENIB RESISTANCE
OF HCC

CircRNAs are a specific category of ncRNAs and a latest research
hotspot in the field of RNA. Unlike linear RNAs, circRNAs, with
a closed loop structure, cannot be sheared by RNA exonucleases
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and are more stably expressed and less susceptible to
degradation. They widely correlate with the regulation of cell
multiplication, polarization and apoptosis in vivo, and also have
significant effects on the development of various diseases,
particularly on the pathogenesis, diagnosis, treatment and
prognosis of tumors (94). However, studies on the role of
circRNAs in the sorafenib resistance of HCC are still in the
infancy. It has been found 582 differentially expressed circRNAs
in HCC cells resistant to sorafenib (HUH7-S), of which 272 were
up-regulated and 310 were down-regulated, with a statistically
significant difference (0.05) (95). This suggests that circRNAs
with different expression levels may exert a crucial role in
sorafenib resistance of HCC.

N6-methyladenosine (M6A)-modified circRNA-SORE is
expressed highly in sorafenib-resistant HCC cells. Further studies
have shown that circRNA-SORE can induce EMT through serving
as a sponge for miR-103a-2-5p and miR-660-3p to competitively
activate Wnt/b-catenin pathway, thereby inducing sorafenib
resistance in HCC cells (15). Furthermore, circRNA-SORE can
bind to YBX1, a major oncogenic protein in cytoplasmic matrix,
thereby preventing YBX1 from interacting with E3 ubiquitin ligase
PRP19, blocking PRP19-mediated degradation of YBX1, stabilizing
YBX1, and ultimately mediating sorafenib resistance in HCC cells
and poor prognosis of patients (96).

CirCFN11 expression is increased in HCC cells, and its
overexpression promotes the aggressiveness of HCC and is an
independent risk factor for prognosis of HCC patients. It acts as a
sponge of miR-1205 to upregulate the expression of oncogene E2F1
and finally mediates the resistance of HCC cells to sorafenib (97).

Moreover, circFoxM1, a newly discovered circRNA,
significantly inhibits HCC development and enhances sorafenib
efficacy in vitro. Interestingly, its expression is up-regulated in
sorafenib-resistant HCC cells, suggesting that circFoxM1may affect
the development of HCC and sorafenib resistance, respectively,
through different mechanisms. CircFOXM1 can serve as a sponge
for miR-1324 and increase methyl-CpG-binding protein 2
(MeCP2) expression, thereby regulating sorafenib resistance in
HCC. In addition, overexpression of miR-1324 reverses
circFoxM1-induced sorafenib resistance and increases MeCP2
expression. This further confirms that circFOXM1 contribute to
the regulation of sorafenib sensitivity in HCC cells through the
miR-1324/MeCP2 axis (95).
CONCLUSIONS AND EXPECTATIONS

A growing number of ncRNAs have been identified to play
critical regulatory roles in sorafenib resistance of HCC. MiRNAs
exert regulatory effects by binding to the 3’-UTR of target
mRNAs to regulate downstream proteins, while lncRNAs and
circRNAs are mainly involved in modulating the resistance of
sorafenib as sponges of miRNAs.

The underlying mechanisms of the role of sorafenib
resistance-associated ncRNAs in HCC are summarized in
Figure 1. Targeting these dysregulated ncRNAs may be a
promising approach to reverse sorafenib resistance in HCC.
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Delivery of tumor suppressor ncRNAs directly or via suitable
vectors to target cells to exogenously increase their expression, or
designing small interfering RNA (siRNA) or short hairpin RNA
(shRNA) to knock down oncogenic ncRNAs has been shown to
be adaptable in reversing resistance to sorafenib in HCC patients.
For example, gold nanoparticles-loaded anti-miR221 has been
shown to enhance the effect of sorafenib by inhibiting HCC cell
proliferation via inactivating miR-221/p27/DNMT1 pathway. In
addition, the treatment with the combination of nanoparticles-
loaded anti-miR221 and sorafenib is more efficient than with
sorafenib alone (98). It has also been reported that miR-375 and
sorafenib can be co-loaded into calcium carbonate nanoparticles
with lipid coating to inhibit the resistance of sorafenib via
exerting the anti-autophagic effect of miR-375, thus enhancing
the anti-tumor effect of sorafenib (99). Matrine combined with
sorafenib treatment also inhibits proliferation of HCC cells
synergistically, partially by suppressing miRNA-21 expression
and then inducing PTEN (100). Hence, targeting ncRNAs in
combination with sorafenib against HCC is expected to conquer
sorafenib resistance and represent a promising option for
patients in advanced stage of HCC resistant to sorafenib.
However, it is still a challenge to select key target ncRNAs
from numerous candidate ncRNAs. In order to develop
ncRNA-based therapeutics to benefit HCC patients, further
additional translational research and clinical trials are warrant.
We believe that targeting ncRNAs is promising to eventually
overcome sorafenib resistance thus improving outcome of
advanced HCC patients.

It is worth noting that the development of more reliable
delivery systems is urgently required to improve the biological
stability of ncRNAs and to improve their uptake, penetration,
transport, distribution and retention. Meng et al. constructed 50
nm mesoporous silica nanoparticles to transport doxorubicin
and Pgp siRNA, which are protected via a polyethyleneimine-
polyethylene glycol copolymer, resulting in an 8% increase in
doxorubicin and Pgp siRNA permeability by 8%, ultimately
reversing the resistance of breast cancer to doxorubicin. This
practice provides a rationale for ncRNAs-based therapy
combined with sorafenib to against sorafenib resistance in
HCC and improve patients’ prognosis (101). Development of
suitable transport vehicles for ncRNA/siRNA/shRNA and
sorafenib is important to improve combination therapy to
reverse sorafenib resistance and improve sorafenib efficacy.
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