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Abstract: Health authorities carefully evaluate any change in the batch manufacturing process
of a drug before and after regulatory approval. In the absence of an adequate in vitro–in vivo
correlation (Level A IVIVC), an in vivo bioequivalence (BE) study is frequently required, increasing
the cost and time of drug development. This study focused on developing a Level A IVIVC for
progesterone vaginal rings (PVRs), a dosage form designed for the continuous delivery in vivo.
The pharmacokinetics (PK) of four batches of rings charged with 125, 375, 750 and 1500 mg of
progesterone and characterized by different in vitro release rates were evaluated in two clinical
studies. In vivo serum concentrations and in vitro release profiles were used to develop a population
IVIVC progesterone ring (P-ring) model through a direct differential-equation-based method and
a nonlinear-mixed-effect approach. The in vivo release, Rvivo(t), was predicted from the in vitro
profile through a nonlinear relationship. Rvivo(t) was used as the input of a compartmental PK
model describing the in vivo serum concentration dynamics of progesterone. The proposed IVIVC
P-ring model was able to correctly predict the in vivo concentration–time profiles of progesterone
starting from the in vitro PVR release profiles. Its internal and external predictability was carefully
evaluated considering the FDA acceptance criteria for IVIVC assessment of extended-release oral
drugs. Obtained results justified the use of the in vitro release testing in lieu of clinical studies for
the BE assessment of any new PVRs batches. Finally, the possible use of the developed population
IVIVC model as a simulator of virtual BE trials was explored through a case study.

Keywords: in vitro–in vivo correlation; bioequivalence; vaginal rings; log-acting release; progesterone

1. Introduction

Changes in the formulation composition, as well as in the batch manufacturing process,
equipment, and site, are commonplace during various stages of drug development or after
its regulatory approval. If one or more of these changes occur, in vivo bioequivalence (BE)
studies in humans are required, increasing the development costs and time to market.
An established in vitro–in vivo correlation (IVIVC) could be used to support biowaivers,
thereby largely reducing the regulatory burden, leading to time and cost savings [1,2].

IVIVC has been defined by the U.S. Food and Drug Administration (FDA) as a pre-
dictive mathematical model describing the relationship between an in vitro property of
a dosage form (e.g., drug dissolution or release profile) and its in vivo response (e.g.,
concentration–time profile) [3]. IVIVC can be categorized into five different levels: Levels
A, B, C, D, and multiple C. The Level A IVIVC, defined as a point-to-point relationship
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between the in vitro and in vivo profiles of at least three formulations or batches charac-
terized by different release rates, is considered the most informative and is required to
obtain a biowaiver. Indeed, through the successful development and application of an
adequate Level A IVIVC, the in vivo plasma concentration of a drug can be predicted
from the in vitro release data that can be used as a surrogate for the in vivo bioequivalence
assessment.

In 1997, the FDA published a regulatory guidance related to the development, evalua-
tion, and applications of IVIVC for extended-release (ER) oral dosage forms [3]. This guide-
line, in agreement with most of the older literature, presented the so-called deconvolution-
and convolution-based methods as the standard IVIVC technique [4,5], although the de-
velopment of alternative approaches was encouraged. Since then, the establishment and
application of IVIVC have increased and various alternatives to the conventional IVIVC
approaches have been introduced [2,6–8]. In few but extremely relevant examples, the
IVIVC was developed using nonlinear mixed-effect models [9] or physiologically based
pharmacokinetic (PBPK) models [10–12], in the latter cases frequently implemented in
closed software such as GastroPlusTM. However, from a recent screenshot of the IVIVC
approaches applied to the ER oral drug, it clearly emerged that, even with their promising
potential and advantages, the use of these mathematical methods still requires consolida-
tion and harmonization [7].

If no established consensus about approaches to implement an IVIVC for ER oral
drugs has been reached, methodologies for ER nonoral dosage forms (e.g., parenteral
microspheres and implants, ophthalmic compound, intra-muscular suspensions, as well as
transdermal and vaginal products) are still at the very early stages of development [2,13].
To date, there is no regulatory IVIVC guidance for ER nonoral products, and only few study
reports are present in the literature. In these examples, the same principles to develop
an IVIVC for ER oral products [3] have been applied to dosage forms and the route of
administration other than oral [14–16].

The vagina is a promising site of systemic and local drug delivery and represents
an interesting administration route for compounds with poor oral bioavailability [17–20].
Between the different types of vaginal drug delivery systems currently available on the
market [21–24], intravaginal rings (IVRs) offer the possibility of a continuous and controlled
drug release over an extended time period of several weeks. IVRs are generally used for
the steroid administration in hormone replacement therapy or birth control, but more
recently, they have witnessed a surge of new interest in the context of the HIV-prevention
strategies [25]. Even with the increasing number of marketed products and the numerous
IVR formulations that are currently in development, no regulatory guidance on the release
tests or IVIVC assessment for vaginal rings are available in the United States, Europe, or
Japan. This lack of established guidance and standard procedures makes the development
of IVIVC for IVRs, already complex due to the unique anatomy and physiology of the
vagina, even more challenging.

In this context, the aim of the present work was to establish a Level A IVIVC between
the in vitro release of progesterone vaginal rings (PVRs) and the corresponding serum
concentration profiles observed during clinical studies. The proposed IVIVC model was
defined through a direct differential equation-based model that, together with the adoption
of a nonlinear mixed-effect approach, allowed us to handle the complex dynamics and the
variability affecting the in vivo vaginal absorption. The internal and external predictability
of the model was carefully evaluated following the recommendations for the Level A IVIVC
assessment reported in the regulatory guidance for ER oral drugs [3]. The established
IVIVC model resulted in the ability to correctly predict the in vivo concentration–time
profiles of PVRs from their respective in vitro release profiles, allowing the use of the
in vitro testing as a surrogate for bioequivalence studies testing any new PVR batches
(scale-up or post-approval changes). Finally, the possible use of the developed population
IVIVC model as a simulator of virtual bioequivalence trials was investigated through a
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case study. To this aim, estimates of the model-expected in vivo relative bioavailability of
two tested PVR batches were reported.

2. Materials and Methods
2.1. Experimental Methods
2.1.1. Drug Product

ITFE-2068 is an intravaginal ring manufactured by ITF Research Pharma S.L.U and is
intended for luteal support in Assisted Reproduction Techniques. The ring is a matrix-type
reservoir, composed exclusively of silicone and natural progesterone (P), and is designed for
the continuous delivery of progesterone for 14 days. All the rings have identical dimensions
(58 and 47 mm of external and internal diameter, respectively) and total mass (4.4 g).

2.1.2. In Vitro Release Data

For the in vitro progesterone release determination, individual rings were suspended
in glass bottles containing 250 mL of isopropanol/water (60/40). The bottles were in-
troduced in an orbital incubator shaker at 37 ◦C and agitated at 120 r.p.m. The bottles
were sampled at least every 24 h for 15 days with medium reposition. Progesterone was
measured with a validated UPLC method using an Acquity HSS C18 1.8 µm: 2.1 × 50 mm
column and water/acetonitrile (30/70) as a mobile phase (volume of injection 0.6 µL, flow
0.4 mL/min; column temperature: 30 ◦C).

Time courses from 24 up to 360 h of the accumulated amount of progesterone released
in vitro were available at different dose levels and batches. For rings charged with 125 and
375 mg of progesterone, additional early sampling timepoints (e.g., 1, 2, 4, 6, 7, 8 h) were
considered. Ring batches A–D were characterized by a different release rate depending
on the charged dose of progesterone and varying in the range of 44.3–273.1 mg/day1/2

(where the release rates were calculated by Higuchi’s formula for release from matrix [26]).
A summary of the in vitro information is reported in Table 1.

Table 1. Analyzed in vitro release experiments.

Dose Level [mg] Batch N. of Replicates Calculated Release Rate [mg/day1/2]

125 A 12 44.3
375 B 12 91.7
750 C 6 145.4
1500 D 6 273.1

2.1.3. In Vivo Pharmacokinetic and Release Data

Individual serum profiles of progesterone were collected from 46 subjects enrolled in
two clinical studies, ITFE-2068-C1 (n = 30) and ITFE-2068-C1b (n = 16). These were phase
I–II single-center, randomized, active-controlled, parallel-group, dose-response clinical
trials with the objectives of evaluating the pharmacokinetic (PK), pharmacodynamic, and
tolerability profile of PVRs in healthy premenopausal female volunteers. Moreover, they
aimed to find the minimum efficacious dose able to maintain an adequate pregestational
endometrial transformation during 14 days. Therefore, based on the in vitro release data,
three doses (1500, 750, and 375 mg) able to release progesterone for at least 14 days were
selected: the 1500 mg dose level was close to the highest progesterone amount compatible
with an adequate silicone polymerization; the other two doses (750 and 375 mg) represented
1/2 and 1/4 of the highest dose. To clearly identify the lowest effective dose, a fourth dose
(125 mg), expected to be nonefficacious, was also tested in the study ITFE-2068-C1b. This
dose was selected based on the in vitro release profile, which showed that it could sustain
progesterone release only for one week, after which progesterone was exhausted.

In both the studies, participants were treated with leuprorelin acetate (Ginecrin Depot
3.75 mg, AbbVie Spain), a GnRH agonist, to suppress all endogenous progesterone and
estradiol production. Endometrial proliferation was induced with B-estradiol patches
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(Estradot 75 µg/d, Novartis Farmaceutica) and, after that, ITFE-2068 progesterone rings
from different batches and charged with different dose levels were inserted to induce
endometrial transformation.

An information summary of the treatment groups composing the clinical studies is
reported in Table 2.

Table 2. Information summary of the considered clinical studies.

Clinical Trial Dose [mg] Batch N. of Subjects

ITFE-2068-C1b 125 A 8
ITFE-2068-C1b 375 B 8
ITFE-2068-C1 375 B 10
ITFE-2068-C1 750 C 10
ITFE-2068-C1 1500 D 10

For the PK analysis, serum progesterone was measured at 0.5, 1, 2, 3, 4, 6, 8, 12,
18, 24, 36, 48, 72, 96, 120, 144, 168, 216, 264, 312, 380, and 408 h post-dosing. Serum
progesterone levels were measured using an IMMUNLITE 2000 automated system (Siemens
Medical solutions Diagnostics), based on a solid-phase-competitive chemiluminescent
immunoassay assay. The assay was previously validated following current bioanalytical
method validation guidelines. GnRH agonist treatment produced an almost complete
suppression of endogenous production. Indeed, before ring insertion, the median baseline
progesterone serum concentration was 0.387 ng/mL (range 0–0.84 ng/mL) to compare with
expected values of 5–50 ng/mL in women during mid-cycle. All values were corrected by
subtracting the respective baseline values.

After 18+/−1 days, rings were removed. For each subject, the amount of progesterone
still present in the ring after removal from the vagina was measured. The total amount
of progesterone released within the observation period was assessed by subtracting this
quantity from the charged dose.

The studies were conducted following the international recommendations for clinical
research gathered in the declaration of Helsinki and its update, the ICH Harmonized
tripartite Guidelines for Good Clinical Practice (CPMP/ICH/135/95), guidelines of the
Spanish Ministry of Health (RD 223/2004), as well as the Directive 2001/20/EC. Human
investigations were performed after approval by the Spanish Drug Agency and the Ethical
Committee for Clinical Research of the ‘Hospital Universitario La Paz’ in Madrid.

2.2. IVIVC Progesterone Ring Model Building

A direct, differential-equation-based method was applied to establish the IVIVC [9].
This approach allowed us to directly relate the time profiles of the in vitro releases with
the in vivo serum concentration profiles by using a multi-compartment PK model and the
corresponding system of differential equations.

The development of the IVIVC progesterone ring (IVIVC P-ring) model was done
in three steps. First, a model for the in vitro progesterone release from the ring, Rvitro(t),
was defined based only on the in vitro release tests performed for batches A–D at the
different dose levels. Second, a model predicting the in vivo release, Rvivo(t), from the
in vitro profile (Rvitro(t)) was developed through the introduction of an inhibitory function
accounting for the limited solubility of progesterone in the finite volume of vaginal fluids.
Finally, a population PK model describing the entire in vivo serum concentration profiles
of progesterone was built using a compartmental PK model whose input was the predicted
in vivo release Rvivo(t).

2.2.1. In Vitro Release Model

The in vitro progesterone profiles were described by an immediate release (burst
phase) followed by two exponential release phases (a faster and a slower one). The time-
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profile of the in vitro cumulative progesterone release (Pvitro(t)) was represented by the
relationship reported in Equation (1):

Pvitro(t) = P0 + A
(
1− e−αt)+ B

(
1− e−βt

)
(1)

where the model parameters were the amount of progesterone immediately released, P0
[mg]; the fractions of the fast, A [mg], and of the slow in vitro release, B = DOSE− P0 − A
[mg]; and the fast and the slow in vitro rates, α and β [1/h], respectively.

The in vitro release rate, Rvitro(t), was the first derivative of the cumulative proges-
terone release, Pvitro(t):

Rvitro(t) = P0δ(t) + Aαe−αt + Bβe−βt, (2)

where δ(t) is the delta Dirac function.
For each dose level, the in vitro model parameters (P0, A, α, and β) were estimated

and the value of B derived. To this aim, Equation (1) modeling Pvitro(t) was identified
against the corresponding experimental data. As the individual in vitro profiles overlapped
almost perfectly, resulting in a very low inter-ring variability (the average %CV is less
than 4% for each dose), for each dose, a unique curve was estimated using a pooled
data approach. Model identification was performed in NONMEM using the first-order
conditional estimation method (FOCE) algorithm and assuming an additive residual
error model (y = f + sd·ε, where y is the measurement, f the model prediction, sd a
coefficient representing the standard deviation, and ε a standardized random variable
normally distributed).

2.2.2. In Vivo Release Model

To define the in vivo release model for the PVRs, the average total amount of released
progesterone at the end of the in vitro release tests and after ring removal at the end of the
in vivo clinical trials were compared (see Table 3 and Figure 1).

Table 3. Comparison between the total amount of released progesterone in vitro and in vivo.

Dose
[mg]

In Vitro (over 15 Days) In Vivo (over 18 Days)

Average Released
Progesterone [mg]

Percentage of Total
Released Progesterone [%]

Average Released
Progesterone [mg]

Percentage of Total
Released Progesterone [%]

125 114 91.20 84.40 67.52
375 346.40 92.37 117.82 31.42
750 582.04 77.61 119.30 15.91

1500 1129.62 75.31 121.00 8.07
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From Table 3 and Figure 1, it was evident that, although the observation times of the
in vivo studies were slightly longer (three days more) compared to the in vitro experiments,
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the amounts of in vivo-released progesterone were definitely smaller than the in vitro ones.
These differences highlighted an inhibition of the in vivo release due to the limited solubility
of progesterone (approximately 12 ng/mL in water; 4 ng/mL in simulated vaginal fluid)
in the finite volume of vaginal fluids (0.5–0.75 mL) [20], suggesting that the saturation of
the vaginal fluids was the rate-controlling mechanism of the in vivo progesterone release
from the rings.

To account for this inhibition, a functional dependence ( f ), connecting the in vivo
release rate with the in vitro profile (Rvitro(t), Equation (2)), was introduced.

Rvivo(t) = f (Rvitro(t)). (3)

In particular, an inhibitory function acting on the rate terms of the in vitro release
model was used to account for the saturated release observed in vivo in comparison to the
in vitro situation. The time-profile of the in vivo release rate of progesterone (Rvivo(t)) was,
thus, represented by the relationship reported in Equation (4):

Rvivo(t) = f (Rvitro(t)) = P0δ(t) + Aαvivoe−αvivot + Bβvivoe−βvivot (4)

where αvivo = α(1/(1 + γ)) and βvivo = β(1/(1 + γ)); the parameters P0 [mg], A [mg], B
[mg], α [1/h], and β [1/h] were the same as those of the in vitro release model; and the
nonnegative parameter γ is the in vitro–in vivo inhibitory factor.

Integrating the in vivo release rate of progesterone, Rvivo(t), the cumulative release,
Pvivo(t), was derived (Equation (5)):

Pvivo(t) = P0 + A
(

1− e−αvivot)
)
+ B

(
1− e−βvivot

)
(5)

To identify the value of the in vitro–in vivo inhibitory factor γ, the model prediction
of the in vivo cumulative release of progesterone at 408 h (Pvivo(408h)) was matched to the
average amount measured after the ring removal at the end of the clinical trial (Pvivo,observed):

Pvivo(408h) = P0 + A
(

1− e−α408h(1/(1+γ))
)
+ B

(
1− e−β408h(1/(1+γ)

)
= Pvivo,observed (6)

For each dose level, a different estimate of γ was obtained by solving Equation (6)
through the uniroot() function implemented in R. In order to describe the dependence of γ
on the dose, a second-order polynomial model was used:

γ = γ(DOSE) = c0 + c1DOSE + c2DOSE2 (7)

where DOSE is the amount of progesterone charged in the ring expressed in mg, and the
coefficients c0, c1 and c2 were estimated using an ordinary least squares approach against
the value previously obtained on the single dose levels.

2.2.3. Pharmacokinetic Model

The time profiles of the progesterone serum concentration were described by a com-
partment PK model receiving as input the in vivo release rate, Rvivo(t).

A two-compartment model with two parallel absorptions, one for the amount of
progesterone immediately released and one for the delayed biexponential release phase,
and a linear elimination was adopted.

A schematic representation of the whole IVIVC P-ring model is reported in Figure 2.
The parameters composing the IVIVC P-ring model are summarized in Table 4 together
with the data needed for the identification.
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Figure 2. Schematic representation of the in vitro–in vivo correlation (IVIVC) P-ring model. From the ring, the proges-
terone is released in the vagina lumen according to the in vivo release rate Rvivo(t). The immediately released amount
P0 (Depotabs,P0

compartment) is absorbed with a constant rate Kabs,P0 ; instead, the remaining released progesterone
(Depotabs compartment) is absorbed with a slower rate Kabs. After absorption, the system distribution of progesterone is
described by a linear two-compartment model.

Table 4. Structural parameters of the IVIVC P-ring model.

Parameter Unit Description Data Used for the Identification

P0 mg Immediate in vitro release In vitro release profile
A mg Fraction of fast in vitro release In vitro release profile
B mg Fraction of slow in vitro release In vitro release profile
α 1/h Fast in vitro release rate In vitro release profile
β 1/h Slow in vitro release rate In vitro release profile

γ - in vitro–in vivo inhibitory factor, defined as
c0 + c1DOSE + c2DOSE2

Average amounts of the in vivo cumulative release
(end of the clinical study)

c0, c1, c2 - Polynomial coefficient of the γ function γ estimates for single dose levels

Kabs,P0 1/h Absorption rate for P0
In vivo serum concentration profile and

cumulative release

Kabs 1/h Absorption rate for the bi-exponential
phase release

In vivo serum concentration profile and
cumulative release

Kel 1/h Elimination rate constant from the
central compartment

In vivo serum concentration profile and
cumulative release

V/F L Apparent volume of distribution In vivo serum concentration profile and
cumulative release

K12 1/h Transfer rate constant from central to
peripheral compartment

In vivo serum concentration profile and
cumulative release

K21 1/h Transfer rate constant from peripheral to
central compartment

In vivo serum concentration profile and
cumulative release

A population approach was developed to describe the individual amounts of released
progesterone and the corresponding serum concentration profiles. In particular, the inter-
individual variability was modeled assuming that the individual parameters were log-
normally distributed, e.g., Pi = θ exp(ηi), where θ is the typical population value and η a
normally distributed random effect with zero mean and variance ω(P). In particular, to
account for the inter-individual variability affecting the in vivo progesterone release, a log-
normally distributed random effect was introduced also on the in vitro–in vivo inhibitory
factor γ :

γi =
(

c0 + c1DOSE + c2DOSE2
)
·exp

(
ηγ,i
)
, (8)

where the coefficients c0, c1 and c2 were fixed to the previous estimates. A typical value (θ)
and variance (ω) of model parameters were estimated simultaneously against individual
serum concentrations and amounts of released progesterone from the two clinical studies
(no inter-study variability was included) at the four dose levels (125, 375, 750 and 1500 mg).
During the model identification, for each dose level, parameters P0, A, B, α and β were
kept fixed to the values obtained on the corresponding in vitro data.

Separate individual error models were used for the serum concentration and the
amount of the in vivo released progesterone; in both the cases, an additive residual error
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model was used. Identification of the population model was performed in NONMEM
using the SAEM algorithm.

2.3. Evaluation of the IVIVC P-Ring Predictability

Once the IVIVC P-ring model had been developed and completely identified, its
ability in predicting the in vivo performance of the PVRs from their in vitro release data
was evaluated, adopting the principles for the Level A IVIVC assessment reported for
ER oral drugs [3]. Based on the FDA regulatory guidance, depending on the intended
application of the IVIVC and on the therapeutic index of the drug products, the internal
and external predictability of the IVIVC model must be evaluated considering an adequate
range of in vitro release rates and manufacturing changes. In accordance with the more
restricting FDA recommendations, the consistency of the IVIVC was tested with the ring
batches A–D that showed different in vitro release rates (Table 1). Moreover, both the
internal and external predictability of the IVIVC P-ring model was evaluated.

2.3.1. Internal Predictability

Assessment of the internal predictability relates to evaluating how the model is
appropriate to describe the data used to define the IVIVC. The approach recommended by
FDA guidance is to predict the entire serum concentration profile from the in vitro release
data and, then, to compute the percentage Prediction Error (PE) on the area under the
curve (AUC) and the maximum concentration level (Cmax):

%PEθ =
θobs − θpred

θobs
× 100, where θ = AUC or Cmax (9)

The acceptance criteria by the FDA are an average absolute PE of 10% or less for AUC
and Cmax with an individual PE for each batch/release rate lower than 15%.

According to FDA guidelines, diagnostic plots evaluating the model predictions of
the serum concentration profiles of progesterone and the absolute PEs on AUC and Cmax,
average and for each batch/dose level, were used to establish the internal predictability of
the IVIVC P-ring model.

2.3.2. External Predictability

The assessment of the external predictability relates to how well the IVIVC model
predicts additional data that have not been involved in developing the correlation. Similarly
to the internal predictability, the acceptance criteria recommended by FDA are based on
the evaluation of the absolute PEs on the AUC and Cmax that are required to not exceed
10%.

To this scope, the final IVIVC P-ring model was trained only on a subset of the whole
dataset, and data relative to batch B at dose 375 mg were set aside as an external test
set. First, the IVIVC P-ring model was re-estimated on data from batches A, C and D
at 125, 750 or 1500 mg doses, and its internal predictability was re-assessed also on the
reduced training dataset. Then, the obtained parameter estimates were used to predict
serum concentration profiles (500 individual replicates) at 375 mg from the corresponding
in vitro release profile. External Visual Predictive Check (VPC) and absolute %PEs on the
average AUC and Cmax were used to assess the external predictability of the model.

2.3.3. In Vitro Release Profile Comparison

If a Level A IVIVC is achieved, in vitro release profiles can be confidently used as a
surrogate for the in vivo bioequivalence in place of clinical BE studies for certain pre- and
post-approval changes (e.g., manufacturing site or process changes) [3].

To this aim, difference (f 1) and similarity (f 2) factors that originate from a simple
model-independent approach can be used to compare in vitro release profiles of two
batches (reference and test) [27]. The difference factor (Equation (10)) calculates the percent
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difference between the two curves at each time point and is a measurement of the relative
error between the two curves:

f1 =

{[
n

∑
t=1
|Rt − Tt|

]
/

[
n

∑
t=1
|Rt|

]
× 100

}
(10)

where n is the number of time points, Rt is the release value of the reference batch at time
t, and Tt is that of the test batch. The similarity factor (Equation (11)) is a logarithmic
reciprocal square root transformation of the sum squared error and is a measurement of
the similarity in the percent dissolution between the two curves:

f2 = 50× log


[

1 + (1/n)
n

∑
t=1

(Rt − Tt)
2

]−0.5

× 100

 (11)

Based on FDA acceptance criteria, f1 values up to 15 (0–15) and f2 values greater than
50 (50–100) ensure sameness or equivalence of the two in vitro release profiles.

3. Results
3.1. Identification of the IVIVC Progesterone Ring Model
3.1.1. In Vitro Release Model

For each dose level, the in vitro release model was successfully identified against the
corresponding in vitro cumulative release profiles of progesterone. The obtained release
curves were able to describe accurately all the profiles observed at the different doses with
a CV of parameter estimates always below 5% (see Table 5). At the highest doses, 750 and
1500 mg, the lack of observations in the first 24 h hampered the estimation of the immediate
release parameter P0, which was therefore kept fixed at the value 9.45 mg, estimated for
the 375 mg dose.

Table 5. Parameter estimates of the in vitro release model.

Parameters
125 mg 375 mg 750 mg 1500 mg

Estimate [CV%] Estimate [CV%] Estimate [CV%] Estimate [CV%]

P0 [mg] 6.62 [5] 9.5 [2] 9.5 [fix] 9.5 [fix]
A [mg] 26.1 [3] 59.1 [1] 130 [1] 318 [1]
B [mg] 92.28 [-] 306.45 [-] 610.55 [-] 1172.55 [-]
α[1/h] 0.0843 [4] 0.0846 [1] 0.0721 [1] 0.0656 [3]
β [1/h] 0.013 [1] 0.0059 [<1] 0.00361 [1] 0.0033 [<1]

Error (sd) 1.13 [16] 2.84 [2] 6.55 [10] 10.5

The fitted cumulative release curve is plotted in Figure 3 together with individual
experimental data. For each dose level, the goodness-of-fit plots are reported in Figure 4.
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3.1.2. In Vivo Release Model

The introduction of the inhibitory function on the exponential rate terms of the in vitro
release model allowed the relationship between the in vitro and the in vivo progesterone
release profile to be captured well. For each dose level, the value of the in vitro–in vivo
inhibitory factor γ was identified by solving Equation (6). Results are reported in Table 6.

Table 6. Estimates of the γ parameter.

Dose [mg] Estimate

125 5.437
375 11.643
750 29.219

1500 77.601

Obtained estimates of γ (Table 6) were used to identify the coefficients c0, c1 and c2 of
the second-order polynomial (Equation (7)) describing the dependence of the parameter γ
on the dose level. Figure 5 shows the fitted γ curve defined by the parameters (SE between
brackets) c0 = 2.116 (1.58), c1 = 0.020 (5.180 × 10−5), and c2 = 2 × 10−5 (3.010 × 10−6).
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3.1.3. Population IVIVC Progesterone Ring Model

The population IVIVC P-ring model was successfully identified against data relative to
the amounts of released progesterone and the corresponding serum concentration profiles
at the four dose levels. Random effects were first considered for the γ factor and for all
the PK model parameters (data not shown). However, variance ω(Kabs) was estimated
with a very low precision and the individual estimates of Kabs showed a very small inter-
individual variability (CV% < 3%). Therefore, it was decided to consider the alternative
statistical model in which all the individuals share the same Kabs.

The estimates of the population parameters are reported in Table 7. All the parameters
were estimated with good precision.

Table 7. Parameter estimates of the population IVIVC P-ring model.

Population Parameters

Parameter [Unit] Typical Value (CV%) Inter-Individual Variance (CV%)

γ [-] c0 + c1DOSE + c2DOSE2 0.0579 (12)
Kabs,P0 [1/h] 0.7180 (16) 0.2770 (17)
Kabs [1/h] 0.1990 (24) -
Kel [1/h] 0.0241 (5) 0.0092(64)
V/F [L] 3450 (9) 0.0596 (22)

K12 [1/h] 0.0259 (19) 0.1570 (45)
K21 [1/h] 0.0264 (59) 3.8600 (28)

Residual Variability (Variance)

varconc 0.2040 (2)
varamount 0.0002 (71)

In Figures 6 and 7, the individual fits of the progesterone serum concentration profiles
are plotted at all the dose levels. The good agreement between the observed and predicted
profiles showed that the proposed model was able to adequately describe the serum
concentration of progesterone from the in vitro release data. Only a slight underestimation
of the higher serum concentrations observed during the first hours occurred.
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The goodness-of-fit (GOF) plots (Figure 8) suggested that the model was unbiased
and the residual error plots (Figure 9) showed a symmetric distribution around zero and
no systematic residual trends. Additionally, VPC plots (500 simulations for each dose level)
are reported in Figure 10 stratified on dose levels, demonstrating that both typical and
inter-individual dynamics of progesterone serum concentration were captured well by the
IVIVC P-ring model.
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Finally, in Figure 11, the fit plots of the amount of cumulative release of progesterone,
in which the model predictions were superimposed on the observed total amount released
at the end of the studies, are reported.
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3.2. Evaluation of the IVIVC Progesterone ring Model Predictability
3.2.1. Internal Predictability

As recommended in the FDA guideline [3], the internal predictability of the IVIVC
P-ring model was first assessed. The population IVIVC P-ring model was used to derive the
individual serum concentration profiles of progesterone from the corresponding in vitro
release, and diagnostic plots (Figures 6–8) were used to evaluate its performances. As
already discussed, for each dose level, the model predictions were in good agreement
with observations showing that the proposed model was able to adequately predict the
progesterone serum concentration from the in vitro release data.



Pharmaceutics 2021, 13, 255 14 of 24

Then, the prediction errors on AUC and Cmax were computed, and are reported in
Tables 8 and 9, respectively. For both the PK metrics, the average absolute PE and individual
PEs for each dose level were derived; in particular, for AUC, which was considered the
most informative parameter, various sampling times were taken into account.

Table 8. Absolute prediction errors (PEs) on AUC[0-t].

Absolute PE [%]

Dose [mg]

Time [h]
24 48 72 96 120 144 168 216 264 312 360 408

125 4.53 4.08 3.95 3.72 2.56 1.82 1.51 1.51 1.87 2.19 1.89 1.46
375 4.54 3.28 4.56 4.39 3.14 2.19 2.02 1.96 1.80 1.61 2.10 1.85
750 6.12 5.58 3.66 3.57 3.06 3.52 3.68 2.48 1.93 1.78 1.77 1.59

1500 3.98 1.88 5.04 5.67 3.79 2.49 2.77 2.68 2.38 1.79 1.74 1.53

Average 4.79 3.71 4.30 4.34 3.14 2.51 2.50 2.16 1.99 1.85 1.87 1.61

Table 9. Absolute %PEs on Cmax.

Dose [mg] Absolute %PE

125 15.57
375 14.56
750 18.16

1500 17.36

Average 16.41

For each dose level, the absolute PE on AUC (0–408 h) is less than 2% (Table 8).
Furthermore, the PEs on AUC(0-t) at various sampling times is always less than 7% with an
average value always under 5%. The excellent model performances in correctly predicting
progesterone exposures are further confirmed by the GOF plots for AUC (Figure 12) in
which individual AUC(0-t) at various sampling times are shown.
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The average PE on Cmax slightly exceeds the threshold of 10%. In this case, the higher
errors are due to the variability in the data. Indeed, the observed Tmax of the in vivo serum
concentration was affected by a coefficient of variation higher than 75%.

3.2.2. External Predictability

The external predictability of the IVIVC P-ring model was assessed using data relative
to batch B at 375 mg dose as an external test set and the remaining data as the training
dataset on which the model parameters were re-estimated.

To completely identify the model on the internal dataset, first, coefficients c0, c1 and c2
of the second-order polynomial describing the dependence of the γ factor on the dose level
were re-estimated using γ values only at the 125, 750 and 1500 mg dose level (see Table 6).
Obtained estimates were, then, kept fixed during the identification of the population
model against data relative to the amount of released progesterone and the corresponding
serum concentration profiles at the three considered dose levels. The parameter estimates
are reported in Table A1 in Appendix A. A graphical evaluation of model performance
together with obtained values for the absolute PEs on AUC and Cmax confirmed the internal
predictability of the IVIVC P-ring model also on the reduced dataset (see Appendix A).

Once assessed that the model was adequately identified on the training dataset, the
obtained parameters estimates were used to predict the entire serum concentration profiles
of progesterone at 375 mg from the corresponding in vitro release profile. Notably, 500 in-
dividual replicates were simulated and compared to the observed serum concentrations of
progesterone through an external VPC plot (Figure 13).
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The absolute PE on the average AUC(0-t) is reported in Table 10 for the latest four
sampling times (264, 312, 360 and 408 h). It is always less than 10% and less than 3% at the
end of the experiment. Furthermore, the absolute PE on the average Cmax was equal to 5.52.

Table 10. Absolute PEs on average AUC[0-t] at 375 mg dose level.

Absolute PE

Time [h] 264 312 360 408

PE [%] 7.36 3.75 3.75 2.95
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Results obtained on the external dataset at 375 mg confirmed the previous finding
and demonstrated that the established IVIVC met the predefined internal and external
validation criteria.

4. Discussion

Methodologies for the development and evaluation of IVIVC models are an active area
of investigation and a variety of approaches with different degrees of complexity are possi-
ble and potentially acceptable. IVIVC principles have been mostly applied to oral products
and, in 1997, a specific guidance for ER oral drugs was been established by regulatory
authorities [3]. However, due to the continuous pharmaceutical advancements on drug
formulation and administration device, there exists a need to develop methodologies and
standards for the development of an IVIVC model of nonoral delivery systems, for which
no regulatory guidelines and only sparse literature examples are currently available [13].

The objective of this work was the development of a mathematical model able to
establish an adequate Level A IVIVC between the in vitro release of PVRs and the corre-
sponding serum concentration profiles in humans. A direct, differential-equation-based
method and a nonlinear-mixed-effect approach were adopted to develop the IVIVC P-ring
model following the same principles generally used to define an IVIVC for ER oral dosage
forms [3].

More in detail, in this study, different in vitro release rates obtained at 125, 375, 750 and
1500 mg dose levels were considered. At each dose level, the observed release profiles from
the progesterone rings exhibited bi-exponential decays that overlapped almost perfectly.
Hence, within each dose level, the individual in vitro release time courses were pooled
together and modeled without taking into account inter-ring variability. An initial burst
phase was observed in the release profile of the two lower dose levels (125 and 375 mg) for
which early sampling timepoints were available. This immediate faster release is due to the
progesterone at or near the surface of the matrix ring that has a relatively small diffusional
pathway to overcome in order to be released [28]. The parameter P0 of the in vitro model
was introduced to provide an estimate of this quantity. However, at the higher dose levels
(750 and 1500 mg), the lack of observations in the first 24 h hampered the estimation of P0
that was then fixed to the 375 mg dose value without significantly affecting the quality of
the GOFs.

A lack of dose proportionality was observed in the in vitro progesterone release, as it
is evident from the release rates computed by Higughi’s formula (see Table 1) and from
the dose-normalized in vitro profiles (Figure A5 of Appendix A). This is likely due to the
progesterone diffusion process across the ring. Mathematical models accounting for the
diffusion step, as well as for the other mechanistic processes affecting the progesterone
delivery from the ring, are available in the literature [29–32]. However, because of the
scope of this work, the modeling efforts were focused on obtaining a simple progesterone
release function, Rvitro(t), to subsequently use as input rate for the PK model. Despite its
empirical structure, the selected bi-exponential model (Equation (1)) was able to capture
almost perfectly the in vitro release data (Table 5, Figures 3 and 4).

A comparison of the in vitro and the in vivo cumulative release at the end of the
experiments gave evidence of a decreased in vivo release rate compared to that in vitro
(see Table 3). In addition, the total amount of the in vivo released progesterone within the
observation period resulted similarly for the three higher dose rings irrespective of the
amount charged in the ring. This was caused by the inhibition of the progesterone release
due to the vaginal fluid saturation. Indeed, in vivo, the progesterone has to be released
from the ring into the vaginal fluids from which it has to be absorbed through the vaginal
epithelium. As the daily production of vaginal fluids is approximately 6 mL/day with
a constant volume of 0.5–075 mL and the progesterone solubility is very low [20,33], the
system is saturated and progesterone solubility results in the rate-controlling mechanism.
Drug saturation of vaginal fluids was reached and maintained already with the 375 mg
rings, and then no further significant release and absorption was reached by increasing
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the progesterone in the rings. This inhibition was modeled in the in vivo release model by
a suitable inhibition function driven by a dose-dependent in vitro–in vivo factor γ acting
on the exponential release rates of the in vitro model. Thus, the in vivo release in input to
the PK model was obtained by combining the in vitro release model (for any specific dose)
with the inhibition function governed by the parameter γ.

The PK model incorporated two absorption mechanisms, one (Kabs,P0) for the imme-
diate progesterone release and the other (Kabs) for the remaining part of the release. A
two-compartment model was assumed for progesterone kinetics in serum. Unlike from the
in vitro data, the serum progesterone levels showed different profiles among the subjects
with a significant intra- and inter-individual variability. These findings were in agreement
with the PK variability reported for the drug administered through the vaginal route and
represented an intrinsic characteristic and limitation of this type of administration [28].
Indeed, several physiological factors, such as changes in the epithelial thickness, alteration
of the volume and pH of the vaginal fluids, can potentially affect progesterone release
from the ring and alter its absorption rate [20,28,34]. A population (nonlinear-mixed effect)
approach was used to account for this relevant in vivo variability. The simultaneous fitting
of the in vivo parameters yielded very satisfactory results at all doses in terms of both
residuals and visual predictive checks.

Even if progesterone is characterized by a nonnarrow therapeutic index, in accordance
with the more restricting FDA recommendations [3], both the internal and external pre-
dictability of the IVIVC P-ring model were evaluated. First, the internal validity of the
model was confirmed by GOF comparing the predicted and observed curves and the very
low PE on AUCs. At any sampling time, the average (across all subjects and doses) PE on
AUC(0-t) was less than 5% (Table 8). At the latest times (t ≥ 144 h), the individual PE for
each dose was less than 3%. A higher error was observed for Cmax whose PE on average
was 16.4% (Table 9). This was somehow expected in view of the marked variability in
the individual serum profiles, with observed Tmax values in the range of 3–408 h. Such a
Cmax PE below 20% was taken as satisfactory even if the FDA guideline for ER oral drugs
suggests an average PE lower than 10% with 15% as a maximum bound for individual
PEs. In fact, it has to be considered that this kind of formulation is somehow atypical
with respect to guidelines for oral administration and that progesterone is a nonnarrow
therapeutic index drug. To further confirm the predictive capability of the model, an
external validation was set-up. The data relative to batch B at dose 375 mg were left apart
as a test dataset, and the population IVIVC P-ring model was re-estimated using only data
at doses 125, 750 and 1500 mg (ring batches A, C and D). Then, using the in vitro model
derived from the 375 mg data, the obtained population model was used to simulate the
serum profile of 500 distinct individuals. Validation was performed by means of external
VPCs and the PE on the average AUC(0-t) and Cmax. In particular, all the subjects fell
within the 90% predicted intervals of the VPCs, and the PE on AUCs and Cmax were all
below 10%. Based on the previous results and observations, the proposed IVIVC P-ring
model was considered meeting all the FDA validation criteria and can be used to support
in vivo bioequivalence studies.

Adequately predicting the in vivo performances from in vitro release data for vaginal
drug delivery systems, such us PVRs, is extremely challenging due to a multitude of
factors including the vaginal physiology, the complex dynamics of vaginal absorption, the
significant inter-individual variability of the PK, the absence of compendial apparatus and
methods for the in vitro release testing [28], as well as the inability of directly measuring
the in vivo release in the vagina during the whole study period. For this reason, as in
the majority of IVIVC applications, the progesterone serum concentration–time profiles
were used as surrogates to reflect the in vivo drug release. Here, in addition to the serum
concentration levels, the total amounts of released progesterone at the end of the study
were available, providing a fundamental piece of information for the complete definition of
the proposed IVIVC P-ring model. First, similar amounts of progesterone remaining in the
rings in the in vivo experiments at the three higher doses (375, 750 and 1500 mg) suggested
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the consideration that the absence of dose-proportionality observed in the corresponding
serum progesterone exposures could be essentially due to factors inhibiting the in vivo
release (like solubility in the vagina). Secondly, they allowed the successful identification
of the in vitro–in vivo inhibition release model. Finally, although for practical reasons, the
data on the in vivo-released amount of progesterone were available only at the end of the
trials, the goodness of the fittings suggested the exclusion of the presence of important
transient nonlinear behaviors.

Another issue that further increased the challenging IVIVC development was the
in vitro release system adopted for PVRs that was only partially physiological. Indeed, in
aqueous systems (or vaginal fluids), the in vitro progesterone release from rings loaded
with 375, 750 and 1500 mg was identical and corresponds to the saturation of the receiving
medium. Therefore, for quality control, it was needed to include surfactants that increased
the progesterone solubility in the receiving medium and allowed us to discriminate re-
leases from rings charged with different progesterone amounts. The establishment of an
IVIVC based on a nonfully physiological in vitro release system represents an important
achievement of this modeling exercise.

Finally, a case study, exemplifying the possible use of the developed IVIVC P-ring
model to the BE assessment of any new batch of progesterone rings, is proposed here. A
new batch of vaginal rings (batch E) charged with 375 mg of progesterone was available.
Batches B and E were expected to be bioequivalent and were considered as the reference
and test batch, respectively. As a Level A IVIV relationship was defined by the IVIVC
P-ring, clinical BE studies can be avoided and the BE assessment can be based only on
the comparison of the in vitro release profiles. Thus, the time course of the accumulated
amount of progesterone released in vitro was also derived for 12 rings of the test batch
(batch E). Comparison of the in vitro release profiles of the two batches at the 375 mg dose
level was performed by computing the difference and similarity factors (Equations (10)
and (11)). Obtained values for both the parameters ( f1 = 3.84 and f2 = 99.96) fell within
the FDA criteria allowing the assessment of the BE of the batches.

In addition to the standard model-independent procedure, the population IVIVC
P-ring model approach developed here allows us to perform a virtual BE trial providing
estimates of the relative bioavailability in vivo (F = AUCtest/AUCref). With this scope, the
in vitro release model (Equation (1)) was identified on the in vitro release data of the test
batch, and parameters were estimated (Appendix B). Then, a 500 individual population
treated with vaginal rings from the reference batch (batch B at 375 mg) was simulated
using the IVIVC P-ring model and the correspondent release profile from batch B. A second
independent population (500 subject) treated with vaginal rings of the test batch (batch
E) was simulated using the same IVIVC P-ring model with the exception of the in vitro
release parameters identified on batch E. Generally, in vivo BE is assessed in a unique
population receiving treatments from reference and test batches in two different moments.
However, because no information about intra-individual variability was available from the
clinical data, a virtual BE trial was performed under the conservative assumption that intra-
individual variability was equal to the inter-individual variability (even if it was expected
to be lower). The simulated concentration profiles for the reference and test populations
were then used to derive the correspondent AUC. Finally, the relative bioavailability in vivo
(F = AUCtest/AUCref = 0.913) and its 90% confidence interval (90%CI = [0.878, 0.948]) were
computed. From the virtual BE trial, it emerged that the reference and test batches respected
the 80–125% bioequivalence criteria, further confirming the bioequivalence of this case
study.

5. Conclusions

In summary, a Level A IVIVC model for PVRs was developed based on a direct
differential-based equation method and a population nonlinear mixed-effect approach. The
internal and external predictability of the proposed IVIVC P-ring model was evaluated
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and its good performances as a tool for the assessment of the in vivo bioequivalence from
in vitro release studies were demonstrated through the application on a case study.

Thus, this work represents an interesting example of a validated IVIVC exploitable
as a surrogate of bioequivalence studies, for a complex nonoral (vaginal) ER dosage form
for which no clear regulatory guidelines and less experience are available. The proposed
approach, based on an ad-hoc developed population model, is a suitable alternative to the
standard convolution- and deconvolution-based IVIVC methods, as well to the PBPK-based
approach generally developed on closed software applications.
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Appendix A

Table A1. Parameter estimates of the population IVIVC P-ring model on dose 125, 750, and 1500 mg.

Population Parameters

Parameter [Unit] Typical Value (CV%) Inter-Individual Variance (CV%)

c0 2.4846 -
c1 0.0212 -
c2 2× 10−5 -

γ [-] c0 + c1DOSE + c2DOSE2 0.0592 (19)
Kabs,P0 [1/h] 0.8370 (25) 0.2870 (28)
Kabs [1/h] 0.4430 (5) -
Kel [1/h] 0.0221 (10) 0.014 (84)
V/F [L] 3880 (11) 0.0561 (28)

K12 [1/h] 0.0195 (62) 0.2480 (95)
K21 [1/h] 0.0703 (>100) 6.7000 (66)

Residual variability (variance)

varconc 0.2140 (3)
varamount 4× 10−5 (3)
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Table A2. Absolute %PEs on AUC[0-t] for the IVIVC P-ring model identified on dose 125, 750, and
1500 mg.

Absolute PE [%]

Dose [mg]

Time [h]
24 48 72 96 120 144 168 216 264 312 360 408

125 5.05 4.09 3.38 2.79 2.57 2.73 2.53 2.56 2.71 2.06 1.55 1.05
750 5.91 6.15 4.33 3.76 2.77 3.22 3.42 2.60 1.99 1.75 1.59 1.44

1500 3.74 2.39 5.36 5.77 3.74 2.48 2.70 2.69 2.33 1.91 1.68 1.38

Average 4.90 4.21 4.36 4.11 3.03 2.81 2.88 2.62 2.34 1.91 1.61 1.29

Table A3. Absolute %PEs on Cmax for IVIVC P-ring model identified on dose 125, 750, and 1500 mg.

Dose [mg] Absolute %PE

125 15.00
750 18.60

1500 17.52

Average 17.03
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Appendix B

Table A4. Parameter estimates of the in vitro release model for test batch (batch E) at 375 mg.

Parameters
375 mg

Estimate [CV%]

P0 [mg] 17 [3]
A [mg] 77.6 [3]
B [mg] 284.4 [-]
α [1/h] 0.0648 [3]
β [1/h] 0.0051 [1]

Error(sd) 2.83 [6]
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