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Abstract
Background: Gene expression and transcription factor (TF) binding data have been used to reveal
gene transcriptional regulatory networks. Existing knowledge of gene regulation can be presented
using gene connectivity networks. However, these composite connectivity networks do not specify
the range of biological conditions of the activity of each link in the network.

Results: We present a novel method that utilizes the expression and binding patterns of the
neighboring nodes of each link in existing experimentally-based, literature-derived gene
transcriptional regulatory networks and extend them in silico using TF-gene binding motifs and a
compendium of large expression data from Saccharomyces cerevisiae. Using this method, we predict
several hundreds of new transcriptional regulatory TF-gene links, along with experimental
conditions in which known and predicted links become active. This approach unravels new links in
the yeast gene transcriptional regulatory network by utilizing the known transcriptional regulatory
interactions, and is particularly useful for breaking down the composite transcriptional regulatory
network to condition specific networks.

Conclusion: Our methods can facilitate future binding experiments, as they can considerably help
focus on the TFs that must be surveyed to understand gene regulation.

(Supplemental material and the latest version of the MATLAB implementation of the United 
Signature Algorithm is available online at [1] or [see Additional files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

Background
Transcriptional regulation is fundamental to translating
genetic information into biological function, and is thus
critical for understanding cell adaptation, differentiation,
and pathological transformation. One challenge is to
decipher the intricate network of transcriptional interac-
tions, so as to better appreciate functional relationships
and to discern disease states.

Using published high-throughput mRNA expression data,
several groups have proposed algorithms to computation-
ally construct transcriptional regulatory networks for S.
cerevisiae [2]. One approach, as presented by Segal et al.
[3], is to use a probabilistic expression model, in which
regulatory relationships can be deduced by the correlation
of co-expression between a DNA-binding transcription
regulator and its target gene3. Other approaches, such as
those recently published by Rice et al. [4], use gene pertur-
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bation to infer the direction of regulatory effects4. How-
ever, there are limitations to the reverse-engineering
approach to deriving transcriptional regulatory networks
from expression data [5]. Correlation matching does not
distinguish regulators from target genes. It is difficult to
discern whether the correlated target is directly or indi-
rectly regulated. Additional information, such as protein-
DNA binding, can be integrated into transcriptional regu-
latory networks, as described by Bar-Joseph et al [5], for
validating direct regulator-target interaction.

Recently, the genomic binding sites of 203 yeast transcrip-
tional regulators were identified using ChIP-on-chip
experiments under a limited number of growth condi-
tions [6]. The results showed that regulator binding is
highly dependent upon the environmental conditions of
the cell. These experiments provide information on condi-
tion-specific TF binding events, which may be associated
with activation or inhibition of the target genes. However,
binding between a TF and a target gene in a given condi-
tion is not sufficient to predict whether a target gene will

Break-down (decomposition) of the composite regulatory networkFigure 1
Break-down (decomposition) of the composite regulatory network. The input for our algorithm (upper panel) includes: a) a 
composite regulatory network published by Milo et al [22] (or a joint network obtained by integrating the literature driven 
gene regulatory networks compiled by Milo et al. [22] and Herrgard et al [21]). The edges (black links) and nodes of the com-
posite network are illustrated by a graph with 11 genes, where yellow and blue circles represent TFs and non regulating genes 
respectively (b) microarray gene expression profiles from 387 different experimental conditions involving diploid cells. This is a 
subset of the experiments stored in a compendium of S. cerevisiae gene expression datasets compiled by Ihmels et al [9]. The 
expression dataset is illustrated by a miniature matrix consisting of 11 genes and 15 experimental conditions, whose red, blue 
and yellow entries correspond to up-regulation, down-regulation and intermediate expression levels, respectively. The output 
of our algorithm allows us to read out condition specific regulatory networks, as illustrated in the lower panel.

• infer the activity status of every link in the composite network at different biological states

Gene1
Gene4

Gene3Gene2

TF

GeneY

GeneZ

Gene5

Gene6

Gene7

Gene8

• predict new regulatory links not present in the composite network at different biological states

INPUT

OUTPUT

composite regulatory network compendium of expression data

State #3 State #4

Experimental conditions

Gene1

Gene2

Gene6

Gene4

Gene3

Gene8

GeneY

Gene7

GeneZ

A
ll

g
e
n
e
s

Gene5

TF

1 11 13 152 43 6 8 10 12 145 7 9

Gene1
Gene4

Gene3Gene2

TF

GeneY

GeneZ

Gene5

Gene6

Gene7

Gene8

Gene1
Gene4

Gene3Gene2

TF

GeneY

GeneZ

Gene5

Gene6

Gene7

Gene8
Page 2 of 17
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:165 http://www.biomedcentral.com/1471-2105/7/165
be expressed in this condition [7]. Therefore it would be
highly advantageous to develop a computational
approach for predicting the biological conditions under
which each regulator-target gene link in the known regu-
latory network is active.

In this paper, we present an approach based on a variant
of the signature algorithm [8-10] to extend known tran-
scriptional regulatory networks. Our computational

approach, which integrates binding and expression infor-
mation, enables us not only to identify new condition-
specific transcriptional regulatory interactions, but also to
predict the conditions in which each link in the known
regulatory network is active (as schematized in Fig. 1).

Local network approach for identifying the experimental conditions for gene regulation by its known direct regulatorFigure 2
Local network approach for identifying the experimental conditions for gene regulation by its known direct regulator. As in Fig. 
1, the input includes the composite network and a gene expression compendium dataset. For each link in the network, as illus-
trated for the link TF→Gene1 highlighted in yellow, we identify conditions in which the target gene (Gene1) is directly control-
led by its regulator (TF), by extracting two types of condition subsets: a) subset of states in which the expression profile of the 
target gene (highlighted in pink) is positively or negatively correlated with the expression profile of its regulator, b) subset of 
states in which the expression profile of the target gene (highlighted in pink) is correlated with the expression profiles of other 
genes (highlighted in light blue) that are known to be regulated by the same TF. In the illustration shown in the lower panel the 
conditions in which the TF directly regulates the target gene are indicated below the gene expression patterns across these 
conditions. These conditions are also displayed in the braces shown next to the sub-networks. To differentiate between condi-
tions in which the link is functional/not-functional due to the activation/deactivation of the TF, we mark these conditions in red 
and blue respectively.
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Results
The United Signature Algorithm
In recent years several bi-clustering techniques have been
developed to group genes into transcription modules with
similar mRNA expression profiles under a selected range
of experimental conditions [11-16]. A unique property of
the signature algorithm (SA) of Ihmels et al. [8-10] is that

it finds a bi-cluster associated with a group of input genes
of interest by identifying a stable subset of conditions in
which an output set of genes (containing all or part of the
input set of genes and some additional genes) are co-
expressed. One advantage of this algorithm is that its
input does not include expression profiles of irrelevant
genes that may introduce noise and obscure the output

The united signature algorithm (USA)Figure 3
The united signature algorithm (USA). This algorithm is designed to find a subset of conditions in which the input genes are 
regulating each other or are co-regulated, and to identify additional genes that are potentially co-regulated under the same sub-
set of conditions. The order of the procedures performed in the USA is shown in the following six panels: a) bi-normalization 
and log transformation of the raw expression data, such that row sums and column sums are equal to zero, b) selection of an 
input set of gene expression profiles consisting of the target gene and its TF regulator, or the expression profiles of the target 
gene and all the other known regulated genes controlled by the TF. c) calculation of condition (column) scores by summing (or 
averaging) the columns of a sub-matrix, whose rows represent the normalized expression profiles of the input genes across all 
conditions. These rows are first multiplied by +1 for input genes that are stimulated by the TF and by -1 (inversion) for target 
genes inhibited by the TF. Experimental conditions whose column average Sc across the input genes satisfies |Sc-mean(Sc)| > 
thresholdcolumn are retained as indicated by black bullets and black experimental IDs below the sub-matrix, d) calculation of gene 
(row) scores defined as the weighted row average Sg = Σc (Sc Egc)/(#genes) across the selected conditions c e) determination of 
a sub-matrix of genes and conditions, termed the united transcriptional module (UTM), consisting of gene expression profiles 
whose weighted row averages satisfy |Sg-mean(Sg)| > thresholdrow across the selected conditions c, f) retaining genes within the 
UTM whose correlation with the target gene Gene2, TF or the centroid gene (a gene that is correlated with the largest number 
of genes within the UTM) satisfy |R| > α = thresholdcorrelation where R is the correlation coefficient.
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A schema of the LINK and STAR modelsFigure 4
A schema of the LINK and STAR models: (A) the LINK model is designed to find a subset of conditions in which the expres-
sion profiles of a TF-target gene pair (link highlighted in pink in the upper left panel) are positively or negatively correlated. In 
addition it finds other known or putative target genes whose expression profiles are correlated with the TF or its target under 
this subset of conditions. The regulating TF and its target gene (Gene1) are the core set of input genes inserted into the USA. 
The blue and yellow nodes in the known local network represent the input gene set employed by the USA. This input set is 
also indicated in a genome-wide vector that has only two nonzero elements representing the TF (+1) and its target (+1 for 
activation and -1 for suppression). The dataset we insert into the USA is the yeast compendium data described in Fig. 1 and 
schematized in the miniature matrix consisting of 11 genes and 15 experimental conditions shown between the left and right 
panels. The red, blue and yellow entries correspond to up-regulation, down-regulation and intermediate expression levels 
respectively. The algorithm finds the conditions in which TF and Gene1 are correlated. It also finds the additional genes 
denoted in red (Gene2, Gene4, and Gene5), whose expression profiles across the subset of experimental conditions correlate 
positively or negatively with the TF or Gene1. Altogether, these genes and conditions constitute the UTM shown in the left 
middle panel. We predict that links of the known regulatory interactions TF→Gene2 and TFGene4 are functional under the 
united transcriptional module (UTM) conditions in which the TF, Gene1 and Gene2 are up regulated (red pixels in the UTM 
matrix) and Gene4 is down regulated (blue pixels). For the predicted link TF→Gene5, we further compute a MATCH score 
between the TF position-specific weight matrix (PWM) and the promoter region of Gene5. Links with a score higher than a 
threshold value of 0.94 (i.e. PWM match) are reported along with the experimental conditions supported by their correspond-
ing UTM as illustrated in the lower left panel. (B) the STAR model enables us to find an alternative subset of experimental con-
ditions in which Gene1 is directly regulated by TF (illustrated by the link highlighted in pink in the right upper panel). It searches 
for conditions in which the expression profiles of Gene1 is positively or negatively correlated with some of the genes regulated 
by TF (highlighted in light blue). In addition, it is designed to identify new genes that are positively or negatively correlated with 
the input core of target genes under the same subset of experimental conditions, and whose promoters contain sequences 
similar to the TF binding site. In the STAR model, we apply the USA (right center panel) to the core set of input genes consist-
ing of all the TF target genes (Gene1,2,3,4) excluding the TF itself. As in the LINK model, the input set of genes is indicated by the 
nonzero elements of a genome-wide vector (highlighted in green in the upper right panel), which denotes the regulatory rela-
tionship between the TF and its target genes. In addition to links from the original local (STAR) network, two new links, i.e. 
TFGene6 and TF→Gene7, are predicted based on their co-expression with the core genes, and the match between their pro-
moter region and the TF PWM. Each target is predicted to be affected by the TF under the experimental conditions of the 
respective UTM.
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quality. We develop a variant of the SA called the united
signature algorithm (USA), which identifies a united tran-
scription module (UTM) consisting of both negatively
and positively correlated genes. This enables us to unravel
the conditions in which each known transcriptional regu-
latory TF-gene target link becomes functional or disabled
due to a change in the TF activity (Fig. 2). Moreover, it pre-
dicts new condition-specific inhibitory as well as stimula-
tory transcriptional regulatory relationships between a TF
and its putative target genes. The algorithm is described in
detail in Methods section, and its steps are illustrated in
Fig. 3.

Predicting novel and condition-specific transcriptional 
regulatory interactions
We integrated two complementary local network models
for predicting: (a) new transcriptional regulatory interac-
tions, (b) specific conditions in which experimentally
known and predicted interactions take place. The first
model (LINK model) is based on the assumption that
there is a correlation between the mRNA levels of a TF and
its target gene under certain conditions [17] (see Figs. 2, 3,
4). This assumption is not universally satisfied, since the
activation or repression of a target gene by a TF depends
on the TF protein concentration, post-translational modi-
fications, localization, phosphorylation status and other
cellular factors. Thus, we implement a second model (the
STAR model) that is based on a different notion. In this
model we disregard the mRNA expression state of the TF
itself and deduce conditions of activity or inactivity of a TF
from the expression patterns of its target genes [5] (see
Figs. 2, 3, 4).

Applying the USA to these two input sets of genes sur-
rounding a TF-target gene link provides us with the LINK
and STAR UTMs consisting of experimental conditions
under which the target gene is predicted to be regulated by
the TF (see Fig. 4). These UTMs consist of additional
genes, whose expression profiles are highly correlated
with their corresponding input set of genes (under the
conditions supported by the UTM). To identify potential
new targets of this TF, we subject these additional putative
target genes to another filter that selects genes whose pro-
moter regions contain a sequence that matches with the
binding site of this TF. There are different approaches to
reduce possible false positives in the last step of matching
TF binding sites with gene promoter regions. The most
common approaches take into account conservation of
these binding sites in other species, or test whether the TF
binding sites are significantly over-represented in the tar-
get set with respect to the background set [18]. The latter
is not always applicable to small input sets employed by
the LINK and STAR models.

(a) LINK model
The first local network model that we use to generate a
UTM, which we shall refer to as the "LINK model" (Fig. 4),
is designed to find a subset of experimental conditions
which maximizes the correlation (or inverse correlation,
as in the case of an inhibitory interaction) between the
expression profiles of the TF and its experimentally
known target gene. Our input data include: (i) a compen-
dium of gene expression profiles arranged in a matrix
whose columns represent genome-wide profiles of differ-
ent experimental conditions, (ii) a genome-wide input
vector, whose two nonzero elements represent the TF (+1)
and its known target gene (+1 for activation, -1 for sup-
pression). As stated above, the genes in each UTM include
the known and predicted target genes of the regulator
associated with the module. To increase our confidence
that the genes within the module found by the USA are
regulated by the corresponding TF, we have used two
additional parametric constraints to select candidate tar-
get genes: (i) the absolute value of the Pearson correlation
coefficient (|R|) between the regulator expression profile
and the profile of any candidate target gene across the
experiments of the UTM is greater than the correlation
threshold value α (Fig. 3f) (ii) the MATCH [19,20] score
between the position-specific weight matrix (PWM) [6] of
the TF binding motif and the target promoter sequence is
greater than or equal to a predetermined cutoff β (Fig. 4).
We explored the parameter space for α and β, and found
that at values of about α = 0.5 for the LINK model and β
= 0.94 we are able to optimize the prediction rate.

(b) STAR model
The STAR model is a second local network model that we
use to generate a UTM (Fig. 4). The input required for this
model involves the expression profiles of the target gene
associated with the link of interest (see link highlighted by
pink background in Fig. 4) and of all the other experimen-
tally known target genes (see links highlighted by light
blue background in Fig. 4) that are regulated by the same
TF, which is positioned in the center of a star-like local
network. The expression profile of the TF is excluded from
the input. The input also includes a genome-wide vector,
whose elements indicate the type of regulatory relation-
ship between the TF and its target genes (+1 for activation,
-1 for repression, zero otherwise). Since we exclude the TF
from the input of the STAR model, the element corre-
sponding to this TF in this (genome-wide input) vector is
set to zero. We employ the USA to the input set of known
target genes, and obtain an output UTM consisting of the
majority of the input genes and an additional new set of
genes whose regulatory relationships with the TF are yet
unknown. The expression profiles of these new genes
across the UTM experimental conditions correlate with
the corresponding expression profiles of the input genes
maintained in the UTM. This alludes to the possibility
Page 6 of 17
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:165 http://www.biomedcentral.com/1471-2105/7/165
that these new genes are regulated by the TF associated
with this UTM. We used an iterative scheme that involves
repeated applications of the USA to eliminate weakly cor-
related genes (See the Methods section for detailed
description of the scheme.). Once we obtain a coherent
UTM consisting of a set of highly correlated target genes
under a certain subset of conditions, we terminate the iter-
ation. In some cases, the input and output sets of target
genes are the same. More often, some links are added or

eliminated from the input. Links that are eliminated are
likely to be deactivated under the subset of conditions rep-
resented in the UTM. Conversely, known and newly pre-
dicted target genes are likely to be activated (stimulated or
repressed) by the TF under the subset of experimental con-
ditions corresponding to its UTM. Similarly to the LINK
model, we implemented two filters to the UTM genes
retaining only the ones that are: a) correlated with the
gene target associated with the link of interest and b)

Table 1: Examples of predicted TF-target gene pairs generated by the LINK and STAR models to the S. cerevisiae transcriptional 
regulatory network published by Milo et al. [22]. The table shows the overlap of these links with: a) high confidence ChIP-on-chip data 
[6] at P ≤ 0.001 and with sequence conservation across at least 3 yeast species, b) moderate confidence ChIP-on-chip data at P ≤ 0.005 
but excluding the high confidence binding events in (a), or c) the literature-driven gene regulatory network constructed by Herrgard 
et al. [21]

Links predicted by the LINK model

Overlap with ChIP-on-chip data at P ≤ 0.001 with sequence conservation 
in at least 3 yeast species

ACE2→CST13, GAT1→DAL2, GCN4→ATR1, GCN4→FOL2, 
GCN4→IDP1, GCN4→ISU1, GLN3→ARG1, GLN3→UGA3, 
GLN3→YHR029C, ROX1YLR413W, STE12→FUS2, STE12→GPA1, 
STE12→INP52, STE12→KAR4, STE12→TEC1, SWI4→OCH1, 
SWI5→YPL158C, TEC1→GFA1, TEC1→GIC2, TEC1→PCL2, 
TEC1→STE12, UME6→YOR291W, YAP1→CYT2

Overlap with ChIP-on-chip data at P ≤ 0.005 excluding events at P ≤ 
0.001 with sequence conservation across at least 3 yeast species

ACE2→SCW11, ASH1→HSP150, ASH1→PIR1, ASH1→PIR3, 
DAL80→YLR053C, GAT1→PUT1, GCN4→YMC1, GCN4→ALD5, 
GCN4→YMC2, GCN4→CAF16, GCN4→BAT1, GCN4→ORT1, 
STE12→ASG7, STE12→YDR249C, STE12→MFA2, TEC1→PRM1, 
TEC1→PRM6, TEC1→AGA2, TEC1→KAR5, TEC1→PRP39, 
YAP1→AAD6, YAP1→GTT2, YAP1→YLR460C

Literature supported BAS1→HIS7, DAL80→GAP1, MSN4→TPS2, STE12→MFA2, 
STE12→TEC1, TEC1→STE12

Links predicted by the STAR model

Overlap with ChIP-on-chip data at P ≤ 0.001 with sequence conservation 
in at least 3 yeast species

ACE2BUD9, ADR1→PXA1, BAS1→HIS4, BAS1→SHM2, FKH2→ALK1, 
FKH2→SWI5, GAT1→DAL2, GCN4→ATR1, GCN4→FOL2, 
GCN4→IDP1, GCN4→ILV3, GCN4→UGA3, GCR1→CDC19, 
GLN3→CPS1, HAP4→ATP1, HSF1→CPR6, MCM1→YNL058C, 
MSN2→TSL1, MSN4→TSL1, PHO4→PHO86, RPN4→PUP2, 
STE12→FUS2, STE12→GPA1, STE12→INP52, STE12→KAR4, 
STE12→TEC1, SWI5CYK3

Overlap with ChIP-on-chip data at P ≤ 0.005 excluding events at P ≤ 
0.001 with sequence conservation across at least 3 yeast species

ABF2→RPS28A, ACE2→FAA3, ACE2→PRY3, ACE2→SCW11, 
DAL80→YLR053C, FKH2→ACE2, FKH2→HOF1, FKH2→YLR190W, 
FKH2→YOR315W, FKH2→YPL141C, GAT1→DAL3, GAT1→DAL5, 
GAT1→DAL7, GAT1→MEP2, GAT1→PUT1, GCN4→ALD5, 
GCN4→BAT1, GCN4→CAF16, GCN4→ORT1, GCN4→YMC1, 
GCN4→YMC2, GCN4→YNL129W, GLN3→MEP2, GLN3→OPT2, 
GLN3→YGR125W, GLN3→YMR088C, HAP4→NDI1, HAP4→SDH1, 
HSF1→HSP10, HSF1→HSP60, HSF1→TSL1, LEU3→BAT1, 
MCM1→BUD4, MCM1→YOR315W, RAP1GPM1, RAP1PGI1, 
RCS1→ARN1, RCS1→TAF1, RPN4→RPN12, RPN4→RPN6, 
SKN7DDR48, SKN7GPX2, STE12→ASG7, STE12→MFA2, SWI5FAA3, 
SWI5PIR1, SWI5PRY3, SWI5TEC1, YAP1→AAD6

Literature supported BAS1→ADE1, BAS1→ADE13, BAS1→ADE17, BAS1→ADE2, 
BAS1→ADE5,7, BAS1→HIS1, BAS1→HIS4, BAS1→HIS7, 
DAL80→GAP1, GCR1→CDC19, HAP4→SDH1, HSF1→SSA4, 
STE12→MFA2, STE12→TEC1
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Extending the currently known parts of the regulatory network and breaking it down into state dependent networks [see Additional files 2]Figure 5
Extending the currently known parts of the regulatory network and breaking it down into state dependent networks [see 
Additional files 2]. Here we display a representative subset of known and predicted links in the yeast regulatory network along 
with categories of experimental conditions in which the target genes are controlled by their regulators. To simplify the display, 
we aggregated the experimental conditions into categories such as cell cycle (green links), amino acid starvation (orange), 
rapamycin treatment (blue), and alpha-factor treatment (purple). TFs are represented by squares and their target genes by cir-
cles. Solid and dotted links indicate the known and predicted regulatory links, respectively. The predicted experimental condi-
tions in a UTM corresponding to a regulatory link tend to contain the experimental condition in which a TF binding on the 
promoter region of a target gene has been experimentally confirmed[6]. For example, the predicted regulatory links 
STE12→FUS2 and TEC1→GFA1 are supported by ChIP-on-chip location analyses performed with alpha factor pheromone 
treatment (purple-dotted links STE12→FUS2 and TEC1→GFA1).
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whose promoter regions have a good match with the TF
binding site. We explored the parameter space for α and β,
and found an optimal prediction rates at values of about
α = 0.7 and β = 0.94 for the STAR model.

Numerical results
We applied the LINK and STAR models to all the nodes in
the composite Saccharomyces cerevisiae transcriptional reg-
ulatory network, and predicted 160 and 252 new links
respectively. There were 53 new links that were predicted
by both models. All predictions and their experimental
conditions can be found in our online supplementary
material section [1] [see Additional files 6, 7, 8, 9]. We
compared our predictions with high confidence ChIP-on-
chip binding data [6] and with other available manually
curated network data [21]. The overlap between the LINK
model predictions and ChIP-on-chip binding data [6] was
64 at binding p-values = 0.005 (41 bindings were found at
P = 0.001 for which the binding site is conserved in at least
three related yeast species; we note that PWMs [6] were
generated by ChIP-on-chip data using binding events sat-
isfying P = 0.001, for which the binding site is conserved
across three of four related yeast species). In addition, six
links were supported by the curated network data. The
overlap between the STAR model predictions and ChIP-
on-chip data was 126 at P = 0.005 (77 bindings were
found at P = 0.001 for which the binding site is conserved
in at least three related yeast species). Additional 14 links
were supported by the curated network data. Table 1
shows predicted regulatory links that overlap with ChIP-

on-chip data or other earlier studies. We note that stimu-
latory/inhibitory regulatory relationships were deter-
mined by positive/negative correlations between the
regulator and its target gene under the conditions found
in the UTM. We constructed a more comprehensive yeast
transcriptional regulatory network by integrating the liter-
ature-driven gene regulatory networks compiled by Milo
et al. [22] and Herrgard et al [21] [see Additional files 4,
5]. This combined network was used to identify new tran-
scriptional regulatory interactions. All predicted transcrip-
tional regulatory interactions obtained from this
combined network and the experimental conditions asso-
ciated with them can be found in the online supplemen-
tary material section [1] [see Additional file 8, 9].

Extracting condition-specific transcriptional regulatory 
networks
We applied our algorithm to extract condition-specific
transcriptional regulatory networks of Saccharomyces cere-
visiae. To simplify the display of the multiple condition-
specific networks obtained by breaking down the com-
posite network, we aggregated the conditions from the
gene expression compendium into the following catego-
ries: (1) cell cycle, (2) amino acid starvation, (3) rapamy-
cin treated, and (4) alpha-factor treated. We compared the
active links of our condition-aggregated networks to pub-
lished ChIP-on-chip TF binding results[6] obtained under
similar experimental conditions, such as amino acid star-
vation by the inhibitor of amino acid biosynthesis sulfo-
meturon methyl, nutrient deprivation with rapamycin,

De-composing the composite network into condition specific regulatory linksFigure 6
De-composing the composite network into condition specific regulatory links. To predict the experimental conditions for each 
TF-target gene link in the regulatory network, we unified the set of experimental conditions generated by the LINK and STAR 
models. We applied both models to the local networks containing the TF→Gene1 link. (a) A set of experimental conditions (A) 
in which the TF→Gene1 link is predicted to be active according to the LINK model. Under conditions A, Gene1 and TF are over-
expressed. (b) A set of experimental conditions (B) in which the targets are activated by TF according to the STAR model. 
Under conditions B, Genes1,2,3 are stimulated and Gene4 is suppressed by TF. (c) Finally, we determine the experimental condi-
tions in which the TF→Gene1 link is active by taking the union of A and B. The quality of our network de-composition has been 
assessed by using the union A ∪ B.
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Predicting and validating condition specific networksFigure 7
Predicting and validating condition specific networks. To find a condition specific network associated with treatment with 
rapamycin, we first analyzed all the local networks and identified from the respective UTMs all the links associated with this 
condition [see Additional files 3]. Here we show the sub-network consisting of links in the literature-driven gene regulatory 
networks [21, 22] and predicted links, which are supported by ChIP-on-chip binding assays (P ≤ 0.001) with rapamycin treat-
ment. Blue links represent pairs of TF-target genes bound to each other and predicted to be active in this condition (46/55). 
Dotted gray links (9/55) correspond to pairs bound to each other, in which our model failed to predict a condition-specific reg-
ulatory relationship.
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and mating induction with the alpha factor pheromone.
Figure 5 shows known (solid) and predicted (dotted) reg-
ulatory interactions along with their predicted experimen-
tal conditions obtained from the scheme presented in
Figure 6. The network composed of the blue links repre-
sents an aggregated set of condition-specific networks
associated with exposure to rapamycin. This figure shows
only some representative links whose readouts for bind-
ing in ChIP-on-chip experiments are unlikely to be due to
random binding (P ≤ 0.001, provided that the binding site
is conserved across three of four related yeast species).
This small P-value for filtering binding events leads to a
reduction in the number of links in this network. By
applying the USA to each link in the network, we can read
out the set of conditions under which the regulator stim-
ulates or inhibits the expression of a known or predicted
target gene. For example, the three regulatory links
between DAL82 and DAL2 indicate that the
DAL82→DAL2 link is active under the three categories of
experimental conditions considered above. The predicted
STE12→FUS2 and STE12→GPA1 binding were supported
by ChIP-on-chip data under the experimental condition
of mating induced by alpha factor treatment. DAL3 is acti-
vated by DAL82 with nutrient deprivation by rapamycin
treatment. GFA1 is activated by TEC1 with mating induc-
ing by alpha factor treatment. All experimental conditions
for each regulation can be found in the online supplemen-
tary materials [1] [see Additional files 6, 7, 8, 9].

To assess the extent to which the UTM-specified condi-
tional regulatory interactions correspond to actual biolog-
ical activity during the same specified conditions, we
matched condition-specific ChIP-on-chip TF binding data
from Harbison et al [6] to our predicted condition-specific
TF-target gene interactions. Figure 7 summarizes the
degree of overlap between our predicted condition-spe-
cific links and ChIP-on-chip TF binding data under
rapamycin-induced nutrient deprivation. Specifically,
84.64% (46/53) of the (known and predicted) links con-
tained in any of the outputs generated by the LINK and
STAR models and confirmed by ChIP-on-chip binding (P
≤ 0.001 for which the binding site is conserved in at least
three related yeast species) under a rapamycin-induced
condition belong to UTMs that include a similar condi-
tion from the compendium data. Under the conditions of
mating inducing by treatment with alpha factor pherom-
one and amino acid starvation, we obtained prediction
ratios of 57.78% and 73.85%, respectively.

Assessing the quality of the predictions
We assessed the quality of the output obtained from the
LINK and STAR models by: (i) comparing the predictions
of the LINK model to predictions of other control/refer-
ence models. We measured the quality of the models by
the extent of overlap between the predicted links to TF-tar-

get gene pairs confirmed by binding data from location
analysis experiments [6] (a microarray method also
termed ChIP-on-chip that uncovers the genome-wide
location of DNA-bound protein), (ii) counting the rate at
which we recapture known network links through appli-
cation of the STAR model to networks in which these links
are absent.

(a) Evaluating the performance of the LINK model
We evaluated the predictive value of the LINK model by
comparing the ratio of predicted links confirmed by ChIP-
on-chip data to the total number of predicted links (64/
160) with the corresponding ratios generated from the
following reference models: (i) NULL model in which
new links are selected randomly rather than by using the
UTM and PWM matching filters as implemented in the
LINK model (ii) MATCH model in which links are
selected randomly, but are filtered by retaining links with
high PWM matching scores (iii) CORRELATE and
MATCH model in which the predictions are based on
overall correlations and PWM matching between all TFs
and all genes (iv) LINK-UTM model in which the PWM
matching step is omitted and links are obtained directly
from the UTMs generated by the LINK model (v) CORRE-
LATE in which the predictions are based on the overall co-
expression (correlation across all experimental condi-
tions) between TFs and genes.

In the NULL model, we randomly inserted 1242 new reg-
ulatory links (the same number of links predicted by the
UTMs generated by the LINK model) into the literature-
driven transcription regulatory network [22]. By repeating
this procedure 50 times we found a mean overlap less
than 1% between the 1242 randomly inserted links and
TF-target gene ChIP-on-chip data determined by binding
events with P ≤ 0.005. Random links that were filtered
using the MATCH model had on average approximately
6% overlap with ChIP-on-chip data. In the CORRELATE
and MATCH model, we determined that a gene is regu-
lated by a TF if the overall correlation between the gene
and TF expression profiles (across the entire gene set of
experimental conditions) satisfied the condition |R| > 0.5
(where R is the Pearson correlation coefficient), and if the
TF PWM matched with the upstream region of a target
gene with a MATCH score of β ≥ 0.94. We found that only
16 out of the 69 TF-gene pairs that satisfy these conditions
overlapped with ChIP-on-chip data (approximately
23%). This overlap dropped to approximately 3% if we
use correlation as a single filter for selecting TF-target gene
pairs. By varying the parametric constraints we obtained
similar frequencies of overlap. For example, for |R| > 0.4
and β ≥ 0.94, we obtained a ChIP-on-chip validation rate
of 23.85% (83 out of 348 predictions). Finally, we found
approximately 13% overlap between the experimental
binding data and links extracted from the UTMs generated
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by the LINK model before subjecting them to the PWM-
promoter target MATCH filter. Thus, the frequency with
which the binding data correspond to the output gener-
ated by each of these five reference models was substan-
tially lower than the rate of 40.0% obtained by the LINK
method. We summarized the frequencies obtained in
these models in Table 2. Since PWMs were derived from a
subset of high confidence ChIP-on-chip binding events
satisfying P ≤ 0.001 and provided that the relevant
sequence is conserved across three of four related yeast
species, we also presented the overlap between the output
of each model and binding events with P ≤ 0.005 exclud-
ing these high confidence binding events. Table 2 clearly
shows the advantage of using the UTM and PWM match-
ing filters.

(b) Evaluating the performance of the STAR model
As an alternative for evaluating the performance of the
STAR model we removed one link at a time from the net-
work compiled by Milo et al, and inspected whether appli-
cation of the model to these reduced networks recaptures
the links that were stripped off (Fig. 8). To perform this
analysis we had to select TFs that have known PWMs, and
whose coherent UTMs consist of at least two genes. These
two conditions enable us to: (i) apply the STAR model to
the truncated local network and examine if the removed
link is recaptured in the UTM, (ii) inspect the match
between the promoter region of the recaptured gene and
its regulator. Of the 102 TFs [6] that have PWMs, only 33
TFs satisfied both conditions. Overall, 12 links out of 33
removed links were recaptured. This recapturing rate
(36.36%) was slightly lower than the prediction rates for
new links. This results from our procedure, whereby we
chose to remove the most cohesive (centroid) gene in a

UTM. However, this rate was still significantly better than
the predictions we obtained by using overall correlations.

By matching the PWMs with the promoter region of the
target genes we increase the reliability of our predictions.
This step reduces the number of putative targets from
1242 to 160 (87.22% reduction) for the LINK model and
from 1039 to 252 (75.75% reduction) for the STAR
model.

Discussion
We present a novel method for identifying new transcrip-
tional regulatory interactions together with the conditions
in which these new and experimentally known interac-
tions are active. An important feature of our method is the
utilization of a composite regulatory network consisting
of known TF-target gene interactions, where these links
have been identified in different studies and experimental
conditions. To the best of our knowledge, this is the first
introduction of a methodology for de-composition of the
composite network to condition specific networks. The
novelty of this method is that predictions are based on the
integration of this a priori transcriptional regulatory net-
work information with a compendium of gene expression
profiles as well as matching of TF DNA binding motifs
(PWMs) to promoter sequences of candidate target genes.
Our models employ the united signature algorithm,
which efficiently captures both negatively- and positively-
correlated genes under specific experimental conditions.
This algorithm makes it possible to identify inhibitory
and stimulatory regulatory interactions.

This approach confers a number of advantages over previ-
ously published transcriptional network studies: (1) it
predicts not only a TF-target gene direct regulatory rela-

Table 2: Overlap between ChIP-on-chip events with P ≤ 0.005 (or P ≤ 0.005 excluding high confidence binding events with P ≤ 0.001 and 
with sequence conservation across at least 3 yeast species) and predicted links obtained by the LINK model and by other five reference 
models. The table shows that less than 1% of all possible randomly selected links occur in binding experiments. Moreover, only 3.32% 
of the TF-gene pairs with overall expression correlation of greater (or smaller) than 0.5 (or -0.5) overlap with binding experimental 
data. The overlap increases to 13.37% when we consider highly correlated TF-gene pairs under the experimental conditions of the 
UTMs generated by the LINK model. By filtering the predicted links via the PWM matching, we discriminate between direct and 
indirect predicted interactions of co-expressed TF-gene pairs. As shown in the table, 40% (14.37%) of the new links predicted by the 
LINK model overlap with ChIP-on-chip binding all events with P ≤ 0.005 (P ≤ 0.005 excluding high confidence binding events with P ≤ 
0.001 and with sequence conservation across at least 3 yeast species). This is a substantially higher rate than the 23.19% (7.25%) rate 
obtained by using a simpler approach that combines correlation with PWM-promoter matching, but disregards information about 
other experimentally known links.

Random links Correlated links LINK-UTM links

Without PWM matching
 ChIP P ≤ 0.005

0.81% 3.32% 13.37%

With PWM matching 
ChIPP ≤ 0.005

6.03% 23.19% 40.00%

Without PWM matching
ChIP P ≤ 0.005 excluding high confidence binding events

0.53% 1.05% 8.62%

With PWM matching
ChIP P ≤ 0.005 excluding high confidence binding events

3.56% 7.25% 14.37%
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tionship, but also determines whether this relationship is
inhibitory or stimulatory, (2) for each regulatory link it
provides a unique subset of conditions (selected from a
large compendium of experimental conditions) in which
it is expected to be active, (3) its prediction rate is rela-
tively high. Improved prediction rates can be attributed
to: (i) the use of comprehensive biological input that
includes all the known transcriptional regulatory links,
large gene expression datasets and TF-DNA binding motif

information, (ii) utilization of PWMs in discriminating
between direct and indirect interactions of co-expressed
TF-gene pairs, (iii) the unique properties of the united sig-
nature algorithm (USA) involving the input of known
inhibitory and stimulatory TF-gene interactions, which in
turn allow us to identify transcriptional modules consist-
ing of negatively as well as positively correlated genes
under experimental conditions relevant to the activity or
inactivity of TFs.

Validation procedure for the STAR model: In order to demonstrate the feasibility of the STAR model, we designed a recaptur-ing schemeFigure 8
Validation procedure for the STAR model: In order to demonstrate the feasibility of the STAR model, we designed a recaptur-
ing scheme. We removed one link at a time from the network and examined whether this link can be recaptured by application 
of the STAR model to this reduced network. This figure explains the validation procedure using the MCM1 – CLB2 link as an 
example. (a) We first applied the USA to the local (STAR-like) network of MCM1 to find experimental conditions in which the 
core input genes are over-expressed or under-expressed. We then evaluated the correlations between all the targets of 
MCM1 under these (UTM) conditions, and removed targets whose correlation with other members of the core set are insig-
nificant. We recursively applied the USA in order to remove MCM1 target genes that are weakly correlated with any other of 
the MCM1 target genes. At each step of the recursive elimination, we identified a centroid gene that has the largest number of 
highly correlated genes. We eliminated genes that are not highly correlated with the centroid gene. We continued these itera-
tions until all the remaining target genes are highly correlated with each other. CLB2 was identified as the centroid in the last 
iteration. (b) In the next step we removed the link MCM1→CLB2 associated with the centroid gene, and applied the STAR 
model described in Figure l(b). As shown, CLB2 reappeared in the UTM generated from the application of the STAR model to 
a core set of input genes that excludes CLB2. Moreover, the matching score between the PWM of MCM1 and the promoter 
sequence of CLB2 was high. Overall, we recaptured 36% of the centroid genes by applying this procedure to all the multi-tar-
get local networks in the literature-driven gene regulatory network.
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Methods employing prior knowledge of TF binding
motifs are limited by the reliability of binding predictions,
which depend on the quality of the PWMs of each TF. The
challenge of integrating TF binding and expression array
data is further complicated by the fact that, in most cases,
the gene expression profiles were not generated under the
same experimental conditions used to collect ChIP-on-
chip data. We endeavored to match each condition-spe-
cific ChIP-on-chip experiment to expression profiles gen-
erated under the most similar experimental environment.
Nevertheless, collection of binding and expression data is
ideally done under the same experimental conditions to
reveal the condition specific transcriptional regulatory
network [7,23].

Intersections between experimental conditions present in
the UTMs of converging links can indirectly reveal some of
the combinatorial regulations in the yeast regulatory net-
work. A plausible mechanism for predicting the combina-
tion of TFs that regulate a target gene is to use a
deconvolution model [24] or regression model in which
the expression profiles of its regulators play the role of
predictor variables. We attempt to directly model these TF
combinations using a reversed-STAR model, in which the
central gene is the target gene and all the links in this local
network emanate from its regulators. This model led to
results with low overlap with ChIP-on-chip experiments
(data not shown). Future experiments will allow us to sig-
nificantly improve the performance of this model by sub-
stituting the mRNA expression profiles of the regulators
with protein expression and phosphorylation profiles.

Conclusion
We have presented two models for extending the yeast
transcriptional regulatory network. The LINK model is
particularly useful when the TF has a single target, whereas
the STAR model is applicable when the TF has multiple
targets. The LINK model is based on the assumption that
mRNA levels of a target gene and its regulator are highly
correlated. The picture is more complicated for proteins
that undergo post-translational modification (such as
phosphorylation) to become functional. With the STAR
model the TF expression pattern is not taken into consid-
eration and there is no assumption regarding co-expres-
sion of a TF and its target gene at the mRNA level. These
models complement each other, and are best used in com-
bination, as shown here.

This approach makes experimentally testable predictions
that can considerably narrow the scope of TFs that must
be surveyed to understand gene regulation.

Methods
Experimental data
We used a compendium of S. cerevisiae gene expression
data compiled by Ihmels et al [9]. The number of experi-
mental conditions in this compendium is 1,011 of which
we selected the 387 conditions associated with diploid
cell. We used the S. cerevisiae transcriptional regulatory
network published by Milo et al [22], which was derived
from the YPD database [25] [see Additional file 4]. We
excluded the TF-target pairs whose regulatory relation-
ships alternate between stimulatory and inhibitory con-
trol. Genes missing from the compendium microarray
expression data were also excluded from this study, leav-
ing us with 6,206 genes of which 115 are TFs. Transcrip-
tion regulatory binding motifs and probe sequences
extracted from ChIP-on-chip experiments [6,26] were
used to predict transcriptional regulatory interactions.
These data consist of the average binding ratio and the
associated P-value from the triplicate experiments, which
were calculated for each TF by using a weighted average
analysis model adapted from Hughes et al [27]. The stand-
ard symbols and aliases for genes were downloaded from
the MIPS Comprehensive Yeast Genome Database [28].
The yeast promoter sequences used in our analysis were
downloaded from the website of the location analysis
experiments by Harbison et al [6].

United Signature Algorithm (USA)
The USA is a variant of the signature algorithm (SA) [8-
10]. We used notation similar to that described by Ihmels
et al [9]. We implemented this algorithm using the com-
posite regulatory network and expression data described
in the experimental data section (and schematized in the
upper panel of Fig. 1) to find transcriptional modules con-
sisting of a set of input genes localized in the composite
network and other genes that are co-regulated with the
input genes under certain conditions. The flow of the pro-
cedures included in the USA is illustrated in Figure 3. Spe-
cifically, the USA includes the following steps:

I. Preprocess the gene expression data stored in the expres-
sion matrix E ∈ ℜm × n by computing a two-way matrix nor-
malization [14] accompanied by a log transformation of
the gene expression ratios G = {g1, ..., gm} under experi-
mental conditions C = {c1, ..., cn}, where m and n denote
the total number of genes and experiments, respectively
(Fig. 3a). The preprocessed expression of gene g under
condition c is stored in a table represented by the matrix
Egc.

II. Input the expression profile of the target gene associ-
ated with the link of interest together with the expression
profiles of all the other genes known to be regulated by
the TF associated with this link, or input the expression
profiles of the TF and the target gene of this link (Fig. 3b).
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This information is represented by the sub-matrix (Egc)g∈T,
whose rows correspond to the log transformed and (zero)
centered expression levels of the input genes. Here T rep-
resents the set of input genes.

III. Multiply the elements of each row in the input sub-
matrix (Egc)g∈T by a weight factor wg that can take one of
two values: -1 if the regulatory relationship between the
input gene g and the TF is inhibitory (see profile inversion
in Fig. 3c), or +1 if the TF- target gene relationship is stim-
ulatory. Denote this sub-matrix by (wgEgc)g∈T.

IV. Define a score sc that measures the extent to which the
input genes are up- or down-regulated collectively in each
experimental condition. This score is determined by a
weighted average involving the expression values of the
input genes, i.e. sc = <wg Egc>g∈T, where <>i denotes the
average with respect to i (Fig. 3c)

V. Derive a united transcriptional module condition set
(Ω), in which all (or some) of the input genes are up-reg-
ulated or down-regulated relative to their collective
expression levels in all the conditions in the yeast expres-
sion dataset. The set is determined by conditions satisfy-
ing the constraint Ω = {c ∈ C: | sc - <sc>c∈C| > tc σc}, where
<sc>c∈C is the average of condition scores over all condi-
tions, tc is a condition threshold value, and σc is the stand-
ard deviation of the condition scores for all experimental
conditions (Fig. 3c).

VI. To find putative genes that maybe co-regulated by the
TF, which regulates the input genes, a gene score sg is
designed to identify genes that are up- and down-regu-
lated across the set of conditions (Ω), and whose pattern
of up- and down- regulation is positively or negatively
coordinated with a corresponding pattern of the condi-
tion scores sc across the condition set Ω. The gene score sg
is defined by the weighted average sg = <sc Egc>c ∈ Ω across
the condition set Ω. The elements in the weighted average
are given by the log-transformed and centered expression
levels Egc multiplied by the corresponding condition
scores sc (Fig. 3d)

VII. Determinine the united transcriptional module's
(UTM) gene set by selecting genes satisfying the constraint
Γ = {g ∈ G : |sg - <sg>g∈G | > tg σg} under the selected exper-
imental conditions (Ω), where tg is a gene threshold value,
and σg is the standard deviation of gene scores for all genes
G (Fig. 3e).

VIII. Filter the gene list in the UTM by keeping only those
genes whose Pearson correlation coefficient with the tar-
get gene or the regulator satisfy |R| > α across the experi-
mental conditions of the UTM.

IX. If needed (see STAR model below), iterate steps II-VIII
until all the genes in the final UTM are highly correlated
with the target gene associated with the link of interest (or
highly correlated with the centroid of the input genes
within the UTM)

As tg increases, the number of genes in the UTM decreases.
As tc increases, the number of conditions in the UTM
decreases. We used the condition threshold tc = 1.5, which
minimizes false-negatives in our prediction of putative
transcriptional regulations and maximizes consistency of
our new regulatory link predictions with ChIP-on-chip
data. To demonstrate how changes in these parameters
affect the results we provide a table (see supplementary
material [1] or [see Additional file 10]) showing the cov-
erage and overlap with ChIP-on-chip data in several slices
in the parameter space.

LINK model
This model involves the application of the USA to each
link in the known regulatory network (left panel of Fig. 4),
such that the list of input genes consists of the regulator
and its target gene. To generate UTMs associated with each
link we used condition and gene thresholds of tc = 1.5 and
of tg = 4.0 respectively. We further filtered the gene list by
keeping only those genes whose correlation coefficient
with the regulator (or alternatively with the target gene of
interest) satisfied |R| > 0.5 across the experimental condi-
tions of the UTM. Then, we evaluated the match between
the position-specific weight matrix (PWM) [6] of the reg-
ulator with the upstream intergenic region of each puta-
tive target gene, and retained genes with a MATCH score
equal to or greater than a predetermined cutoff β. Any TF-
gene pair that belongs to a UTM, has |R| > 0.5, and have a
MATCH score ≥ 0.94 was selected as a putative transcrip-
tional regulatory link.

STAR model
In this model, we applied the USA to an input set of genes
including the target gene of the LINK model and all the
other target genes known to be regulated by the same TF
(right panel of Fig. 4). This model is applicable when the
number of target genes is ≥ 2. In order to obtain a cluster
of highly correlated target genes, we used the following
iterative elimination scheme: We first obtained a UTM
and computed all the correlations between its member
genes across the conditions contained in the UTM. We
then retained genes whose correlation with the target gene
associated with the link of interest satisfied |R| > 0.7,
where R is the Pearson correlation coefficient (alterna-
tively, we retained genes whose correlation with some of
the other genes within the UTM satisfied |R| > 0.7 and
identified a centroid gene whose average correlation with
all of these genes is the highest). Input genes that are
weakly correlated with the target (or centroid) gene were
Page 15 of 17
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eliminated from the next iteration. We iterated the USA
until all the genes in the final UTM were highly correlated
with the target (or centroid) gene. As in the LINK model,
the PWM[6] of the regulator was used to search for a bind-
ing site sequence in the promoter regions of the target
genes of the final UTM. Genes that belong to the final
UTMs that have a high matching score with their respec-
tive PWMs are predicted to be targets of the corresponding
TFs. To obtain UTMs with genes that were significantly
correlated, we used a range of tg = (3,4).
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