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Epistatic interaction of genetic depression risk variants in the
human subgenual cingulate cortex during memory encoding
BH Schott1,2,3,4,12, A Assmann2,3,12, P Schmierer1,5,12, J Soch1,2,3, S Erk1, M Garbusow1, S Mohnke1, L Pöhland1, N Romanczuk-Seiferth1,
A Barman2, T Wüstenberg1, L Haddad6, O Grimm6, S Witt6, S Richter2,7, M Klein2, H Schütze3, TW Mühleisen8,9, S Cichon8,9,10,
M Rietschel6, MM Noethen8, H Tost6, ED Gundelfinger2,3,4, E Düzel3,4,11, A Heinz1, A Meyer-Lindenberg6, CI Seidenbecher2,4 and
H Walter1

Recent genome-wide association studies have pointed to single-nucleotide polymorphisms (SNPs) in genes encoding the neuronal
calcium channel CaV1.2 (CACNA1C; rs1006737) and the presynaptic active zone protein Piccolo (PCLO; rs2522833) as risk factors for
affective disorders, particularly major depression. Previous neuroimaging studies of depression-related endophenotypes have
highlighted the role of the subgenual cingulate cortex (CG25) in negative mood and depressive psychopathology. Here, we aimed
to assess how recently associated PCLO and CACNA1C depression risk alleles jointly affect memory-related CG25 activity as an
intermediate phenotype in clinically healthy humans. To investigate the combined effects of rs1006737 and rs2522833 on the CG25
response, we conducted three functional magnetic resonance imaging studies of episodic memory formation in three independent
cohorts (N= 79, 300, 113). An epistatic interaction of PCLO and CACNA1C risk alleles in CG25 during memory encoding was
observed in all groups, with carriers of no risk allele and of both risk alleles showing higher CG25 activation during encoding when
compared with carriers of only one risk allele. Moreover, PCLO risk allele carriers showed lower memory performance and reduced
encoding-related hippocampal activation. In summary, our results point to region-specific epistatic effects of PCLO and CACNA1C
risk variants in CG25, potentially related to episodic memory. Our data further suggest that genetic risk factors on the SNP level do
not necessarily have additive effects but may show complex interactions. Such epistatic interactions might contribute to the
‘missing heritability’ of complex phenotypes.
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INTRODUCTION
The etiology of human affective disorders is highly multifactorial
with the estimated genetic contribution being as high as 85
percent for bipolar disorder (BPD)1 and around 30 to 40 percent
for unipolar major depressive disorder (MDD).2 Despite the recent
advances in large-scale genomic investigations of the etiology of
complex human diseases, including psychiatric disorders, there is
a considerable gap between the relative genetic contribution
estimated from twin and sibling studies and the actual contribu-
tion from identified genetic risk variants. This unexplained
variance of genetic contributions to human disease is commonly
referred to as the missing heritability.3,4 Several biological
processes have been suggested to underlie the phenomenon of
missing heritability, including gene–environment interactions,
gene–gene interactions, but also the heterogeneity of the
phenotype of interest itself. To help overcome the latter problem,
the concept of intermediate phenotypes, or endophenotypes, has
been introduced and widely applied in psychiatric genetics. An

endophenotype is defined as a measurable trait along the
pathway from a genotype to a complex disease and commonly
shows stronger heritability than the disease phenotype itself.5

Over the past decade, several potential endophenotypes related
to neuropsychiatric disorders have been identified using structural
and functional neuroimaging techniques.6

Neuroimaging studies in depressed patients suggest that a
depression-related endophenotype might have its neural under-
pinnings in dysregulation of the function of the subgenual
anterior cingulate cortex (ACC) (Brodmann Area 25; CG25).
Previous studies show that cerebral metabolism in CG25 is
tonically increased in depressed patients,7 although earlier studies
have reported decreased CG25 metabolism or blood flow in
depressed patients.8 One explanation for this discrepancy might
be partial volume effects resulting from CG25 volume reduction,
which has also been reported in depression (for a review, see
Drevets et al.9,10). Compatible with the observed (volume-
adjusted) increased CG25 metabolism in depression, the
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subgenual cingulate also shows increased functional connectivity
with the default mode network in depressed patients at rest,11

and it has been suggested that CG25 might be part of a brain
network involved in rumination, a hallmark symptom of
depression.12 Moreover, task-related dysfunctional connectivity
patterns of CG25 with prefrontal and temporal brain structures
have been observed in acute and remitted depressed patients,13,14

and deep brain stimulation in CG25 has been demonstrated to
alleviate symptoms in therapy-resistant MDD.15,16 Physiologically,
the subgenual cingulate—as well as its rodent homolog, the
infralimbic cortex—is involved in extinction learning, value repre-
sentation and emotion regulation.17–19 The subgenual cingulate
has also been suggested to participate in episodic memory
formation by integrating information distributed in the limbic
system and suppressing irrelevant representations.20 Recent
studies highlight the potential role of CG25 in linking
episodic memory and negative affect. In MDD patients, subgenual
cingulate activity during encoding of emotional stimuli
has been associated with negative recall bias, and this asso-
ciation is modulated by genetic variability of the HPA axis.21

Furthermore, co-activation of CG25 and the hippocampus
during memory encoding has been linked to symptom improve-
ment in posttraumatic stress disorder, a severe psychiatric
condition characterized by symptoms of depression and anxiety
and by repetitive involuntary intrusions of aversive memory
traces.22

Although earlier candidate gene studies of mood disorders,
particularly BPD and MDD, have largely focused on genes related
to monoaminergic neurotransmission, recent genome-wide asso-
ciation studies (GWAS) have provided converging evidence for
genes encoding components of glutamatergic synapses in the
etiology of affective disorders. These GWAS results are in line with
further evidence for glutamatergic synaptic dysfunction in depres-
sion, such as altered glutamate metabolism as assessed with [1H]
MR spectroscopy23 and rapid antidepressant effects of the NMDA-
type glutamate receptor antagonist ketamine.24 Depression risk
genes related to glutamatergic synapse function include CAC-
NA1C, which encodes the α-subunit of the postsynaptic L-type
voltage-dependent calcium channel Cav1.2, and PCLO, which
encodes the presynaptic active zone protein Piccolo (for a
schematized illustration, see Supplementary Figure S3).
Calcium influx through Cav1.2 channels has an important role in

hippocampus-dependent learning and memory processes as well
as amygdala-dependent fear conditioning. In humans, the A allele
of CACNA1C single-nucleotide polymorphism (SNP) rs1006737 has
been repeatedly associated with higher risk for BPD in GWAS,25

and rs1006737 A has also been linked to increased risk for unipolar
depression.26 Healthy carriers of the A variant exhibit reduced
activation of bilateral hippocampus and of CG25 during episodic
memory recall27 and atypical amygdala activation during proces-
sing of aversive stimuli.28 Recently, we could provide evidence
that the modulation of hippocampal and CG25 activity by
CACNA1C genotype might indeed reflect an endophenotype for
affective disorders, as healthy relatives of patients with either
MDD or BPD exhibited reduced activation of these areas during
episodic recall irrespective of genotype, similar to carriers of the
rs1006737 A allele.29

The presynaptic active zone protein Piccolo, together with the
closely related protein Bassoon, is involved in the fine-tuning of
neurotransmitter release at glutamatergic, GABAergic and dopa-
minergic synaptic terminals and has been suggested to have an
important role in synaptic development and maintenance.30,31 In a
GWAS of unipolar MDD, rs2522833, located within the PCLO gene
and leading to a serine to alanine substitution in the C2A calcium
sensor domain of the protein, came out as a top hit with the C
allele (Ala) being the risk variant.32 Although not reaching
genome-wide significance, further studies have suggested that
rs2522833 or a variant in high linkage disequilibrium may indeed

contribute to the genetic risk of MDD33 and to HPA axis
dysregulation in MDD patients.34 Furthermore, healthy carriers
of the C variant have been demonstrated to exhibit more
pronounced depression-related personality traits and an increased
amygdala response to negative emotional expressions. In mice,
overexpression of the C2A domain has been linked to increased
depression-related behavior.35

Here we had aimed to explore potential interaction effects of
genetic risk factors for MDD on subgenual cingulate response as
an intermediate phenotype. Because of our hypothesis that genes
involved in glutamatergic synapse function support mechanisms
that constitute endophenotypes for depression, we chose two
well-supported candidate genes coding for synaptic proteins,
namely CACNA1C and PCLO. We first investigated how depression
risk alleles of CACNA1C rs1006737 and PCLO rs252283 might
jointly affect CG25 activation during memory formation in a self-
referential encoding task. When we unexpectedly observed a
complex epistatic interaction of the two risk variants during self-
referential episodic encoding, we aimed to replicate this finding in
two additional episodic encoding tasks, conducted in two further
independent cohorts of healthy participants.

MATERIALS AND METHODS
We investigated the potential interactions of CACNA1C and PCLO
depression risk alleles in three functional magnetic resonance imaging
studies, using different episodic memory encoding tasks. Previous studies
have demonstrated that individual differences in memory processes are
relatively stable36 and that particularly prefrontal and hippocampal
activation differences are reliably modulated by genes involved in episodic
memory.37–40 Experiment 1 and 3 were carried out at the University of
Magdeburg, Germany and at the Magdeburg campus of the Helmholtz
Center for Neurodegenerative Diseases, and Experiment 2 took place
within a multicenter study performed in Berlin, Bonn and Mannheim. We
focused our analyses on the subgenual cingulate/CG25 and on the
hippocampus, using the same a priori defined regions of interest (ROIs) in
all three experiments. Detailed methodology of all three experiments is
provided as Supplementary Information online.

Experiment 1: Self-referential memory encoding
In a first experiment, a cohort of 79 young, healthy participants from
Magdeburg, Germany (see Supplementary Information for details on
methods) performed a self-referential memory encoding task.41 Partici-
pants were presented with adjectives describing personality traits and
requested to either judge whether the trait applied to themselves (self-
reference), whether it applied to a famous person (the German federal
chancellor Angela Merkel; other-reference) or whether it had two or any
other number of syllables (control condition). The experimental paradigm
is depicted in Figure 1a.

Experiment 2: Face-profession associative encoding
From the first experiment, the specificity of the interaction effect could not
be determined, as the condition of self-referential encoding was compared
with a low-level baseline condition and could thus reflect both self-
reference and episodic memory formation. We therefore attempted to
replicate our result in Experiment 2 using a blocked design associative
memory encoding task (Figure 2a) that was part of a larger imaging
genetics battery.27 A total of 300 healthy participants of broad age range
(18 to 50) studied face-profession associations using an elaborate
encoding strategy (imagining the person at work). Encoding was followed
by recall and recognition tasks to verify encoding success.

Experiment 3: Encoding of novel scenes
Experiments 1 and 2, although both being episodic encoding tasks, also
shared, to some degree, their ‘social’ element as the task in Experiment 2,
albeit differing from that in Experiment 1, also required social mentalizing.
In an attempt to further replicate and generalize our findings, we
investigated a cohort of 120 young, healthy participants during encoding
of novel scenes using a modified version of a previously described encod-
ing paradigm in which participants studied indoor and outdoor scenes,
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and novelty was assessed relative to previously familiarized ‘master’
scenes42 (Figure 3a). Six participants were excluded from data analysis
because they had also participated in Experiment 1, and one participant
was excluded owing to incomplete data.

Data analysis
Data analysis was performed using Statistical Parametric Mapping (SPM8,
Wellcome Department of Imaging Neuroscience). After image preproces-
sing (correction for acquisition delay and head motion, spatial transforma-
tion to the MNI standard reference frame, spatial smoothing; see
Supplementary Information for detailed protocols), a two-stage general
linear model analysis was carried out. At the first stage, time courses of the
experimental conditions were convolved with a canonical hemodynamic
response function and submitted to a restricted maximum likelihood
fit, with movement parameters as covariates of no interest. At the
second stage, the encoding contrasts (Experiment 1: self-referential
encoding versus baseline; Experiment 2: associative encoding condition
compared with a low-level baseline;27 Experiment 3: successful encoding
of novel scenes compared with a previously familiarized standard picture42

) were submitted to a random effects analysis of covariance (ANCOVA)
model with CACNA1C and PCLO genotypes as fixed factors (wild-type
homozygotes vs risk allele carriers) and age, sex as covariates of no
interest. In Experiment 2, a multicenter study, study site was additionally
modeled as covariates of no interest. Because of our a priori hypotheses
regarding the hippocampus and the subgenual cingulate, the signifi-
cance level was set to Po0.05, family-wise error (FWE)-corrected for the
respective ROIs.

RESULTS
Behavioral results
In all three experiments, participants performed the task with high
accuracy and successful memory performance. Detailed beha-
vioral data are displayed in Supplementary Tables 4, 5 and 6. In
Experiment 2, PCLO rs2522833 was significantly associated with
memory performance during both recall and recognition, with C
carriers showing lower memory performance than A homozygotes
(see Supplementary Results for details). No significant effect of
either PCLO or CACNA1C on memory performance was observed
in experiments 1 and 3, but it should be noted that the lack of
significance might result from insufficient statistical power (see
Supplementary Results and Discussion).

Genotype-independent neural correlates of episodic encoding
In all three experiments, successful memory formation was
associated with robust activation of the hippocampal formation.
Additionally, we observed task-related activations in brain net-
works more specifically related to the respective encoding tasks.

Experiment 1. When comparing the self-reference and control
conditions, all participants, irrespective of genotype group, reliably
activated the default mode network (medial prefrontal cortex
(mPFC), rACC, posterior cingulate, precuneus) and a distributed
network of limbic structures during self-reference, replicating

Figure 1. Effects of CACNA1C and PCLO depression risk variants on self-referential memory encoding (Experiment 1). (a) Experimental
paradigm. Participants studied adjectives describing personality traits and performed either a self-reference task (‘Self ’), an other-reference
task (‘Merkel’) or a control task (syllable counting). Stimuli were presented in a pseudo-randomized order with a near-exponential temporal
jitter to optimize estimation of trial-specific BOLD responses. (b) Interaction of CACNA1C and PCLO depression risk variants on subgenual
cingulate activation. Carriers of both high-risk alleles (CACNA1C rs1006737 A and PCLO rs2522833 C) exhibited comparable CG25 activation as
participants homozygous for both low-risk alleles (CACNA1C rs1006737 G and PCLO rs2522833 A), whereas CG25 activity was drastically
reduced in carriers of either one high-risk allele. The activation difference in CG25 was significant after family-wise error (FWE) correction for
the ROI volume. Bar plots depict contrasts of parameter estimates (SPM betas) scaled to the global mean, ± s.e. ROI, region of interest; SPM,
statistical parametric mapping.
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previous results41 (Supplementary Figure S1A). The inferior mPFC
cluster of activation extended into CG25.

Experiment 2. Across the entire study cohort, encoding relative to
the perceptual baseline condition was associated with activation
of default mode network structures (mPFC/rACC including CG25,
posterior cingulate), extrastriate visual areas as well as limbic
structures, particularly the hippocampus (Supplementary Figure
S1B). As in experiment 1, the results were comparable with
previous studies using this paradigm.27

Experiment 3. As in the original study42 and replicating results of
studies using similar paradigms,40 encoding of novel scenes was
associated with activation of an extensive occipito–parietal
network encompassing ventral and dorsal visual stream structures
as well as bilateral hippocampal activation, irrespective of
genotype (Supplementary Figure S1C). A small medial OFC cluster
in the vicinity of the subgenual cingulate was also found to be
activated as a function of novelty.

Effects of CACNA1C and PCLO genotype on subgenual cingulate
activation
In all the three experiments, we could observe a complex
interaction of PCLO and CACNA1C genotypes in the subgenual
cingulate cortex.

Experiment 1. In a two-way random effects analysis of variance
(ANOVA) model, we tested for the effects of CACNA1C and PCLO
risk alleles by comparing homozygous and heterozygous carriers

of the risk alleles with wild-type homozygous participants.
Because we were primarily interested in the genetic effects on
subgenual cingulate function, we performed a region of interest
(ROI)-based analysis using a pre-defined combined anatomical
and literature-based ROI of CG25 (see Supplementary Material).
We observed a complex gene–gene interaction of CACNA1C
rs1006737 and PCLO rs2522833 in CG25, with participants
homozygous for the low-risk allele of both SNPs and carriers of
both high-risk alleles showing higher CG25 activation during self-
reference when compared with carriers of only one high-risk allele
(either CACNA1C rs1006737 A or PCLO rs2522833 C, but not both;
F1,71 = 13.50; P= 0.034, FWE-corrected for CG25 ROI volume; see
Figure 1b).

Experiment 2. As in Experiment 1, a two-way random effects
ANOVA testing for the influence of CACNA1C rs1006737 and PCLO
rs2522833 genotypes on CG25 activation during encoding
revealed a complex gene–gene interaction with similar CG25
activation in participants homozygous for both low-risk alleles and
in carriers of both high-risk alleles, whereas high-risk allele carriers
of one but not both SNPs showed a relative deactivation in the
subgenual cingulate (F1,290 = 12.82; P= 0.025, FWE-corrected for
CG25 ROI volume; Figure 2b).

Experiment 3. When testing for a gene–gene interaction using a
random effects two-way ANOVA model of the novelty encoding
contrasts (subsequently recognized novel scenes compared with
the master images), we could replicate the complex interaction of
CACNA1C rs1006737 and PCLO rs2522833 observed in the first
two experiments, with carriers of either no or both high-risk alleles

Figure 2. Effects of CACNA1C and PCLO depression risk variants on associative memory encoding (Experiment 2). (a) Experimental paradigm.
The task was divided into three phases (encoding, recall, recognition). During encoding, participants studied face–profession associations
(left). In the recall task, participants were asked to recall the profession associated with the face and decide whether this profession required
academic studies or vocational training (center). During recognition, participants performed a two-alternative forced choice task deciding
which profession had been presented with the face (right). Translations: Architektin—architect; Studium—academic studies; Lehre—
vocational training; Apothekerin—pharmacist. Stimuli were presented as blocked design. (b) Interaction of CACNA1C and PCLO depression
risk variants on subgenual cingulate activation. Carriers of both high-risk alleles exhibited comparable CG25 activation as participants
homozygous for both low-risk alleles, whereas CG25 activation was lower in carriers of either one high-risk allele. The CACNA1C by PCLO
genotype interaction in CG25 was significant after family-wise error (FWE) correction for the ROI volume. Bar plots depict contrasts of
parameter estimates (SPM betas), ±standard error.
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showing higher CG25 activation relative to carriers of either
rs1006737 A or rs2522833 C alleles, but not both (F1,105 = 14.62;
P= 0.039, FWE-corrected for CG25 ROI volume; Figure 3b).

Effects of PCLO genotype on hippocampal activation and memory
performance
Guided by the observed lower memory performance in PCLO
rs2522833 C carriers in experiment 2 (see Supplementary Results
for details), we hypothesized that the C allele of rs2522833 might
also be associated with decreased hippocampal activation. In
experiments 1 and 2, encoding relative to baseline was associated
with reduced activation of the left hippocampus in C carriers.
There was also a trend for lower encoding-related right hippo-
campal activation in C carriers in Experiment 3. Moreover, in
participants of experiment 2, we also observed lower performance
in the Verbal Learning and Memory Test in rs2522833 C allele
carriers (for detailed results on memory performance and hippo-
campal activation as a function of rs2522833 genotype, see
Supplementary Results and Supplementary Figure S2). CACNA1C
rs1006737 genotype was not associated with memory perfor-
mance in any of the three experiments.

DISCUSSION
Summarizing the results of the three experiments, we could
observe a gene–gene interaction between CACNA1C rs1006737

and PCLO rs2522833 in CG25 where carriers of no risk allele and
carriers of both risk alleles exhibited higher activation relative to
carriers of only one risk variant during episodic encoding relative
to baseline. Furthermore, we found evidence for an association of
PCLO rs2522833 with memory performance and memory-related
hippocampal activation.

An epistatic interaction of depression risk alleles
In three functional magnetic resonance imaging studies experi-
ments using three different memory encoding tasks, we
convergingly observed comparable patterns of a complex,
epistatic interaction of CACNA1C and PCLO depression risk alleles
in three independent samples.
Although the multigenic nature of depression and related

phenotypes is well established, the ‘multiplicative’ interaction type
of two risk alleles is an unexpected finding. The fact that all three
experiments were carried out in neurologically and psychiatrically
healthy individuals raises the possibility that a higher load of
genetic risk variants for depression might co-occur with the
presence of resilience factors that might be genetic or environ-
mental or both. It should be pointed out, however, that the
frequency of the risk alleles is considerably higher than the point
prevalence of major depression, making it unlikely that our
observation purely results from a sampling bias in a healthy
population. Given the contribution of both SNPs to the genetic
risk for depression, a predicted outcome of our study might have

Figure 3. Effects of CACNA1C and PCLO depression risk variants on encoding of novel scenes (Experiment 3). (a) Experimental paradigm.
Participants studied novel scenes intermixed with previously familiarized ‘master’ scenes and were asked to respond via button press whether
an indoor or outdoor scene was shown. Stimuli were presented in a pseudo-randomized order with a near-exponential temporal jitter to
optimize estimation of trial-specific BOLD responses. (b) Interaction of CACNA1C and PCLO depression risk variants on subgenual cingulate
activation. Carriers of both high-risk alleles exhibited comparable CG25 activation as participants homozygous for both low-risk alleles,
whereas CG25 activation was lower in carriers of either one high-risk allele. The CACNA1C by PCLO genotype interaction in CG25 was
significant after family-wise error (FWE) correction for the ROI volume. Bar plots depict contrasts of parameter estimates (SPM betas), ± s.e.
ROI, region of interest; SPM, statistical parametric mapping.
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been that carriers of both risk alleles would show an additive or
even synergistic effect of risk allele load on CG25 activity.
Unexpectedly, however, the pattern of genotype-related CG25
activation observed in the present study points to a complex
gene–gene interaction. Specifically, participants homozygous for
the low-risk alleles of both rs1006737 and rs2522833 and carriers
of both high-risk alleles showed comparable levels of subgenual
cingulate activation, whereas risk allele carriers of either one high-
risk variant exhibited relatively reduced activation in this region.
Of note, we were able to replicate this unexpected pattern in two
further cohorts, using different episodic encoding task.
A broad definition of the term epistasis has been used to describe

gene–gene interactions with non-additive effects that can be
either positive or negative.43 Epistatic interactions on neuroima-
ging endophenotypes have been previously observed for genes
related to the dopaminergic system,44,45 but also for genes
involved in different neurotransmitter systems.46,47 The phenotypic
patterns observed in those studies, however, could be readily
explained by the known molecular effects of the genetic variations
investigated, with either both genes investigated influencing the
related parameters (for example, cortical versus subcortical dopamine
availability) or both variants of interest affecting neurotransmitter
systems with known interactions. In the present study, we
demonstrated a complex interaction of two SNPs previously
identified in GWAS. On the other hand, the underlying molecular
and cellular mechanisms remain elusive thus far.
The finding that two genetic variations previously linked to

depression exert a reliable epistatic effect on a depression-related
endophenotype could potentially provide new insights into the
problem of missing heritability.3,4 The fact that carriers of both risk
alleles showed similar levels of subgenual cingulate activation as
low-risk allele homozygotes for both variants raises the possibility
that putative genetic risk variants might, despite their individual
contribution to disease risk, attenuate their respective effects
when present simultaneously. Yet, one caveat in the present study
remains that, although the observed pattern could be reliably
replicated in three independent healthy cohorts, we can thus far
only make inferences regarding a neural endophenotype, but
not concerning clinical risk for depression. Future studies are
warranted that specifically target potential interactions of
previously identified genetic risk factors for neuropsychiatric
disorders at the level of actual risk to develop a disorder. Such
epistatic interactions might be difficult to detect in standard
GWAS analyses, but at a chromosomal level, epistatic interaction
between distant loci has already been described for the genetic
risk for BPD,48 and with the recent advance in computational
biology, genome-wide interactome studies might soon become
feasible and help to systematically uncover such complex genetic
contributions to the risk for neuropsychiatric disorders.

Subgenual cingulate function in depression endophenotypes and
memory
Converging evidence suggests that structural and functional
alterations of the subgenual cingulate might constitute an
endophenotype for depression.27,49 Physiologically, in healthy
humans, CG25 activity has been linked to negative emotional
states like grief17 or social exclusion,50 but also to the cognitive
control of negative emotions18,19 as well as to the regulation of
emotion-induced autonomic responses51 and successfully over-
coming fear.52 Compatibly, the infralimbic cortex, the rodent
homolog of the subgenual cingulate has been shown to contri-
bute to fear extinction and regulation of corticosteroid release,53

and chronic glucocorticoid exposure leads to dendritic remodel-
ing in the infralimbic cortex and impaired fear conditioning.54

Although the stimulus material used in our experiments was not
designed to be emotionally arousing, it could be argued that
the self-reference condition in experiment 1 and the social

mentalizing required for the encoding task in experiment 2 might
functionally engage CG25 to a certain extent, and, indeed, we
observed genotype-independent activation of the ventromedial
PFC in these two experiments, which extended into the subgenual
cingulate (see Supplementary Figure S1). Although the tasks of the
first two experiments also engaged social cognition, the scenes
presented in experiment 3 did not contain recognizable human
faces, thus minimizing a potential social component of the task. A
unifying feature, however, was the episodic nature of the tasks, in
all of which complex associative information was encoded into
hippocampus-dependent memory (all three tasks were followed
by retrieval tasks that confirmed successful encoding; see
Supplementary Information for details). The subgenual cingu-
late/infralimbic cortex is extensively interconnected with the
hippocampus and other limbic structures like the amygdala and
the ventral striatum, and it has been suggested that the subgenual
ACC and ventromedial PFC might functionally integrate distrib-
uted information within the limbic system and also suppress
irrelevant limbic information.20 With respect to the present study,
gene variants linked to risk for depression might exert a complex
epistatic effect on subgenual cingulate-dependent processing of
episodic information. We could previously demonstrate that
CACNA1C genotype was associated with alterations of hippocam-
pal and CG25 activity during the recall phase of experiment 2 and
that genetically mediated activation differences in these regions
correlated with depression-related psychopathology,27,29 but not
memory performance. In the present study, genetically mediated
differences in memory performance have been observed for PCLO
only and associated with reduced hippocampal, but not CG25
recruitment (see Supplementary Results and Discussion). A
limitation of the current study is that no uniform measures of
psychopathology were available across the three cohorts, and we
could therefore not test for a relationship between functional
magnetic resonance imaging studies responses or memory
performance and depression-related traits in our participants. It
can therefore not be excluded that the observed effects might be
primarily related to memory processing and affect depression-
related phenotypes indirectly, although previous studies point to a
role for dysfunctional memory processes such as negativity bias
and depressive illness.21,55 Future studies will therefore be
required to further assess the relationship between memory
processing and pathomechanisms of depression.

Synaptic dysfunction and psychiatric endophenotypes
Earlier genetic association studies and investigations of endo-
phentypes of psychiatric disorders have largely focused on the
monoaminergic neurotransmitter systems and other neuromodu-
lators like BDNF. GWAS results, on the other hand, highlight the
role of genetic variations in components of the glutamatergic
synapse in psychiatric, particularly affective disorders. For example,
the CACNA1C gene product constitutes the alpha subunit of the
L-type calcium channel CaV1.2, an important postsynaptic calcium
channel, which is co-clustered with AMPA- and NMDA-type
glutamate receptors.56 Piccolo is a large presynaptic active zone
protein and has an important role in the maintenance of presy-
naptic integrity and coordination of neurotransmitter release31,57

(for a schematized illustration see Supplementary Figure S3). It is
tempting to speculate that molecular changes in the presynapse
(like dysregulation of neurotransmitter release) and the post-
synaptic spine or dendrite (like a blunted Ca2+ response) might
counterbalance each other in certain limits, thus affecting the
interpretation of the results. In other words, a symmetric change
of pre- and postsynapse in the same individual may have less
severe or even no consequence as compared with a genetic
condition asymmetrically affecting only one synaptic compart-
ment. Additional structure and adapter molecules of the
glutamatergic synapse have recently been identified as potential
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genetic modifiers of risk for affective disorders, such as the
postsynaptic adapter protein Homer158 and the synaptic extra-
cellular matrix proteoglycan neurocan.59,60 Moreover, endophe-
notypes relevant to psychiatric disorders such as social cognition
and aggression have been linked to genetic variability of synaptic
proteins like PSD-9561 or AKAP79/150.62 In line with those results,
altered glutamate levels in the rostral ACC have been associated
with symptom severity in depressed patients.23 The present study
cautions, however, that, at least at the level of endophenotypes,
the excitatory synaptic contribution to risk for affective disorders
might not be linear, maybe reflecting the complexity of the
synaptic machinery.

CONCLUSIONS
In three independent cohorts, using three different memory
encoding paradigms, a complex epistatic interaction between two
depression risk alleles coding for synaptic proteins could be
reproducibly demonstrated in the subgenual cingulate. The
finding that carriers of both risk alleles exhibit similar activation
patterns as carriers of no risk allele points to epistatic gene–gene
interactions at the level of endophenotypes for psychiatric
disorders. Future studies should systematically address such
interactions and thereby possibly uncover a potentially under-
estimated contributor to missing heritability.
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