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Abstract: Although the outcomes of viral infectious diseases are remarkably varied, most 
infections cause acute diseases after a short period. Novel coronavirus disease 2019, which 
recently spread worldwide, is no exception. Extracellular vesicles (EVs) are small circulating 
membrane-enclosed entities shed from the cell surface in response to cell activation or 
apoptosis. EVs transport various kinds of bioactive molecules between cells, including 
functional RNAs, such as viral RNAs and proteins. Therefore, when EVs are at high levels, 
changes in cell activation, inflammation, angioplasty and transportation suggest that EVs are 
associated with various diseases. Clinical research on EVs includes studies on the coagula
tory system. In particular, abnormal enhancement of the coagulatory system through EVs can 
cause thrombosis. In this review, we address the functions of EVs, thrombosis, and their 
involvement in viral infection. 
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Introduction
Most viruses are small sized (typically 0.02 to 0.3 μm), unlike large and mega- 
viruses whose maximum lengths can reach 1 μm in length at the maximum.1–3 The 
reproduction of a virus depends on bacterial, plant, and animal cells including those 
in humans.4 Viruses are classified according to genomic properties and structures as 
well as their reproduction method, and not according to the disease that each virus 
causes.5 Replication in DNA viruses typically occurs in the nucleus of the host cell, 
whereas RNA virus replication typically occurs in the cytoplasm.5,6 There are 
exceptions, however. For example, H1N1 (an RNA virus) cannot reproduce in the 
host’s cytoplasm, whereas vaccinia (a DNA virus) does not need the nucleus to 
reproduce. After reproduction of a complete virus particle, the host cell typically 
perishes and the virus is released to infect other host cells.4–6 Although the out
comes of viral infectious diseases are remarkably varied, most infections cause 
acute disease after a short period.7 Novel coronavirus disease 2019 (COVID-19), 
which recently spread worldwide, is no exception.8,9

Extracellular vesicles (EVs) are small circulating membrane-enclosed entities 
shed from cell surface in response to cell activation or apoptosis.10 Although detailed 
understanding of EVs is lacking, information about EVs has been accumulating.11–13 

EVs measure 0.01－4 μm and are generated by various processes.11,12 EVs transport 
various types of molecules between cells, such as viral RNAs and proteins.14–16 

Therefore, when EVs are at high levels, cell activation, inflammation, angioplasty 
and states involving transportation occur, indicating the association of EVs with 
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various diseases.11,14,17–19 Clinical research of EVs includes 
studies on the coagulatory system. In particular, abnormal 
enhancement of the coagulatory system by EVs can cause 
thrombosis and disseminated intravascular coagulation 
(DIC). Such an abnormality after a viral infectious disease 
can become a significant clinical problem. In this review, we 
address the functions of EVs, thrombosis, and their involve
ment in viral infection.

Classification of EVs
EVs are classified into three groups by size, namely exo
somes, microvesicles (MVs), and apoptotic bodies (ABs) 
(Table 1).11 Exosomes are EVs with diameters of 30–200 
nm, and these membrane-bound vesicles can be precipitated 
by ultracentrifugation at 100,000×g.11,12,15,20 Most exosomes 
carry specific proteins reflecting the characteristics of the 
origin cell.21–23 They form through multi-vesicular bodies 
(MVBs) that fuse with the cell membrane for release.15,24,25 

Exosomes are released from a cell via a mechanism of 
endosomal complexes required for transport (Figure 1).26

MVs are EVs of 10–1000 nm in size.11 MVs are also 
called microparticles (MPs).10,11,27 The differences 
between MVs and exosomes other than their size are the 
processes of formation and secretion.15,28 MVs are gener
ated by the surface of the cell breaking off, which is 
controlled by cell activation.29 The plasma membrane 
includes several kinds of phospholipids.11,30 The internal 
leaflet contains aminophosphatides (eg, phosphatidylser
ine:PS) for a negative charge.30 MV biogenesis, which 
occurs via blebbing, is a fragmentation phenomenon 
whereby nascent MVs are released into the extracellular 
space via pinching off from the plasma membrane.31,32 

MVs contain distinct protein and lipid components from 
the plasma membrane.32 During cell activation, the charge 
of the leaflet changes the structure of the normal lipid 

layer, and PS is exposed to MV (Figure 1).33 This leads 
to procoagulant activity in the MVs.34

EVs generated by apoptosis are called apoptotic bodies 
(ABs).11,35,36 During its final phase of apoptotic death, the cell 
divides into several Ab,32 the size of which are 1000–3000 
nm.37,38 Similar to MVs, ABs are formed by PS moving to the 
cell surface.33–35 ABs may contain a wide variety of cellular 
components, such as micronuclei, chromatin remnants, cyto
sol portions, degraded proteins, DNA fragments, and even 
intact organelles.32 The main difference between ABs and 
MVs is the existence of materials derived from the nucleus 
such as histones and DNA fragments (Figure 1).39,40

Function of EVs
EVs can carry activated coagulation factors, by expressing 
phosphatides on their surface.11 Therefore, it is thought that 
the existence of EVs is related to several diseases, indicating 
a coagulatory promotion tendency.11,27 Because EVs pro
mote intravascular coagulation to support thrombin genera
tion, they may be linked with coagulation abnormalities.27 

The procoagulant activity observed on platelet-derived EV 
surfaces is 50 to 100-fold higher than that observed on 
activated platelets.41 This suggests that the coagulatory pro
motion by EVs is an important defense mechanism for 
bleeding risk.11 EVs also carry tissue factor (TF) that is 
important to activate the coagulation system.42

The main characteristics of atherosclerosis are the adhe
sion of monocytes to the endothelium and movement of 
monocytes into the subendothelium.27 When a monocyte is 
activated by platelet-derived EVs and adheres to the endothe
lium, several inflammatory cytokines are generated.43 

Furthermore, stimulation or activation of the endothelium by 
EVs increases the expression of adhesion molecules on the 
endothelial surface.43,44 Atherosclerotic lesions can develop 
and progress in severity via the apoptosis of endothelial cells, 

Table 1 Population and Characteristics of EVs

Exosome MV (MP) AB

Size 30–200 nm 100–1000 nm 1000–3000 nm

Shape Homogeneous Variable Variable
Origine MBV fusion with the plasma membrane Budding from the plasma membrane Budding from the plasma membrane

Markers Tetraspanins (CD9, CD63, CD81) Alix, 

TSG101, HSP70

Annexin V, Integrin, Selectin, CD40 ligand, 

metalloproteinase

Annexin V, DNA fragment Caspase 

3, Histones
Isolation Ultracentrifugation (100,000g) Ultracentrifugation (10,000–100,000g) Ultracentrifugation (6000–10,000g)

P-Act Weak Powerful Powerful

Notes: Data from Nomura.11 All vesicles preparations are heterogeneous with different protocols allowing the enrichment of one type over another. 
Abbreviations: MV, microvesicle; MP, microparticle; AB, apoptotic body; MBV, multivesicular body; TSG101, tumor susceptibility gene 101; HSP70, heat shock protein 70; 
P-Act, procoagulant activity.
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a process induced by a substantial number of EV-dependent 
coagulatory factors.11,27,45

EV appear to constitute a new system of cell-cell 
communication.16,46,47 EVs have various important functions 
such as coagulatory promotion, immunosuppression, and 
angioplasty.48,49 EVs may be the most suitable mechanism 
through which cells communicate with others.15,48 For exam
ple, EVs produced by one kind of cell stimulate another 
specific cell.50,51 EVs carry tetraspanin protein and may 
employ a mechanism that can return in a specific 
organization.52,53 Another mechanism involves fusion with 
the cell membrane, which results in the transfer of mRNA, 
micro(mi)RNA, proteins, and signaling molecules by 
EVs.54,55 The existence of miRNAs has been found in EVs 
released with biological fluid of patients with various viral 
infectious diseases.13,56–58 EVs might play a crucial role in 
dissemination of pathogens as well as host-derived mole
cules during infection.58 Therefore, EVs may be strongly 
involved in progression of the post-viral condition and the 
origin of complications.59

Viral Infection and Thrombosis
Ebola, H1N1 influenza, cytomegalovirus, chickenpox – 
herpes zoster, hepatitis C virus, human immunodeficiency 

virus (HIV), coxsackie virus B3, herpes simplex virus-1, 
dengue, and Junin virus are accompanied by thrombotic 
complications and bleeding.60–71 There are at least two 
major factors underlying the onset of thrombosis that are 
associated with these viral infections (Figure 2).72,73 One 
factor influencing the blood vessel system is the viruses 
themselves, because they can influence monocytes, neu
trophils and the blood vessel endothelium and also induce 
the expression of TF.74 Some viruses can also directly 
influence platelets and enhance PS expression during 
their infections.75–77 Plasma from influenza patients may 
also contain MVs with TF activity.78 This leads to strong 
thrombosis onset, by enhancing the activity of the exogen
ous coagulatory system. The second mechanism influences 
the immune system. The viral infection influences the 
immune system, and inflammation with the cell which 
immunity decreased spreads, and an imbalance between 
coagulation and anti-coagulation occurs.79 This mechan
ism is related to interactions between the virus and Toll- 
like receptors (TLRs).70,79

Ebola Virus (EBOV)
EBOV is a negative-sense RNA virus that causes a severe 
disease characterized by high fever, diarrhea, and unexpected 

Figure 1 Convergence of EV and virus biogenesis. Original cell owns the endocytic and secretory pathways. Viruses share effectors of EV production for their assembly and 
release. Exosomes produced in the MVB and shed MV (MP) budding of the plasma membrane. Apoptotic cell finally releases shedding AB. 
Abbreviations: MV, microvesicle; MP, microparticle; AB, apoptotic body; N, nucleus; MBV, multivesicular body; ER, endoplasmic reticulum.
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onset of vomiting.80 Additionally, this virus causes a serious 
procoagulatory abnormality with liver damage.80 EBOV 
infection induces TF expression in infected cells and serum 
D-dimer rises, finally causing DIC.81 EBOV disrupts the 
functions of dendritic cells coordinating a T cell 
increase.82,83 Therefore, it is thought that EBOV infectious 
disease develops a thrombotic tendency by failure of the 
immune system and enhancement of coagulation.70,84

Influenza A Virus (IAV)
Influenza A virus (IAV) is a negative-sense RNA virus that 
commonly causes death.85 Cardiovascular system disorders, 
such as acute myocardial infarction, deep vein thrombosis, 
and pulmonary embolism, are observed.86–90 Disorder of the 
blood vessel wall barrier by IAV may contribute to the 
development of pulmonary damage in patients with 
influenza.91,92 H5N1-infected chickens show microthrombo
sis and thrombocytopenia.93 IAV infectious disease causes 
a high level of plasma von Willebrand factor (vWF) and 
a decrease of a disintegrin-like and metalloproteinase with 
thrombospondin type 1 motifs 13 (ADAMTS13), which may 
result in clot-related microangiopathy.94,95 Therefore, IAV 
infectious disease is thought to cause immunity and aggrava
tion of the wall system, which results in inflammatory induc
tion and coagulatory enhancement.

Human Immunodeficiency Virus (HIV)
Human immunodeficiency virus (HIV) is a positive-sense 
single-stranded enveloped RNA virus of the Retroviridae 
family.96 One cause of death in HIV-infected patients is cardi
ovascular disease (CVD), and functional disorder in the blood 

walls caused by HIV reproduction is a considerable determi
nant of it.96–98 Additionally, the immune reaction and inflam
mation caused by HIV infection may be cardiovascular 
risks.99,100 The death rate is strongly related to interleukin 
(IL)-6, high sensitivity C-reactive protein (hsCRP), and 
D-dimer. In particular, IL-6 and hsCRP are related to the 
development of acquired immunodeficiency syndrome.101,102 

Funderburg et al103,104 reported that TF expression on the 
surface of monocytes increases in HIV patients. Additionally, 
Harley et al105 reported that T-cell kinetics and activity of the 
thrombin-PAR1 signaling axis are increased by proinflamma
tory cytokines during HIV infection and contribute to adaptive 
immunoreactions. Furthermore, young patients with HIV 
infection have a high level of vWF and a low level of 
ADAMTS13, which are related to stroke.106 Therefore, HIV 
infection has a thrombotic risk through various 
mechanisms.107,108

Hepatitis C Virus (HCV)
Hepatitis C virus (HCV) is a positive-sense, single- 
stranded RNA virus of the Flaviviridae family. HCV 
infection carry the risk of thrombosis, which increases 
with expression of TF, fibrinolysis interference, and 
increased platelet aggregation and activation.109 HCV 
viral RNA activates TLR-3 in endothelial cells (ECs), 
leading to inflammation and expression of tumor necro
sis factor (TNF)-α.110 Damaged ECs can affect immune 
cells through CXCL12 chemokine expression.111 

Through these mechanisms, increased TNF-α induces 
expression of TF and downregulation of thrombomodu
lin (TM).112 Hodowanec et al113 confirmed that elevation 
of TF expression and enhancement of coagulatory activ
ity increase in some chronic HCV patients. Similarly, 
during chronic HCV infectious disease, wall functional 
disorder caused by plasma vWF levels increases.114

Coxsackievirus (CoxV)
Coxsackievirus (CoxV) is negative-sense RNA virus of the 
Picornaviridae family.70 It is accompanied by a considerable 
risk of thromboembolism caused by myocarditis.115 

Additionally, myocarditis coagulopathy and hepatic necrosis 
occur, and ventricular clot formation increases significantly 
because of platelet activation.116

Herpes Simplex Virus (HSV)
Herpes simplex virus (HSV) is double-stranded, linear DNA 
genome virus of the herpesvirus family.70 Infection of blood 
vessel ECs by HSV increases TF activity and reduces TM 

Figure 2 EV mediated thrombotic event pathway. 
Abbreviations: EV, extracellular vesicle; MV, microvesicle; MP, microparticle; EC, 
endothelial cell; PAI-1, plasminogen activator inhibitor-1; VWF, von Willebrand factor.
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expression.69,117 Sutherland et al118 reported that HSV type 1 
(HSV-1) is a cofactor for PAR-1 that induces TF and glyco
protein C, causing thrombin production. HSV-1 and HSV-2 
move FX to the cell surface via internal mechanism 
phosphatides.117–119 It is thought that these viruses drive 
thrombin generation on the cell surface via this 
mechanism.117

Epstein-Barr Virus (EBV)
Epstein-Barr virus (EBV) belongs to the herpesvirus 
family and has double-stranded DNA. Its name was chan
ged to human herpesvirus type 4 (HHV-4), but the former 
name is still widely used.70 EBV triggers autoantibody- 
producing autoimmunity in response to various autoim
mune diseases.120 Patients with EBV experience portal 
vein thrombosis caused by hypercoagulable syndrome.121

Cytomegalovirus (CMV)
Cytomegalovirus (CMV) has double-stranded DNA with 
the generic name of herpesvirus characterized by forming 
a characteristic inclusion body of the observable “eyes of 
the owl” state in the nucleus of the host cell under an 
optical microscope. CMV transforms monocytes and 
induces production of inflammatory cytokines. Therefore, 
the incidence of thrombosis in patients with acute CMV 
infection is common.121,122

Corona Virus (CoV)
Corona virus (CoV) causes disease in mammals and birds, 
and has a single strand plus chain RNA genome.123 In 2003, 
a CoV epidemic caused by severe acute respiratory syndrome 
CoV (SARS-CoV-1) emerged in China.124 SARS-CoV-1 
was associated with severe thrombotic complications.124 

Several SARS-CoV-1 cases exhibited pulmonary embolism 
and deep vein thrombosis.125 The characteristics of SARS- 
CoV-1 are a prolonged prothrombin time, prolonged acti
vated partial thromboplastin time, elevated D-dimer, and 
worsening thrombocytopenia.126 These findings are consis
tent with DIC. Furthermore, interestingly, thrombopoietin 
levels increase in SARS-CoV-1 patients at the convalescent 
phase compared with normal controls.127 These findings 
have also been reported in patients with septic DIC.128

Another CoV infection was reported in 2012.129 This 
CoV was responsible for “Middle East respiratory syn
drome” (MERS-CoV).129 MARS-CoV is similar to SARS- 
CoV-1 and associated with thrombotic complications. 
Specifically, DIC is one of the major complications reported 
in fatal MERS-CoV cases.130

In 2019, another CoV caused a global pandemic. CoV 
disease 2019 (COVID-19) is a novel CoV strain disease.8,9 

COVID-19 patients suffer from severe respiratory or sys
temic manifestations. Therefore, COVID-19 is also called 
SARS-CoV-2.131 Thrombotic complications also emerge in 
patients with COVID-19.132–135 COVID-19 patients have 
elevated D-dimer levels, prolonged prothrombin times, and 
thrombocytopenia similar to DIC.132,136–138 Both elevated 
D-dimer levels and thrombocytopenia can be explained by 
excessive activation of platelets and the coagulation cascade. 
In contrast, phagocytosis or direct viral targeting by the 
immune system can also cause these abnormal clinical find
ings. Thus, viral infections elicit systemic inflammatory 
immune responses resulting in imbalanced coagulation.70

EVs and Coagulatory Abnormalities 
During Viral Infection
EVs from a virally infected cell include not only the virus, but 
also information on the host.139 Therefore, EVs are involved in 
interactions between a virus and various cells of the host. As 
we have mentioned, the function and role of EVs are 
varied.15,27,46,47 Most importantly, EVs that participate in post- 
viral coagulatory abnormalities may be MVs (or MPs), 
because it appears that most characteristic functions of MVs 
promote coagulation depending on TF (Figure 2). In addition, 
MVs can substantially increase procoagulant activity on plate
let surfaces, thereby contributing to coagulant abnormality 
during viral infection.11,41 In contrast, exosomes contain 
many functional features, one of which concerns the immune 
system (Figure 2).56,139–142 For example, lymphatic exosomes 
promote dendritic cell migration along guidance cues, thereby 
regulating the immune system.142 Therefore, it is possible that 
exosomes do not influence the coagulatory system.

EVs are involved in some aspects of viral infectious 
disease.143 After infection, for example, EBOV packages 
the protein moiety characteristic of this virus in EVs. 
Apoptosis of immune cells in the host is guided by inflam
matory cytokines.144 This drives failure of the homeostasis 
mechanism in blood vessels, leading to coagulatory abnorm
alities such as vein clots and DIC. Airway epithelial cells 
release EVs that neutralize human influenza virus.145 This 
mechanism of EVs might play an important role in defense 
against respiratory viruses.146 EVs after HIV infection have 
a significant influence on the immune system.147–149 CMV- 
related EVs are useful to reinforce infectivity of CMV.143,150 

Human CMV infection is controlled by T cell-mediated 
immunity and CMV infects ECs.151,152 One of the functions 
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of EC-derived EVs after CMV infection might be contribut
ing to innate surveillance.151

One role played by post-viral EVs exosomes is their 
participation in maintaining the pathological state and 
promoting the spread of viral infection. The main roles 
of MVs and MPs appear to be in coagulation 
abnormality.59,153–161 Regarding COVID-19, reports invol
ving EVs are still rare.162–165 However, a similar role of 
exosomes and MVs is assumed in COVID-19 as other 
virus infectious diseases.166–170 In particular, concerning 
thrombosis, there is no doubt that COVID-19 causes more 
symptoms in comparison with the past virus infectious 
disease.171 Accumulation of important reports of EVs in 
conjunction with COVID-19 is expected in the future.

Conclusions
We have addressed the functions of EVs in thrombosis, and 
their involvement in viral infections. Clinical research on 
EVs should include studies on the coagulatory system. In 
particular, abnormal enhancement of the coagulatory system 
by EVs can cause thrombosis and DIC (Figure 2). There are 
reports about EVs in some virus infectious diseases. 
Apoptosis of immune cells in the host is guided by inflam
matory cytokines. As a role of post-viral EVs, exosomes 
participate in pathological maintenance and infection spread
ing. The main roles of MVs appear to be in coagulation 
abnormalities. Although many viral infections involve EVs, 
the role of EVs in COVID-19 is unclear. Nevertheless, 
thrombosis is a major problem that affects the prognosis of 
COVID-19 patients. Accumulation of important reports of 
EVs in conjunction with COVID-19 is expected in the future.
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