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jszade@gumed.edu.pl

5 Department of Medical Laboratory Diagnostics-Biobank, Medical University of Gdańsk,
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Abstract: Tumor-to-stroma ratio (TSR) is a prognostic factor that expresses the relative amounts of
tumor and intratumoral stroma. In this study, its clinical and molecular relevance was evaluated in
prostate cancer (PCa). The feasibility of automated quantification was tested in digital scans of tissue
microarrays containing 128 primary tumors from 72 PCa patients stained immunohistochemically for
epithelial cell adhesion molecule (EpCAM), followed by validation in a cohort of 310 primary tumors
from 209 PCa patients. In order to investigate the gene expression differences between tumors with
low and high TSR, we applied multigene expression analysis (nCounter® PanCancer Progression
Panel, NanoString) of 42 tissue samples. TSR scores were categorized into low (<1 TSR) and high
(≥1 TSR). In the pilot cohort, 31 patients (43.1%) were categorized as low and 41 (56.9%) as high
TSR score, whereas 48 (23.0%) patients from the validation cohort were classified as low TSR and
161 (77.0%) as high. In both cohorts, high TSR appeared to indicate the shorter time to biochemical
recurrence in PCa patients (Log-rank test, p = 0.04 and p = 0.01 for the pilot and validation cohort,
respectively). Additionally, in the multivariate analysis of the validation cohort, TSR predicted BR
independent of other factors, i.e., pT, pN, and age (p = 0.04, HR 2.75, 95%CI 1.07–7.03). Our data
revealed that tumors categorized into low and high TSR score show differential expression of various
genes; the genes upregulated in tumors with low TSR score were mostly associated with extracellular
matrix and cell adhesion regulation. Taken together, this study shows that high stroma content
can play a protective role in PCa. Automatic EpCAM-based quantification of TSR might improve
prognostication in personalized medicine for PCa.

Keywords: prostate cancer; tumor-to-stroma ratio; biochemical recurrence; tumor progression;
digital pathology

J. Pers. Med. 2021, 11, 1088. https://doi.org/10.3390/jpm11111088 https://www.mdpi.com/journal/jpm

https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0003-4811-4915
https://orcid.org/0000-0002-3410-089X
https://orcid.org/0000-0002-4596-4837
https://orcid.org/0000-0002-3375-7726
https://orcid.org/0000-0003-1482-6068
https://orcid.org/0000-0001-7270-1592
https://orcid.org/0000-0002-0701-4961
https://orcid.org/0000-0003-3681-3049
https://orcid.org/0000-0001-9506-942X
https://doi.org/10.3390/jpm11111088
https://doi.org/10.3390/jpm11111088
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jpm11111088
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm11111088?type=check_update&version=1


J. Pers. Med. 2021, 11, 1088 2 of 12

1. Introduction

Prostate cancer (PCa) is the second of the most frequently diagnosed cancers among
men worldwide [1,2]. Although the prostate-specific antigen (PSA) blood test is a widely
used screening tool allowing for earlier diagnosis, it possesses some limitations in identi-
fying patients with significant PCa or at the high risk of progression [3]. Therefore, there
is a need for other prognostic marker(s) refining risk stratification and/or supporting
treatment decisions.

Tumoral stroma is recognized as one of the key players [4,5] during cancer develop-
ment, progression [6], or even therapy resistance [7]. Its main role includes the formation of
structure and/or remodeling of the tissue [7]. In early disease stages, intratumoral stroma
may even inhibit tumor progression [7], whereas, later, it frequently influences new vessel
formation, inflammation, and, in turn, promotes cancer progression [8].

The intratumoral content of the stroma alone or transformed into the so-called tumor-
to-stroma ratio (TSR) was reported to be of clinical significance in multiple studies. Indeed,
in different solid tumors, both low and high TSR are shown to be associated with the
higher risk of cancer progression and poor patients’ prognosis [9,10]. Low TSR [11–13]
occurs as an independent prognostic factor [14], and is associated with more aggressive
features of cancer cells in diverse solid malignancies including colon [15–17], rectal [14],
gastric [10], non-small cell lung [18], ovarian [19], cervical [20], and breast cancer [21–23].
On the contrary, low stroma content equivalent to high TSR refers to poor prognosis in
endometrial and estrogen receptor-positive breast cancer [24,25]. Although TSR has not
been described yet in PCa, the clinical significance of both no/little or a high amount
of stroma content (i.e., an equivalent of TSR) was shown to be associated with worse
recurrence free-survival in this type of cancer [25–27].

Despite its clinical potential, there has not yet been implementation of TSR scoring
in routine pathology. It could be due to the variety in methodology and the lack of a
standardized procedure for its evaluation. TSR is one of the markers that may suffer from
reproducibility issues when assessed visually due to intra- and inter-observer variability.
Digitalization and automation of the TSR evaluation process might reduce this variance
and facilitate standardization of TSR assessment. Indeed, due to its numerous advantages,
digital pathology is rapidly evolving and gaining interest. It allows for faster, more precise,
and cost-effective work, reducing the variability between pathologists’ evaluation [28–30].
According to the literature data, so far, the automated digital analysis of TSR has been
attempted to be performed on digital images [31], using computer-aided quantification [14]
or deep learning systems [32].

In PCa, the stroma content has been reported to be automatically quantified from stan-
dard hematoxylin-eosin digital scans [26,33]. Epithelial cell adhesion molecule (EpCAM)
is widely expressed in PCa [34–36], and can differentiate between tumor and stroma cells.
Thus, in the current study, TSR was assessed automatically in digitalized EpCAM-stained
tumors and correlated with the clinical outcome and molecular phenotype of tumor cells
in PCa patients. Additionally, using multigene expression analysis, the tumors with low
and high TSR were compared at the RNA level.

2. Results
2.1. TSR Evaluation in the Pilot and Validation Cohort

The automated method recognized TSR correctly in tumors with weak (17.80%) and
moderate to strong (82.20%) EpCAM expression (Supplementary Figure S1). All tumor
samples from the pilot and validation study were assessed automatically followed by
visual verification.

Pilot cohort. A total of 128 tumor samples corresponding to 72 d’Amico high risk
PCa patients fulfilled the technical quality and TSR assessment criteria (Figure 1A). All
informative tumor samples were positive for EpCAM staining. In total, the range of TSR
values detected in the informative tumor samples was 0.03 to 61.44, with the median and
mean equal to 1.06 and 2.89, respectively. For each patient, the maximal value obtained
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from eligible tumor samples categorized as low TSR score was <1 (n = 31, 43.10% of all
patients) or ≥1 (n = 41, 56.90%), respectively (Figure 2).
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Figure 2. Representative photomicrographs of different TSR categories in prostate carcinomas: low
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Validation cohort. A total of 310 tumor fragments corresponding to 209 patients ful-
filled the technical quality and TSR assessment criteria, including appropriate tissue quality,
presence of tumor cells visible in four sides of the specimens [17], and informative EpCAM
staining. These samples were included for the further analysis (Figure 1B). In total, the
range of TSR values detected in the informative tumor samples was 0.16 to 27.50, with the



J. Pers. Med. 2021, 11, 1088 4 of 12

median and mean determined as 2.14 and 3.52, respectively. For each patient, the maximal
value obtained from eligible tumor samples was categorized as low or high TSR if TSR
score was <1 (n = 48, 23.00% of all patients) or ≥1 (n = 161, 77.00%), respectively (Figure 2).

2.2. Clinical Significance of TSR in the Pilot Cohort

When compared to the available clinico-pathological parameters, TSR score did not
correlate to patient’s age, pT status, pN status, and preoperative PSA in the pilot cohort
(Supplementary Table S1). TSR correlated to higher Gleason Grading score (Fisher’s exact
test, p = 0.03). In the survival analysis, high TSR appeared to indicate a shorter time to
biochemical recurrence in the pilot cohort of PCa patients (Log-rank test, n = 72, p = 0.0373,
Figure 3). In uni- and multivariate analysis of the pilot cohort (n = 72) for predicting BR,
including pT and pN status, age, Gleason score, and total serum PSA concentration, TSR
did not show a prognostic relevance (Cox regression model, Supplementary Figure S2).
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Figure 3. Kaplan–Meier estimates of time to biochemical recurrence (BR) in the pilot cohort (n = 72).
Note that not all patients are included in Kaplan–Meier analysis as the exact timepoints of BR
occurrence for some patients were missing.

2.3. Clinical Significance of TSR in the Validation Cohort

TSR status did not correlate to any clinico-pathological parameter including age, pT
status, pN status, Gleason Grading score, and preoperative PSA in the validation cohort
(Supplementary Table S2). High TSR appeared to indicate a shorter time to biochemical
recurrence in the validation cohort of PCa patients (Log-rank test, n = 209, p = 0.0072,
Figure 4A). In the multivariate analysis, including pT and pN status, age, Gleason score,
total serum PSA concentration, and TSR (Cox regression model), TSR predicted BR inde-
pendent of other factors, i.e., pT, pN, and age (p = 0.04, HR 2.75, 95%CI 1.07–7.03; Figure 4B).
Additionally, when the validation cohort was only limited to d’Amico high risk patients,
high TSR still appeared to indicate a shorter time to biochemical recurrence (Log-rank test,
n = 158, p = 0.0149, Supplementary Figure S3).

2.4. RNA Expression Characteristics in Relation to the TSR Score

In order to investigate the gene expression differences between tumors with low
and high TSR, we applied multigene expression analysis (using nCounter® PanCancer
Progression Panel, NanoString) of 42 tissue cores, among which 21 (50%) were classified
as low and 21 (50%) as high TSR. We observed that tumors with a low TSR score showed
the upregulation of 14 genes and the downregulation of 2 genes (p-value ≤ 0.05), as
shown in Supplementary Table S3. The genes upregulated in tumors with low TSR were
mostly associated with extracellular matrix organization and regulation (i.e., COL6A1,
TGFBR2, PECAM1, MMP2, CTSK) and cell adhesion regulation (i.e., ADAM17). Tumors
categorized with low TSR score also showed higher expression of transcription factor,
FOXO4, whereas 2 upregulated genes in high TSR samples were encoding hexokinase
2 (HK2, an enzyme involved in glucose metabolism) and Claudin-7 (CLDN7, a protein
involved in tight junction formation), as presented in Figure 5.
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3. Discussion

Tumor-to-stroma ratio is a simple and reliable parameter, which seems to facilitate
patient’s diagnosis and prognosis in many types of solid tumors [16]. Its evaluation has the
potential to be partially or fully automated. Here, we show that automatically assessed
TSR can be of clinical significance in PCa patients.

In our study, we divided cohorts into low and high TSR, as in the vast majority of
studies, where 50% threshold was used to categorize patients [10–12,16,17,29,37]. Thus,
our evaluation was performed on all informative tumor samples available for each patient,
and both versions of selection of minimal or maximal TSR per patient (i.e., the lowest or
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the highest TSR score assigned to a patient) were tested statistically (data not shown). In
the presented study, high TSR showed an unfavorable prognosis. It was also shown to
be an independent prognostic factor in the multivariate analysis, independent of age, pT,
and pN in the validation cohort. Its lack of prognostic relevance in uni- and multivariate
analysis in the pilot cohort can be biased by the low number of cases.

This observation was supported by transcriptomic analysis. Tumors categorized into
low and high TSR score showed differential expression of various genes. The genes upreg-
ulated in tumors with low TSR score were mostly associated with extracellular matrix and
cell adhesion regulation. Interestingly, tumors with low TSR also showed higher expression
of a transcription factor FOXO4, which has been reported as a metastasis suppressor [38] in
PCa. This suggests that stroma plays a protective role in PCa development. In the future,
it could be worth combining the evaluation of TSR with other molecular markers. Such
combination of analyzing the TSR and staining for another transcription factor (SMAD4)
improved prediction of clinical outcome [39] in colon carcinoma.

Using automated digital images-based evaluation of EpCAM-stained tumor speci-
mens, we correctly analyzed all tumor fragments of the pilot cohort and 91% of tumor
fragments in the validation cohort. Automation may reduce inter-observer variation,
improving the compliance and accuracy of the results, as the human eye is not able to
distinguish precisely, e.g., the blank spaces caused by gland architecture in prostate tis-
sue [14]. However, it still merits some limited assistance and visual verification. Such
inaccuracies were, however, observed in only 4% of all analyzed tumors; therefore, we
decided to assess them visually in order to not bias the clinical results by simple sample
exclusion. In our study, tumor cells were stained with anti-EpCAM antibody (brown),
which contrasted to EpCAM-negative stroma (blue). This marker-dependent protocol
provides a clear and precise detection of tumor cells area in comparison to evaluation based
on the standard hematoxylin-eosin staining [9,12,14,17,18,23,24,37,40–43]. Both approaches
have some limitations. EpCAM is not an ideal marker to identify tumor area, as it might be
downregulated in some tumor cells undergoing epithelial-mesenchymal transition [44,45].
Indeed, a few tumor fragments were EpCAM-negative and required additional visual
verification. In the future, different markers of tumor cells (e.g., a cocktail of different
antibodies) should be used to potentially identify all tumor cells.

The presented data suggest that, although TSR evaluation has not yet been imple-
mented in routine pathologic diagnostics, it has the potential for integration together with
the TNM staging system [15]. In PCa, TSR seems to be a simple marker to assess with high
prognostic potential. Of note, the partial or even full automation of TSR evaluation is prob-
ably attainable in the broad spectrum of solid tumors. Nevertheless, further improvement
and validation of the proposed methodology on a larger cohort of patients is still required.

4. Material and Methods

The study has been approved by the local Ethics Committee (i.e., Ethik Kommission
der Aerztekammer Westfalen-Lippe und der Medizinischen Fakultaet der Westfaelischen
Wilhelms-Universitaet Muenster, Germany, no 2007–467–f–S and Independent Bioethics
Committee for Scientific Research at Medical University of Gdańsk, no. NKBBN/286/2018).

4.1. Pilot Study to Test Feasibility of Quantification Method

In a pilot study, a total of 128 primary tumor samples corresponding to 72 d’Amico
high risk PCa patients, who underwent radical prostatectomy (RP) at the Department of
Urology at the Medical University of Gdańsk (Poland) in years 2018–2020, were analyzed
(Table 1). Tumor specimens were prepared as tumor microarrays (TMAs) that consisted of
3 tumor fragments per patient, including fragments of tumoral invasive front, and tumor
with highest and dominant Gleason score. For further analysis, only tumor fragments
containing fragments with the highest and dominant Gleason were included.
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Table 1. Distribution of clinical parameters in the pilot and validation cohort of eligible patients. PSA, prostate-specific
antigen. Note that not all numbers sum up to 72 and 209 due to the missing data.

Clinical and Pathological
Parameters

Pilot Cohort Validation Cohort

Status n % n %

Age (years) <median (65) 37 52.1 102 48.8
≥median (65) 34 47.9 107 51.2

Total 72 209

T status pT2 34 52.2 95 45.4
pT3 31 47.5 94 45.0
pT4 0 0.0 20 9.6
Total 65 209

N status pN0 62 93.9 191 94.1
pN1-2 4 6.1 12 5.9
Total 66 203

Gleason score sum <7 0 0.00 52 24.9
7 45 64.3 140 67.0

>7 25 35.7 17 8.1
Total 70 209

Preoperative PSA <10 ng/ml 46 63.9 132 65.5
≥10 ng/ml 26 36.1 76 36.5

Total 72 205

d’Amico scale low risk 0 0.0 2 1.0
intermediate risk 0 0.0 46 22.3

high/very high risk 72 100.0 158 76.7
Total 72 206

Biochemical recurrence No 34 70.8 166 79.4
Yes 14 29.2 43 20.6

Total 48 209

4.2. Patient Characteristics of Validation Cohort

A total of 800 tumor fragments were collected from 400 PCa patients undergoing RP
at the Department of Urology at the University Clinic Münster (Germany) in the years
2002–2004. Tumor specimens were prepared as TMAs as described [46,47], wherein two
fragments of a tumor with the highest Gleason score (GS) were collected from each patient.
Samples were obtained from 2 tumor foci (multifocal PCa) or 2 different areas of a tumor
(monofocal PCa). The last follow-up was performed in September 2019 (resulting in up
to 17 years follow-up). Biochemical recurrence was defined if PSA level increased above
0.1 ng/mL after RP in two consecutive assessments. Time to biochemical recurrence was
defined as time between RP and the first timepoint of PSA above 0.1 ng/mL. Patients
were classified using the d’Amico classification as previously reported [48,49]. Patients
that received neoadjuvant androgen deprivation therapy were excluded from the study
(n = 27). Patients enrolled in this study were characterized by variable clinico-pathological
parameters (Table 1).

4.3. Immunohistochemistry for EpCAM and Different Markers Associated with Tumor Cells

Tumor samples were stained immunohistochemically for epithelial cell adhesion
molecule (EpCAM) in order to visualize tumor cells [50]. Briefly, tissue microarrays (TMAs)
were stained with the use of anti-EpCAM, NCL-ESA Novocastra antibody (diluted 1:75),
envisioned with EnVision Kit Rabbit/Mouse (Dako), and counterstained with hematoxylin.
In this system, 3,3′-Diaminobenzidine (DAB) is oxidized to brown precipitate by hydrogen
peroxide in a reaction catalyzed by horseradish peroxidase. Different tumor cell markers
(including different keratins, E-cadherin, N-cadherin, vimentin, Ki-67, ALDH1, and others)
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were also stained by immunohistochemistry, evaluated, and categorized as negative or
positive as described [46,47,50–54].

4.4. Evaluation of TSR

In the pilot cohort, photomicrographs of tumor fragments were acquired using the
Pannoramic 250 II Flash (3D Histech, Hungary) equipped with the 20× objective. Pho-
tomicrographs of each tumor sample in the validation cohort were acquired with the
transmitted light microscope Olympus BX63 Olympus (Japan) equipped with 10x objective
(UPlanSApo, NA 0.4) and a 36-bit color camera DFC450C (Leica, Germany). Automated
evaluation of TSR in each examined tumor sample was carried out using custom-built
Jython Fiji plugin [55]. The plugin performed a color deconvolution from the RGB image
to H-DAB staining using the Fiji Plugin Color Deconvolution [56]. The tumor area was
recognized as the (DAB) channel of the H-DAB deconvoluted image using the Moment’s
Threshold method, after median filtering. The stroma area was recognized using the hema-
toxylin channel of the H-DAB deconvoluted image using the Otsu’s Threshold method,
after median filtering. The plugin considered valid stroma regions only the ones not
overlapping with the tumor region. Then, TSR ratio was evaluated as the ratio between
the area of the tumor cells and the area of the stroma. In this study, all tumor fragments
were analyzed automatically and verified visually. Tumor specimens technically invalid
or without tumor cells, as well as specimens without tumor cells in four sides of the field
of view (north, south, east, west), according to van Pelt et al.’s recommendations [16,17],
were excluded. Visual analysis of TSR was applied for EpCAM-negative tumors (n = 19).
TSR evaluation was assessed for two tumor fragments (i.e., TMA tissue cores) per patient.
Minimal and maximal value was counted for each patient (if two tissue cores were valid)
in order to test their potential clinical significance. If one tumor fragment was excluded,
only the remaining one was assigned to a patient. Various cut-offs (e.g., mean, median, and
quartiles) were used to categorize TSR and examine its significance in PCa.

4.5. RNA Extraction

Total mRNA was extracted from 42 samples prepared as formalin-fixed paraffin-
embedded (FFPE) primary prostate tumor tissue cores (three 20 µm-thick, unstained FFPE
sections per patient) using the RNeasy Mini Kit (Qiagen, Hilden, Germany) according to
the manufacturer’s protocol. RNA integrity was assessed using the Agilent 2100 Bioana-
lyzer (Agilent Technologies, Santa Clara, CA, USA) with the Agilent RNA 6000 Pico Kit
(Agilent Technologies).

4.6. nCounter Gene Expression Assay

Extracted RNA (4 µL) was pre-amplified using the nCounter Low RNA Input Kit
(NanoString Technologies, Seattle, WA, USA) with the dedicated Primer Pool covering
the sequences of 730 immune-related genes included in the nCounter Cancer Progression
Profiling Panel (NanoString Technologies). Pre-amplified samples were analyzed using
the NanoString nCounter Analysis System (NanoString Technologies) according to the
manufacturer’s procedures for hybridization, detection, and scanning. The collected RNA
expression results were then correlated to the TSR score of the corresponding tissue core.

4.7. Statistical Analysis

The cut-off with the best clinical relevance was selected and presented in this study; for
each patient, the maximal value obtained from informative and eligible tumor samples was
categorized as low TSR (TSR score < 1), or high TSR (TSR score≥ 1). Statistical analysis was
performed using IBM SPSS software Statistics 25.0.0.2 licensed for the University of Gdańsk.
Graphs were prepared using the GraphPad Prism software (8.0d licensed for the Medical
University of Gdańsk). The comparison of TSR and clinical data was performed using the
Chi-squared or Fisher’s exact tests. Survival analyses were performed using the Log-rank
(Mantel Cox) test and visualized by Kaplan–Meier plots. Uni- and multivariate analysis
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was assessed using the Cox Regression model. The results were considered statistically
significant at p < 0.05.

5. Conclusions

To conclude, this study indicated that automatically quantified TSR may support iden-
tification of patients at the higher risk of PCa recurrence. Thus, this methodology carries
potential to further develop and improve pathological expertise and routine diagnostics in
PCa, and plausibly also other solid tumors.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jpm11111088/s1, Figure S1: Comparison of visual and automated TSR evaluation in relation
to EpCAM staining intensity, Figure S2: Uni- and multivariate analysis in the whole pilot cohort
(n = 72). Figure S3: Kaplan-Meier estimates of time to biochemical recurrence (BR) in d’Amico
high risk patients from validation cohort (n = 158), Table S1: title Comparison of TSR status to
the clinic-pathological parameters in the pilot cohort, Table S2 Comparison of TSR status to the
clinic-pathological parameters in the validation cohort, Table S3 RNA expression data in tissue cores
classified as low and high TSR.
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