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Abstract

Rhythmic activity has been associated with a wide range of cognitive processes including

the encoding of sensory information, navigation, the transfer of information and others.

Rhythmic activity in the brain has also been suggested to be used for multiplexing informa-

tion. Multiplexing is the ability to transmit more than one signal via the same channel. Here

we focus on frequency division multiplexing, in which different signals are transmitted in dif-

ferent frequency bands. Recent work showed that spike-timing-dependent plasticity (STDP)

can facilitate the transfer of rhythmic activity downstream the information processing path-

way. However, STDP has also been known to generate strong winner-take-all like competi-

tion between subgroups of correlated synaptic inputs. This competition between different

rhythmicity channels, induced by STDP, may prevent the multiplexing of information. Thus,

raising doubts whether STDP is consistent with the idea of multiplexing. This study explores

whether STDP can facilitate the multiplexing of information across multiple frequency chan-

nels, and if so, under what conditions. We address this question in a modelling study, inves-

tigating the STDP dynamics of two populations synapsing downstream onto the same

neuron in a feed-forward manner. Each population was assumed to exhibit rhythmic activity,

albeit in a different frequency band. Our theory reveals that the winner-take-all like competi-

tions between the two populations is limited, in the sense that different rhythmic populations

will not necessarily fully suppress each other. Furthermore, we found that for a wide range

of parameters, the network converged to a solution in which the downstream neuron

responded to both rhythms. Yet, the synaptic weights themselves did not converge to a

fixed point, rather remained dynamic. These findings imply that STDP can support the multi-

plexing of rhythmic information, and demonstrate how functionality (multiplexing of informa-

tion) can be retained in the face of continuous remodeling of all the synaptic weights. The

constraints on the types of STDP rules that can support multiplexing provide a natural test

for our theory.
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Author summary

Spike timing dependent plasticity (STDP) quantifies the change in the synaptic efficacy as

a function of the temporal relationship between pre- and post-synaptic firing. STDP can

be viewed as a microscopic unsupervised learning rule, and a wide range of such micro-

scopic learning rules have been described empirically. Since there is no supervisor in

unsupervised learning (which would provide with the system its goal), theoreticians have

struggled with the question of the possible computational roles of the various STDP rules.

Previous studies have focused on the possible contribution of STDP to the spontaneous

development of spatial structure. However, the rich temporal repertoire of reported STDP

rules has largely been ignored. Here we studied the contribution of STDP to the develop-

ment of temporal structure. We show how STDP can shape synaptic efficacies to facilitate

the transfer of rhythmic information downstream and to enable the multiplexing of

information across different frequency channels. Our work emphasizes the relationship

between the temporal structure of the STDP rule and the rhythmic activity it can support.

Introduction

Neuronal oscillations have been described and studied for more than a century [1–14].

Rhythmic activity in the central nervous system has been associated with: attention, learning,

encoding of external stimuli, consolidation of memory and motor output [8–10, 12, 14–23].

Rhythmic activity has also been suggested to support multiplexing in the central nervous sys-

tem [24, 25]. Multiplexing is the ability to transmit two or more different signals via the same

channel. The two main forms of multiplexing are: (i) Time division multiplexing, in which

different time slots are allocated for the transmission of the different signals, e.g., distributing

information for different clients by the same server. (ii) Frequency division multiplexing, in

which different signals are transmitted via different frequency bands, e.g., the allocation of dif-

ferent frequency bands for different radio stations.

Various forms of multiplexing have been proposed to be utilized by the brain [24–34].

Caruso et al. [32] suggested that time division multiplexing is used in the auditory system to

represent different objects. They demonstrated that some neurons shift their response from

one object to another in time (similar to fluctuating focus of attention) in a manner that corre-

lated with behaviour. Frequency division multiplexing has been suggested by Teng & Peoppel

[30] (they also suggested other methods as well) to be utilized by the auditory system for

encoding different features of the same auditory object in the theta and gamma channels; thus,

frequency division multiplexing may also be used for binding. Here, we focus on frequency

division multiplexing. Our aim is to study a mechanism that can shape synaptic connectivity

to facilitate frequency division multiplexing.

The transfer of even a single oscillatory signal downstream is not necessarily trivial and

requires some mechanism to prevent destructive interference and maintain the rhythmic com-

ponent [35]. Recently, it has been suggested that synaptic plasticity, and especially spike-tim-

ing-dependent plasticity (STDP), can provide such a mechanism. STDP can be thought of as a

generalization of Hebb’s rule that neurons that “fire together wire together” [36] to the tempo-

ral domain. In STDP, the amount of potentiation and depression depends on the temporal

relation between the pre- and post-synaptic firing [2, 37–44]. Luz and Shamir [35] analyzed

the characteristics of the STDP rule that will enable the transfer of a single frequency channel

downstream.
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Multiplexing requires the transfer of more than one frequency channel. However, STDP

has been shown to generate a winner-take-all like competition between subgroups of corre-

lated pools of neurons [45–49]. Consequently, one may expect that the transfer of one fre-

quency channel will suppress the other; thus, raising serious doubts whether STDP is

consistent with multiplexing in the brain. Can STDP develop the capacity for transmitting

rhythmic activity in more than one frequency band spontaneously, and facilitate multiplexing

of information?

We address this question here in the framework of a modelling study. Below, we define

the network architecture and the STDP learning rule. We then derive a mean-field approxima-

tion for the STDP dynamics in the limit of slow learning rate for a threshold-linear Poisson

downstream neuron model. Analysing the STDP dynamics yields constraints on the STDP

rules that enable multiplexing. Next, we test the generalisation of our understanding beyond

the simplified analytical toy model using numerical simulations. Finally, we summarize our

results and discuss how STDP can yield robustness of function in the face of constant synaptic

remodelling.

Results

The pre-synaptic populations

We model a system of two excitatory populations of N neurons, each responding to a different

feature of an external stimulus, Fig 1. The external stimulus is characterized by two feature var-

iables, D1 and D2, to which populations 1 and 2 respond, respectively. The response of each

population is further assumed to be rhythmic, albeit in a different frequency, representing the

different features of the stimulus.

The spiking activity of neuron k 2 {1, . . .N} in population η 2 {1, 2}, rZ;kðtÞ ¼
P

idðt � t
Z

k;iÞ

(where ftZk;ig
1

i¼1
are the spike times) is a doubly stochastic process. Given the ‘intensity’ Dη of

feature η 2 {1, 2} of the external stimulus, the spiking activity, ρη,k(t), follows an independent

inhomogeneous Poisson process statistics with a mean rate (mean over the Poisson distribu-

tion given the intensity variables D1 and D2) that is given by:

hrZ;kðtÞi ¼ DZð1þ g cos½nZt � �Z;k�Þ; �Z;k ¼ 2pk=N: ð1Þ

where νη is the angular frequency of oscillations for neurons in population η, γ is the modula-

tion to the mean ratio of the firing rate, and ϕη,k is the preferred phase of the kth neuron from

population η. The preferred phases are assumed to be evenly spaced on the ring. Thus, it is

convenient to think of the neurons in each population as organized on a ring according to

their preferred phases of firing.

As the intensity parameters, Dη, represent features of the external stimulus they fluctuate on

a timescale which is typically longer than the characteristic timescale of the neural response.

For simplicity we assumed that D1 and D2 are independent random variables with identical

distributions:

hDZi ¼ D;

hDZDxi ¼ D2ð1þ s2dZxÞ;
ð2Þ

where h. . .i denotes averaging with respect to the neuronal noise and stimulus statistics. The

essence of multiplexing is to enable the transmission of different information channels; hence,

the assumption of independence of D1 and D2 represents fluctuations of different features.

This assumption also drives the winner-take-all competition between the two populations. We

further assume that the stimulus changes at a slower timescale than the neural responses; thus,
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for example typical values for the timescale for the stimulus are on the order of 1s, neural

response will follow the stimulus within an order of 10ms and spike at about 10Hz.

As we are interested in studying multiplexing, we assume that the two populations are syn-

apsing in a feed-forward manner onto the same downstream neuron.

The downstream neuron model

Spike time correlations are the driving force of STDP dynamics [39, 45, 46, 50, 51]. Correlated

pairs are more likely to affect the firing of the downstream (post-synaptic) neuron, and as a

Fig 1. Network architecture. A schematic description of the network architecture showing two pre-synaptic

populations, each oscillating at a different frequency. The output of these pre-synaptic neurons, serves as a feed-

forward input to a single post-synaptic neuron.

https://doi.org/10.1371/journal.pcbi.1008000.g001
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result, to modify their synaptic connections [45, 46, 49]. To analyze the STDP dynamics we

need a simplified model for the post-synaptic firing that will enable us to compute the pre-post

cross-correlations, and in particular, their dependence on the synaptic weights.

Following past studies [35, 39, 48, 51–53], the post-synaptic neuron is modeled as a linear

Poisson neuron with a characteristic delay d> 0. The mean firing rate of the post-synaptic

neuron at time t, rpost(t), is given by

rpostðtÞ ¼
1

N

X2

Z¼1

XN

k¼1

wZ;krZ;kðt � dÞ; ð3Þ

where wη,k is the synaptic weight of the kth neuron of population η.

Temporal correlations & order parameters

The utility of the linear neuron model is that the pre-post correlations are given as a linear

combination of the correlations of the pre-synaptic populations. The cross-correlation

between pre-synaptic neurons at time difference Δt is given by:

GðZ;jÞ;ðx;kÞðDtÞ ¼ hrZ;jðtÞrx;kðt þ DtÞi ¼ dZx

�

D2ð1þ s2Þð1þ
g2

2
cos½nZDt

þ�Z;j � �x;k�Þ þ djkDdðDtÞ
�

þ D2ð1 � dZxÞ;

ð4Þ

where δηξ = 1 when η = ξ and 0 otherwise, is the Kronecker delta function.

The correlation between the jth neuron in population 1 and the post-synaptic neuron can

therefore be written as

Gð1;jÞ; postðDtÞ ¼
D
N
dðDt � dÞw1;j þ D

2ð1þ s2Þ

�

�w1 þ
g2

2
~w1cos½n1ðDt � dÞ

þ�1;j � c1�

�

þ D2 �w2

ð5Þ

in which δ(t) is the Dirac delta function, and the correlations are determined by global order

parameters �w and ~weic, where �w is the mean synaptic weight and ~weic is its first Fourier com-

ponent. For N� 1 these parameters are defined as follows

�wZðtÞ ¼
Z 2p

0

wZð�; tÞ
d�
2p

ð6Þ

and

~wZðtÞeicZ ¼
Z 2p

0

wZð�; tÞe
i� d�

2p
: ð7Þ

The phase ψη is determined by the condition that ~wZ is real non-negative. Note that the cou-

pling between the two populations is only expressed through the last term of the correlation

function, Eq (5).
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The STDP rule

Following [46, 50, 51] we model the synaptic modification Δw following either a pre- or post-

synaptic spike as:

Dw ¼ l½fþðwÞKþðDtÞ � f� ðwÞK� ðDtÞ�; ð8Þ

The STDP rule, Eq (8), is written as a sum of two processes: potentiation (+, increase in the

synaptic weight) and depression (-, decrease). We further assume a separation of variables by

writing each process as a product of a weight dependent function, f±(w), and a temporal kernel,

K±(Δt). The term Δt = tpost − tpre is the time difference between pre- and post-synaptic spiking.

Here we assumed, for simplicity, that all pairs of pre and post spike times contribute additively

to the learning process via Eq (8). Note, however, that the temporal kernels of the STDP rule,

K±(Δt) have a finite support. Here we normalized the kernels,
R
K±(Δt)dΔt = 1. The parameter

λ is the learning rate. It is assumed that the learning process is slower than the neuronal spik-

ing activity and the timescale of changes in the external stimulus. Thus, the synaptic weights

are relatively fixed on timescales characterizing changes in the external stimulus and the neural

response. Here, we used the synaptic weight dependent functions of the form of [46]:

fþðwÞ ¼ ð1 � wÞ
m

ð9Þ

f� ðwÞ ¼ awm; ð10Þ

where α> 0 is the relative strength of depression and μ 2 [0, 1] controls the non-linearity of

the learning rule. The functions f(w)± ensure that the synaptic weights are confined to the

region w 2 [0, 1]. Gütig and colleagues [46] showed that the relevant parameter regime for

the emergence of a non-trivial structure is α> 1 and small μ. Gütig and colleagues have also

showed that the limit of μ = 0, termed the additive model enhances the competitive nature of

STDP dynamics, whereas the limit of μ = 1, termed the linear model, greatly suppresses the

competitive nature.

Empirical studies reported a large repertoire of temporal kernels for STDP rules [37, 38,

40–42, 44, 54–56]. Here we focus on two families of STDP rules: 1. A temporally asymmetric

kernel [37, 41, 44, 55]. 2. A temporally symmetric kernel [38, 42, 44, 56].

For the temporally asymmetric kernel we use the exponential model, Fig 2a:

K�ðDtÞ ¼
e�Dt=t�
t�

Yð�DtÞ; ð11Þ

where Δt = tpost − tpre, Θ(x) is the Heaviside function, and τ± is the characteristic timescale of

the potentiation (+) or depression (−). We assume that τ−> τ+ as typically reported.

For the temporally symmetric learning rule we use a difference of Gaussians model, Fig 2b:

K�ðDtÞ ¼
1

t�
ffiffiffiffiffiffi
2p
p e�

1
2

Dt
t�
ð Þ

2

; ð12Þ

where τ± is the temporal width. In this case, the order of firing is not important; only the

absolute time difference. We further assume, in both models, that τ+ < τ−, as is typically

reported.

STDP dynamics in the limit of slow learning

Due to noisy neuronal activities, the learning dynamics is stochastic. However, in the limit of a

slow learning rate, λ! 0, the fluctuations become negligible and one can obtain deterministic
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dynamic equations for the (mean) synaptic weights (see [50] for a detailed derivation)

_wZ;jðtÞ
l
¼ Iþ

ðZ;jÞðtÞ � I
�

ðZ;jÞðtÞ ð13Þ

where η = 1, 2 and

I�
ðZ;jÞðtÞ ¼ f�ðwZ;jðtÞÞ

Z 1

� 1

GðZ;jÞ; postðDÞK�ðDÞdD: ð14Þ

In Methods we derive the dynamics of the global order parameters using the correlation struc-

ture induced by the rhythmic activity, Eq (5). Note that in the dynamics of the order parame-

ters, Eq (26), ~w2 does not appear explicitly in the dynamics of ~w1, and vice-versa. This results

from the linearity of the post synaptic neuron model we chose, Eq (3).

The homogeneous solution, Winner-take-all and multiplexing. Fig 3 shows three exam-

ple results of simulating the STDP dynamics in the limit of slow learning, Eqs (25) and (26).

Panels a & b show the dynamics of the synaptic weights of both populations, color coded by

their preferred phase of firing. Panel c depicts the spectrum of the downstream (post-synaptic)

neuron firing. Initially, as the synaptic weights are random, the input to the downstream neu-

ron has almost no rhythmic component. In the example of Fig 3a–3c the synaptic weights of

both populations converge to a homogeneous solution, in which all the synaptic weights from

input neurons of different preferred phases and different populations are the same. As a result,

the input to the downstream neuron has no rhythmic component and its activity shows no

peak at any non-trivial frequency. The homogeneous solution is expected to be stable for large

μ [46].

In the example of Fig 3d–3f rhythmic activity is transferred. As can be seen from Fig 3e, the

homogeneous solution is not stable and the STDP dynamics causes the development of prefer-

ence in the synaptic weights of population 2 to certain phases over the others. This allows the

transmission of the rhythmic signal downstream. However, the STDP dynamics induces a

winner-take-all competition and population 2 fully suppress population 1; hence, only one

rhythmic signal is transmitted downstream and multiplexing is not enabled. The example of

Fig 3g–3i depicts the desired scenario of multiplexing. In this case the homogeneous solution

is unstable and both populations develop a phase preference; thus, enabling the transmission

of rhythmic activity for both signals downstream.

Fig 2. The STDP rules. The temporal kernels, K(Δt) = K+(Δt) − K−(Δt), of the STDP rules are shown as a function of pre-post spike time difference, Δt = tpost − tpre,
for (a) The asymmetric learning rule, Eq (11) with τ− = 50ms. (b) The symmetric learning rule, Eq (12) with τ+ = 20ms. Different values of τ+ in (a) and τ− in (b)

are depicted by color as shown in the legend.

https://doi.org/10.1371/journal.pcbi.1008000.g002
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The above examples differ in the parameters that define their respective STDP rules. Below

we aim obtain insight as to the conditions that allow multiplexing. Eq (23) describes high

dimensional coupled non-linear dynamics for the synaptic weights. Studying the development

of rhythmic activity is, thus, not a trivial task. To this end, we take an indirect approach. We

study the stability of the homogeneous solution, wZ;i ¼ w�Z for all i, in which the rhythmic activ-

ity does not propagate downstream, Fig 3a–3c. Specifically, we investigate the conditions in

which the homogeneous solution is unstable, and the STDP dynamics can evolve to a solution

that has the capacity to transmit rhythmic information in both channels downstream. A com-

plete derivation of the stability analysis can be found in Methods.

The homogeneous solution. The symmetry of the STDP dynamics, Eq (23), with respect

to rotation guarantees the existence of a uniform solution where wZ;jðtÞ ¼ w�Z 8j 2 {1, . . .N} and

~wZðtÞ ¼ 0 with η = 1, 2. Solving the fixed point equation for the homogeneous solution yields

f� ðw�Þ
fþðw�Þ

¼
1þ Xþ
1þ X�

� ac; ð15Þ

where

X� �
1

ð2þ s2ÞND
K�ðdÞ � 0: ð16Þ

Fig 3. Three examples: Homogeneous solution, winner-take-all and multiplexing. Simulation results of the STDP dynamics in the limit of slow learning and a

linear Poisson downstream neuron, Eq (13), are shown for three example cases. (a)-(c) The homogeneous solution, using μ = 0.1 and α = 1.05. (d)-(f) Winner-

take-all competition, using μ = 0.001 and α = 1.1. (g)-(i) Multiplexing, using μ = 0.01 and α = 1.05. Panels a, b, d, e, g and h show the synaptic weights as a function

of time. Each trace depicts the dynamics of a single synaptic weight. The synapses (traces) are differentiated by color according to the preferred phases of the

corresponding pre-synaptic neurons, see legend. Panels c, f and i show the spectrogram of the downstream neuron. The horizontal dashed white lines depict the

location of the rhythmic channels. In addition to the rhythmic channel (f) and rhythmic channels (i) one can identify sidebands in the spectrograms (f & i). Note

that: 1) These additional bands are attenuated by about 100dB relative to the rhythmic channels. 2) They reflect the ongoing STDP dynamics; hence, they do not

appear in c, and freezing the STDP abolishes these additional bands (results not shown). In all these examples the asymmetric learning rule, Eq (11), was used. The

initial conditions of the synaptic weights were random. The synaptic weights at time zero were independent and identically distributed uniformly on [0, 1]. The

parameters that were used in these examples are: ν1 = 11Hz, ν2 = 14Hz,N = 120, λ = 0.001, γ = 1,D = 10Hz, σ = 0.8, d = 10ms, τ+ = 20ms and τ− = 50ms.

https://doi.org/10.1371/journal.pcbi.1008000.g003
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Due to the scaling of X± with N, αc is not expected to be far from 1. From symmetry

w�
1
¼ w�

2
¼ w�:

w� ¼ 1þ
a

ac

� �1=m
 !� 1

: ð17Þ

Substituting the homogeneous solution into the post-synaptic firing rate equation, Eq (3)

yields

hrposti ¼ 2Dw�: ð18Þ

Thus, in the homogeneous solution, the post-synaptic neuron will fire at a constant rate in

time and the rhythmic information will not be relayed downstream.

Stability of the homogeneous solution. Performing standard stability analysis, we con-

sider small fluctuations around the homogeneous fixed point, wη,j = w� + δwη,j, and expand to

first order in the fluctuations:

d _w ¼ lD2Mdw; ð19Þ

where M is the stability matrix. Analysis of the stability matrix yields four prominent eigenval-

ues, see Methods. The first, �lu, represents fluctuations in the uniform direction, in which all

the synapses are either potentiating or depressing together, is always stable Fig 4a. Further-

more, �lu provides a stabilizing term in other modes of fluctuation. We distinguish two regimes

according to the relative strength of depression, α. For α< αc, limm!0þ
�lu ¼ � 1, and the uni-

form solution is expected to remain stable. For α> αc, limm!0þ
�lu ¼ 0, and structure may

Fig 4. The uniform and winner-take-all eigenvalues. (a) The uniform eigenvalue, �lu, is shown as a function of μ, for

different values of α/αc, depicted by color. (b) The competitive eigenvalue of the winner-take-all mode, λWTA, is shown

as a function of μ, for different values of α/αc, depicted by color. (Inset) Enlarged section of the figure, showing the

eigenvalue corresponding to the choice of parameters of Fig 8a–8d, depicted by a blue asterisk. (c) The maximal value

of λWTA in the interval μ 2 [0, 1] is shown as a function of α. Note that for α� αc, l
max
WTA is obtained on the boundary μ

= 0. The eigenvalues were computed for the asymmetric STDP rule, Eq (11). Unless stated otherwise, the following

parameters were used: σ = 0.6,D = 10Hz,N = 120, τ− = 50ms, τ+ = 20ms and d = 10ms.

https://doi.org/10.1371/journal.pcbi.1008000.g004
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emerge for sufficiently low values of μ, Fig 4a. Thus, in order for the STDP dynamics to

develop structure, whether winner-take-all of multiplexing, the relative strength of depression,

α, must be sufficiently high and μ has to be low.

The second eigenvalue, λWTA, represents a winner-take-all like mode of fluctuations, in

which synapses in one population suppress the other. Clearly, a winner-take-all competition

will prevent multiplexing. Typically, for sufficiently high values of α and low values of μ the

winner-take-all competitive mode will become unstable; hence, suppressing the option of mul-

tiplexing, Fig 4b and 4c (see Methods for complete analysis).

The last two prominent eigenvalues, ~lnZ (η = 1, 2), are due to the rhythmic modes, see Eq

(36) in Methods. Thus, ~lnZ , represents fluctuations in the synaptic weights of population η,

in which a phase preference is developed, enabling the transmission of rhythmic activity in

(angular) frequency νη. Examining the rhythmic eigenvalues reveals that they are composed of

a sum of two terms, see Methods. The first term is similar to λWTA and can become positive

(unstable) for sufficiently large values of α and low values of μ, and is largely independent of

the temporal structure of the STDP rule. The second term depends on the rhythmic activity

and the temporal structure of the STDP rule. It is this second term that can enable the rhyth-

mic modes to develop while the competitive winner-take-all mode is suppressed.

Figs 5 and 6 show the dependence of the rhythmic eigenvalues on the various parameters

that govern the STDP dynamics for the temporally asymmetric, Eq (11), and the temporally

symmetric, Eq (12), learning rules, respectively. The temporal structure of the STDP rule, Eqs

(11) and (12), as well as the delay, d, and the modulation depth, γ, determine the frequency

Fig 5. The rhythmic eigenvalue, ~ln, for the asymmetric learning rule, Eq (11). (a)-(d) The rhythmic eigenvalue, ~ln, is shown as a function of frequency,

�n ¼ n=ð2pÞ, for different values of: the delay, d, in (a), relative strength of depression, α/αc in (b), μ in (c), and of the potentiation time constant, τ+, in (d)—as

depicted by color. The black (11Hz) and purple (14Hz) stars in (d) show the eigenvalues with the parameters used in the simulations as shown in Fig 8a–8d. (e) and

(f) The phase diagram of the system showing regions of different types of solutions in the plane of [τ+, τ−] in (e) and the plane of [μ, α] in (f), as determined by the

signs of ~ln and λWTA. The abbreviations to the right of the panels are: NR—non rhythmic, R—rhythmic (multiplexing) and WTA—winner-take-all. Unless stated

otherwise, the parameters used in this figure are: γ = 1, σ = 0.6, D = 10Hz, N = 120, τ− = 50ms, τ+ = 20ms, μ = 0.01, α = 1.1 and d = 10ms. In (d) μ = 0.011.

https://doi.org/10.1371/journal.pcbi.1008000.g005
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dependence of ~lnZ , whereas increasing α and decreasing μ shifts the curve up, increasing the

range of unstable frequencies.

The above analysis provides intuition as to the required conditions for multiplexing. Essen-

tially, one expects that if the competitive eigenvalue is stable, λWTA < 0, and both rhythmic

eigenvalues are unstable, ~ln > 0, then the synaptic weights will evolve towards a state that will

allow the transfer of both rhythms downstream. This is summarized in the phase diagram of

the system, which depicts the different types of behaviour as a function of the parameters that

characterize the STDP rule, panels e & f of Figs 5 and 6. Note, however, that the computation

of these phase diagrams is based on local analysis of the homogeneous solution (the stability

of λWTA, and instability of ~ln). To study the non-local behaviour, a numerical investigation is

required.

Fig 7 depicts the results of a numerical simulation of the STDP dynamics with λWTA�

−0.003 < 0, ~ln1 � 0:93 > 0, and ~ln2 � 0:97 > 0. Fig 7a and 7b show the dynamics of the syn-

aptic weights. Initially, the synaptic weights were homogeneous (up to a small noise compo-

nent, see caption) and no rhythm was transmitted downstream. However, through a process

of spontaneous symmetry breaking both populations developed a phase preference; thus,

enabling multiplexing.

Examining the dynamics of the order parameters, one can see how the rhythmic compo-

nents, ~w1 and ~w2, evolve in time, rising from zero towards a fixed point value, Fig 7c. In

Fig 6. The rhythmic eigenvalue, ~ln, for the symmetric learning rule, Eq (12). (a)-(d) The rhythmic eigenvalue, ~ln, is shown as a function of frequency,

�n ¼ n=ð2pÞ, for different values of: the delay, d, in (a), relative strength of depression, α/αc in (b), μ in (c), and of the potentiation time constant, τ+, in (d)—as

depicted by color. The blue (11Hz) and red (14Hz) stars in (d) show the eigenvalues with the parameters used in the simulations as shown in S4a–S4d Fig. (e) and (f)

The phase diagram of the system showing regions of different types of solutions in the plane of [τ+, τ−] in (e) and the plane of [μ, α] in (f), as determined by the signs

of ~ln and λWTA. The abbreviations to the right of the panels are: NR—non rhythmic, R—rhythmic (multiplexing) and WTA—winner-take-all. Unless stated

otherwise, the parameters used in these figures are: γ = 1, σ = 0.6, D = 10Hz, N = 120, τ− = 50ms, τ+ = 20ms, μ = 0.01, α = 1.1 and d = 10ms. In (d) α = 1.05 and μ =

0.011, in (e) μ = 0.005 was taken.

https://doi.org/10.1371/journal.pcbi.1008000.g006
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contrast with the order parameters, �w and ~w, the synaptic weights themselves do not reach a

fixed point, rather they remain dynamic. How can the order parameters remain fixed while

the entire synaptic population is constantly changing? The solution to this puzzle is pro-

vided by examining the dynamics of ψη, see Eq (7), the phases of the rhythmic inputs, Fig

7d. As can be seen from the figure, the phases, ψ1 and ψ2, drift on the circle with constant

velocities. Thus, the STDP dynamics converge to a limit cycle solution, in which the

synaptic weights profile remains fixed—relative to to its phase, wη(ϕ, t) = wη(ϕ − ψη(t)),

while the phases, themselves drift in time, ψη(t) = ψη(0) + vηt. Qualitatively similar results

can be obtained for the temporally symmetric STDP rule, Eq (12), see S3 Fig in Supporting

information.

Conductance based downstream neuron model

The above analysis relies on the choice of a linear neuron model, Eq (3), which resulted in the

lack of explicit interaction term between the two rhythms ~w1 and ~w2, see Eq (26) in Methods.

Non-linearity in the response of the downstream neuron to its inputs will generate interaction

between the two rhythms. This interaction may increase the competition between the two

rhythms that will prevent multiplexing. How robust are our results with respect to non-linear

response of the downstream neuron? This issue is addressed below by studying the STDP

dynamics in a conductance based Hodgkin-Huxley type model for the downstream neuron.

Fig 7. Multiplexing as a limit cycle solution. Simulation results of the STDP dynamics in the limit of slow learning and a linear Poisson downstream

neuron, Eq (13). (a) and (b) The synaptic weights are shown as a function of time, for populations 1 and 2 in (a) and (b), respectively. Each trace depicts the

dynamics of a single synaptic weight. The synapses (traces) are differentiated by color according to the preferred phases of the pre-synaptic neurons, see

legend. (c) The dynamics of the order parameters: mean, �w, and the magnitude of the first Fourier component, ~w, are shown for populations 1 and 2, see

legend. (d) The dynamics of the phases, ψ1 and ψ2, is shown in red and pink, respectively, as a function of time. The synaptic weights at tie zero were

random, stochastically independent with identical uniform distribution on [0.45, 0.55]. The parameters used in this simulation are: N = 120,

�n1 � n1=ð2pÞ ¼ 5Hz, �n2 ¼ 9Hz, λ = 0.001, γ = 1, σ = 0.6, D = 10Hz, N = 120, τ− = 50ms, τ+ = 20ms, μ = 0.01, α = 1.05 and d = 10ms.

https://doi.org/10.1371/journal.pcbi.1008000.g007
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We used the conductance based model of Shriki et al. [57] for the downstream neuron.

This choice was motivated by the ability to control the degree of non-linearity of the neuron’s

response to its inputs. Often the response of a neuron is quantified using an f-I curve, which

maps the frequency (f) of the neuronal spiking response to a certain level of injected current

(I). In the Shriki model [57], a strong transient potassium A-current yields a threshold linear f-

I curve to a good approximation. Thus, by adjusting the strength of the A-current we can con-

trol the ‘linearity’ of the f-I curve of the downstream neuron.

Fig 8 presents the results of simulating the temporally asymmetric STDP dynamics with a

conductance based downstream neuron. In Fig 8a–8d the downstream neuron is characterized

by a strong A-current. In this regime, the f-I curve of the downstream neuron is well approxi-

mated by a threshold-linear function (see Fig 1 in [57]). Consequently, it is reasonable to

expect that our analytical results will hold, in the limit of a slow learning rate. Indeed, even

though the initial conditions of all the synapses are uniform, the uniform solution loses its sta-

bility, and a structure that shows phase preference emerges, Fig 8a and 8b. After about half an

hour of simulation time, the STDP dynamics of each sub-population converges to an approxi-

mately periodic solution. The order parameters �w and ~w appear to converge to a fixed point,

Fig 8c, while the phases ψ1 and ψ2 continue to drift with a relatively fixed velocity, Fig 8d. For

the specific choice of parameters used in this simulation, the competitive winner-take-all

eigenvalue is stable, see inset Fig 4b, whereas the rhythmic eigenvalue is unstable, see stars in

Fig 5d.

Fig 8e–8h depict the STDP dynamics, for a non-linear downstream neuron. To this end we

used the Shriki model [57] with no A-current. As can be seen from the figure, the system con-

verges to a dynamical solution that shows some degree of similarity with the linear neuron (Fig

8a–8d). Specifically, the system relaxes to a dynamical solution that enables the transmission of

Fig 8. STDP dynamics with a conductance based downstream neuron. Results of two numerical simulation of STDP dynamics with a conductance based

downstream neuron are presented: (a)-(d) using a downstream neuron with a linear f-I curve, and (e)-(h) using a downstream neuron with a non-linear f-I curve,

see Details of numerical simulations in Methods. (a), (b), (e) and (f) The synaptic weights are shown as a function of time for population 1 (in a and e) and

population 2 (in b and f). The different traces show the dynamics of different synapses colored by the preferred phase of their pre-synaptic neuron, see legend. (c)

and (g) The dynamics of the order parameters: the mean, �w, and first Fourier component, ~w, are shown as a function of time for both populations, see legend. (d)

and (h) The dynamics of the phases, ψ1 and ψ2, is shown as a function of time in red and pink, respectively. Here we used the temporally asymmetric STDP rule, Eq

(11). Additional parameters are: N1 =N2 = 120, �n1 � n1=ð2pÞ ¼ 11Hz, �n2 ¼ 14Hz, α = 1.1 and μ = 0.011. The learning rate λ in the non-linear case is 5 times larger

than in the linear case. For further details see Methods.

https://doi.org/10.1371/journal.pcbi.1008000.g008
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both rhythms, i.e., multiplexing. However, in the non-linear case the order parameters �w and

~w do not converge to a fixed point but fluctuate around some mean value. Qualitatively similar

results can be obtained for the temporally symmetric STDP rule, Eq (12), see S4 Fig in Sup-

porting information.

Discussion

Rhythmic activity in the brain has fascinated and puzzled neuroscientists for more than a cen-

tury. Nevertheless, the utility of rhythmic activity remains enigmatic. One explanation fre-

quently put forward is that of the multiplexing of information. Our work provides some

measure of support for this hypothesis from the theory of unsupervised learning.

We studied the computational implications of a microscopic learning rule, namely STDP,

in the absence of a reward or a teacher signal. Previous work showed that STDP generates a

strong winner-take-all like competition between subgroups of correlated neurons, thus effec-

tively eliminating the possibility of multiplexing [46]. Our work demonstrates that rhythmic

activity does not necessarily generate competition between different rhythmic signals. More-

over, we found that under a wide range of parameters STDP dynamics will develop spontane-

ously the capacity for multiplexing.

Not every learning rule, i.e., choice of parameters that describes the STDP update rule, will

support multiplexing. This observation provides a natural test for our theory. Clearly, if multi-

plexing has evolved via a process of STDP, then the STDP rule must exhibit instability with

respect to the rhythmic modes and stability against fluctuations in the winner-take-all direc-

tion. These constraints serve as basic predictions of our theory.

Khamechian and colleagues [28] suggested a model in which visual information from

the ventral and dorsal pathways is transmitted to the prefrontal cortex by means of two well

separated rhythms. Specifically, they proposed that the ventral pathway conveys information

to the prefrontal cortex in the gamma band (40-70 Hz), whereas information from the dorsal

pathway is relayed in the high gamma band (180-220 Hz). As the frequency bands are so segre-

gated, does this necessarily imply two different STDP rules with different temporal characteris-

tics are used, one for each stream? No. Interestingly, Khamechian and colleagues showed that

for the dorsal stream to transmit information efficiently, the distribution of preferred phases

must change from uniform to a non-uniform distribution. This is consistent with the homoge-

neous solution, implying that the rhythmic eigenvalue of the higher gamma is stable (as well as

the competitive eigenvalue). Alternatively, the preferred phases of dorsal neurons can fluctuate

from trial to trial, yielding a homogeneous correlation structure, on the timescale of plasticity.

In this case, STDP will not develop a rhythmic solution regardless of the plasticity rule. Thus,

to pursue our theory empirically, one has first to characterize the distribution of preferred

phases of the upstream population, and especially, the stability of the relative phases over time.

Secondly, one has to establish multiplexing: is there a subgroup of neurons that receives and

responds-to both streams of information? Or is there a segregation of signals also at the level

of the downstream population? Third, one has to characterize the STDP rule and compute its

eigenvalues.

In our work we have made several simplifying assumptions to facilitate the analysis:

1. We limited the discussion to multiplexing of only two rhythms. Is our theory general? Can

STDP support multiplexing of more than two rhythms?

2. We assumed the two populations are symmetric. This reduced the number of free parame-

ters (e.g., N, D, σ and so on). Will asymmetry generate a winner-take-all competition in

which the ‘stronger’ population suppresses the other; thus, preventing multiplexing?
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3. We further assumed symmetry within each population. Specifically, we assumed that the

preferred phases of the neurons in each population are evenly spaced on the ring. However,

if the preferred phases of the neurons are not distributed uniformly, then even a homoge-

neous solution will transmit the rhythm downstream. In that case, can multiplexing emerge

in a trivial manner irrespective of the STDP rule?

STDP can support multiplexing of more than one rhythm, as illustrated in S1 Text in the

section Supporting information that shows the multiplexing of three rhythms. Can STDP sup-

port the multiplexing of 10, 100, 1000 rhythms? Is there a capacity limit? We believe that the

nature of rhythmic activity in the brain limits the number of channels that can be efficiently

multiplexed. This is due to the fact the rhythmic activity in the brain is relatively wide band

and efficient multiplexing requires the different signals to be well segregated in frequency.

Consequently, we believe that if frequency division multiplexing is used in the brain, then the

number of multiplexed signals is small.

Question number 2 is addressed in S2 Text where we show that fine tuning of a symmetry

between the two populations is not required in order to obtain multiplexing. Regarding ques-

tion number 3, while it is true that a non uniform phase distribution will make the transmis-

sion of rhythmic activity easier, it will not abolish the winner-take-all like competition

between the two signals. Furthermore, by selectively potentiating certain phases and depress-

ing others, STDP has the ability to amplify the transmitted rhythmic component. This issue

and the question of transmitting information about the phase of the rhythmic activity are

beyond the scope of the current work and will be addressed elsewhere.

In Luz & Shamir [35], due to the underlying U(1) symmetry, the system converged to a

limit cycle solution. For a single population, the order parameter, ~weic, will drift on the ring

|w| = const with a constant velocity. Here, in the linear neuron model, in the limit of a slow

learning one expects the system to converge to the product space of two limit cycles. As there

is no reason to expect that the ratio of drift velocities of the two populations will be rational,

the order parameters ~w1eic1 , ~w2eic2 will, most likely, cover the torus uniformly. Nevertheless,

the reduced dynamics of each population will exhibit a limit cycle. This intuition relies on the

lack of interaction between ~w1 and ~w2 in the dynamics of the order parameters, Eq (26). Essen-

tially, the interaction between the two populations is mediated solely via their mean compo-

nent, �w. However, introducing non-linearity to the response properties of the post-synaptic

neuron will induce an interaction between the modes. Similarly, for any finite learning rate,

λ 6¼ 0, the rhythmic modes will not be orthogonal and consequently will be correlated.

A post-synaptic neuron with a non-linear f-I curve and a finite learning rate is expected to

induce an interaction between the two populations. Consequently, for a finite learning rate the

order parameters ~w1eic1 , ~w2eic2 will not be confined to a torus and ~wZeicZ will fluctuate around

(in contrast with on) the ring. Traces for this behaviour can be seen by the fact that drift veloc-

ity in the numerical simulations is not constant (compare Fig 8d and 8h) and the global order

parameters �w and ~w do not converge to a fixed point, but remain to fluctuate around some

mean value (compare Fig 8c and 8g). Thus, the system converges to a strange attractor around

the torus. Nevertheless, in this example, the post-synaptic neuron responds to both rhythms;

hence, multiplexing does not require a linear neuron.

Synaptic weights in the central nervous system are highly volatile and demonstrate high

turnover rates as well as considerable size changes that correlate with the synaptic weight [58–

65]. How can the brain retain functionality in the face of these considerable changes in synap-

tic connectivity? Our work demonstrates how functionality, in terms of retaining the ability to

transmit downstream rhythmic information in several channels, can be retained even when
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the entire synaptic population is modified throughout its entire dynamic range. Here, robust-

ness of function is ensured by the dynamics of the global order parameters.

Methods

STDP dynamics of the order parameters

Using the correlation structure, Eqs (5) and (14) yields

I�
ðZ;jÞðtÞ � f�ðwZ;jðtÞÞD2 �K�

�

�wZðtÞð1þ s2Þ þ �wx þ
g2

2
ð1þ s2Þ

~K�
�K�

~wZðtÞ cos½�Z;j � O
Z

�
� nZd � cZ� þ

1

ND�K�
K�ðdÞwZ;j

�

;

ð20Þ

where �K� and ~K�e
iOZ
� are the Fourier transforms of the STDP kernels

�K� ¼
Z 1

� 1

K�ðDÞdD; ð21Þ

~K�e
iOZ
� ¼

Z 1

� 1

K�ðDÞe
� inZDdD: ð22Þ

Note that for our specific choice of kernels, �K� ¼ 1, by construction.

The dynamics of the synaptic weights can be written in terms of the order parameters, �w
and ~w (see Eqs (6) and (7)). In the continuum limit, Eq (13) becomes

_wZð�; tÞ
l

¼ FZ;dð�; tÞ þ �wZðtÞFZ;0ð�; tÞð1þ s2Þþ

~wZðtÞFZ;1ð�; tÞ þ �wxðtÞFZ;0ð�; tÞ;
ð23Þ
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Integrating Eq (23) over ϕ yields the dynamics of the order parameters

_�wZðtÞ
l

¼ �FZ;dðtÞ þ �wZðtÞ�FZ;0ðtÞð1þ s2Þþ

~wZðtÞ�FZ;1ðtÞ þ �wxðtÞ�FZ;0ðtÞ;
ð25Þ
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1

l

d
dt
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Note, that in Eq (26), ~w2 does not appear explicitly in the dynamics of ~w1.

Analysis of the stability matrix

Below we analyze the stability matrix with respect to fluctuations around the homogeneous

solution, M, Eq (19). Using Eqs (13) and (20), the fluctuations can be written as

d _wZ;j ¼ dI
þ
ðZ;jÞ � dI�ðZ;jÞ: ð28Þ

with
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Without loss of generality, taking η = 1, ξ = 2 yields

d _w1;j ¼ � ĝ 0dw1;j � Df ðw�Þðd�w1 þ d�w2Þ � s
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In the homogeneous fixed point, Eq (15):

ĝ0 ¼ ð2þ s
2Þ amð1þ X� Þ

w�m

1 � w�
þ fþðw

�Þ � f� ðw
�Þ

� �
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where

g0 � amð2þ s
2Þð1þ X� Þ

w�m

1 � w�

Df ðwÞ � f� ðwÞ � fþðwÞ:
ð32Þ

Studying Eq (30), the stability matrix, M, has four prominent eigenvalues. Two are in the

subspace of the uniform directions of the two populations, and two are in directions of the of
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the rhythmic modes. As the uniform modes of fluctuations, d�w> ¼ ðd �w1 ; d �w2Þ, span an

invariant subspace of the stability matrix, M, we can study the restricted matrix, �M, defined by:

d _�w ¼ lD2 �Md�w: ð33Þ

The matrix �M has two eigenvectors, v>u ¼ ð1; 1Þ and v>WTA ¼ ð1; � 1Þ, and the correspond-

ing eigenvalues are

�lu ¼ � g0
ð34Þ

lWTA ¼
�lu þ 2Df ðw�Þ; ð35Þ

The first eigenvector represents the uniform mode of fluctuations and its eigenvalue is

always negative, Fig 4a; hence, the homogeneous solution is always stable with respect to uni-

form fluctuations. Furthermore, �lu serves as a stabilizing term in other modes of fluctuations.

We distinguish two regimes: α< αc and α> αc. For α< αc, limm!0þ
�lu ¼ � 1, and the uni-

form solution is expected to remain stable. For α> αc, limm!0þ
�lu ¼ 0, and structure may

emerge for sufficiently low values of μ, Fig 4a.

The second eigenvalue represents a winner-take-all like mode of fluctuations, in which

synapses in one population suppress the other, and will prevent multiplexing. For α> αc,
limμ!0+λWTA = 2(αc−1). For the temporally asymmetric learning rule, Eq (11), X− = 0; conse-

quently αc> 1. In the temporally symmetric difference of Gaussians STDP model, Eq (12),

αc> 1 if and only if τ+ < τ−, which is the typical case. For α< αc in the limit of small μ the

divergence of �lu stabilizes fluctuations in this mode. In this case (α< αc), λWTA reaches its

maximum at an intermediate value of μ 2 (0, 1), Fig 4b. For a small range of α< αc, α� αc
this maximum can be positive, see Fig 4c. Fig 4b depicts λWTA as a function of μ for different

values of α, shown by color. Note that λWTA depends on the temporal structure of the STDP

rule solely via the value of αc and X−; however, its sign is independent of X−. As can seen in the

figure, for α> αc> 1, λWTA is a decreasing function of μ and the homogeneous solution loses

stability in the competitive winner-take-all direction in the limit of small μ. Note that the com-

petitive eigenvalue is not identical in the asymmetric and symmetric rules due to the fact that

XSymmetric
�

6¼ XAsymmetric
�

¼ 0. However, as XSymmetric
�

� 10� 3, λWTA behaves qualitatively the same

in both types of STDP rules.

The rhythmic modes are eigenvectors of the stability matrix M with eigenvalues

~lnZ ¼
�lu þ ð2þ s

2ÞDf ðw�Þ þ g2ð1þ s2Þfþðw�Þ~Q ð36Þ

~Q ¼ ~KþðnZÞ cos½O
Z

þ
þ nZd� � ac ~K � ðnZÞ cos½O

Z

�
þ nZd�; ðZ ¼ 1; 2Þ: ð37Þ

The first two terms in the right hand side of Eq (36) contain the stabilizing term �lu � 0, and

their dependence on α and μ is similar to that of λWTA; compare with Eq (35). The last term

depends on the real part of the Fourier transform of the delayed STDP rule at the specific

frequency of oscillations, νη. This last term can destabilize the system in a direction that will

enable the propagation of rhythmic activity downstream while keeping the competitive WTA

mode stable depending on the interplay between the rhythmic activity and the temporal struc-

ture of the STDP rule. For ~Q > 0, ~lnZ is an increasing function of the modulation to the mean

ratio γ. If in addition α> αc> 1 then ~lnZ is an increasing function of σ as well.
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In the low frequency limit, limn!0
~Q ¼ 1 � ac, and depends on the characteristic timescales

of τ+, τ−, and d only via αc. For large frequencies limn!1
~Q ¼ 0. In this limit the STDP dynam-

ics loses its sensitivity to the rhythmic activity. Consequently, the resultant modulation of the

synaptic weights profile, ~w, will become negligible; hence, effectively rhythmic information

will not propagate downstream even if the rhythmic eigenvalue is unstable [35]. Thus, the

intermediate frequency region is the most relevant for multiplexing.

In the case of the temporally symmetric kernel, Eq (12), the value of ~Q is given by

~Q ¼ cos½nZd� e�
1
2
ðnZtþÞ

2

� ace�
1
2
ðnZt� Þ

2
� �

; ð38Þ

where O
Z

�
¼ 0. Fig 6a shows the rhythmic eigenvalue, ~ln, as a function of the oscillation fre-

quency, �n � n=ð2pÞ, for different values of the delay, d as depicted by color. Since typically,

τ+ < τ−, for finite ν, ~KþðnÞ > ~K � ðnÞ. Consequently, ~Q will be dominated by the potentiation

term, cos½nZd�e�
1
2
ðnZtþÞ

2

, except for the very low frequency range of n≲ 1=t� . Typical values

for the delay, d, are 1-10ms, whereas typical values for the characteristic timescales for the

STDP, τ±, are tens ofms. As a result, the specific value of the delay, d, does not affect the

rhythmic eigenvalue much, and the system becomes unstable in the rhythmic direction for

1=t� ≲ n≲ 1=tþ.

Increasing the relative strength of the depression, α, strengthens the stabilizing term �lu;

however, Δf(w�) scales approximately linearly with α such that the rhythmic eigenvalue is ele-

vated, causing the frequency range in which ~ln > 0 to widen, Fig 6b. Similarly, for α> αc> 1,

increasing μ strengthens �lu and reduces the frequency range in which ~ln > 0, Fig 6c. Decreas-

ing the characteristic timescale of potentiation, τ+ increases the frequency region with an

unstable rhythmic eigenvalue; however, when τ+ becomes comparable to the delay, d, the oscil-

latory nature of ~ln in ν is revealed, Fig 6d.

In the case of the temporally asymmetric kernel, Eq (11), the value of ~Q is given by

~Q¼
cos½OZ

þ
þ nZd�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðnZtþÞ
2

q � ac
cos½OZ

�
þ nZd�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðnZt� Þ
2

q ; ð39Þ

with O
Z

�
¼ �arctanðnZt�Þ. The main difference between the temporally symmetric and the

asymmetric rules is that due to the discontinuity of the asymmetric STDP kernel, ~K� decay

algebraically rather than exponentially fast with ν. As a result, the phase cos½OZ

�
þ nZd�, plays a

more central role in controlling the stability of the rhythmic eigenvalue. As above, since typi-

cally, τ+ < τ−, then ~KþðnÞ > ~K � ðnÞ. Fig 5a shows the rhythmic eigenvalue, ~ln, for different

values of d. The dashed vertical lines depict the frequencies at which the potentiation term

changes its sign, O
Z

þ
þ n�d ¼ p=2. As can be seen from the figure, for this choice of parameters

the upper cutoff of the central frequency range in which the rhythmic eigenvalue is unstable is

dominated by ν�, which is governed by the delay.

The effects of parameters α and μ show similar trends as for the symmetric STDP rule. Spe-

cifically, increasing μ or decreasing α, in general, shrinks the region in which fluctuations in the

rhythmic direction are unstable, Fig 5b and 5c. Increasing the characteristic timescale of poten-

tiation, τ+ beyond that of the depression, makes the depression term, ~K � ðnZÞcos½O
Z

�
þ nZd�,

more dominant, Fig 5d. In this case the lower frequency cutoff will be dominated by the change

of sign in the depression term; i.e., by the angular frequency ν�, such that O
Z

�
þ n�d ¼ p=2.
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Details of the numerical simulations

The conductance based model of the downstream neuron. We used the conductance

based model of Shriki et al. [57]. The model is fully defined and studied in [57]. Here, we

briefly describe the model dynamics, as used in our numerical simulations. The dynamics of

the membrane potential is given by:

Cm _V ¼ � IL � INa � Ik � IA þ
X

Z

gZðEZ � VÞ; ð40Þ

where the leak current is given by IL = gL(V−EL). INa and Ik are the sodium and potassium cur-

rents, respectively, and are given by INa ¼ �gNam3
1
hðV � ENaÞ and Ik ¼ �gkn4hðV � EkÞ. The

relaxation equations of the the gating variables x = h, n are dx/dt = (x1 − x)/τx. The time

independent functions x1 = h1, n1,m1 and τx are: x1 = αx/(αx + βx) and τx = 0.1/(αx + βx),
with αm = − 0.1(V + 30)/(exp(− 0.1(V + 30)) − 1), βm = 4 exp(− (V + 55)/18), αh = 0.07 exp(− (V
+ 44)/20), βh = 1/(exp(− 0.1(V + 14)) + 1), αn = − 0.01(V + 34)/(exp(− 0.1(V + 34)) − 1) and

βn = 0.125 exp(− (V + 44)/80).

The A-current, IA, that linearizes the f-I curve is given by IA ¼ �gAa3
1
bðV � EkÞ, where

a1 = 1/(exp(−(V + 50)/20) + 1) and db/dt = (b1−b)/τA. The time independent function of b1
is b1 = 1/(exp((V + 80)/6) + 1) with the voltage independent time constant τA.

The term gη is the total conductance of the pre-synaptic population η and can be written as

follows

gZðtÞ ¼ g0
Z

XNZ

j¼1

ðwZj ðtÞ
X

s

½t � tsj �þ
tZ

e� ðt� t
s
j Þ=tZÞ: ð41Þ

Here, Nη is the number of neurons in population η, wZ
j ðtÞ is the synaptic weight of the jth neu-

ron from population η and [y]+ =max(0, y). The s spike of the jth neuron is denoted by tsj . We

used g0
Z
¼ gR

Z
Sx with Sη = 1000/Nη, τη = 5ms and gR

Z
¼ 900nS=cm2

(see [35, 46]).

The membrane capacity is cm = 0.1μF/cm2. The sodium, potassium and leak conduc-

tances are �gNa ¼ 100mS=cm2
, �gk ¼ 40mS=cm2

and gL = 0.05mS/cm2. For the conductance

based downstream neuron model with a linear f-I curve we used the following parameters:

gA = 20mS/cm2 and τA = 20ms. For the conductance based downstream neuron with a non-
linear f-I curve we took gA = 0. The reversal potentials of the ionic and synaptic currents are

ENa = 55mV, EK ¼ � 80mV, EL ¼ � 65mV, Eη = Eexc = 0mV.

Modeling pre-synaptic activity. Pre-synaptic activities were modeled by independent

inhomogeneous Poisson processes, with time dependent mean firing rate given by Eq (1), with

γ = 1. Every second of simulation time D1 and D2 were independently sampled from a uniform

distribution with a minimum of 7Hz and a maximum of 13Hz, D = (7+ U(0, 6))Hz. Each pre-

synaptic neuron, spiked according to an approximated Bernoulli process, with a probability

of p� rΔt, where r is the mean firing rate (Eq (1)) and Δt = 1ms. The number of pre-synaptic

neurons in each population was N = 120.

STDP. The learning rate of the simulations with a linear f-I curve is λ = 0.01, Fig 8a–8d

and S4a–S4d Fig. In the non-linear cases the learning rate is λ = 0.05, Fig 8e–8h and S4e–S4h

Fig. In both the linear and non-linear cases we used μ = 0.011. In order to update the synaptic

weights we relied on the separation of time scales between the synaptic dynamics of Eq (40);

hence, the synaptic weights were updated every 1s of simulation.

• Asymmetric learning rule: The ratio of depression to potentiation is α = 1.1 and the charac-

teristic decay times were chosen to be τ+ = 20ms and τ− = 50ms.
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• Symmetric learning rule: Here, we chose α = 1.05, furthermore, based on our analysis, we

chose the ratio of decay times to be� 10, τ+ = 5ms, τ− = 50ms.

Initial conditions for all neurons were uniform; i.e., wη(ϕ, t = 0) = 0.5, η = 1, 2.

Supporting information

S1 Text. Multiplexing three signals.

(PDF)

S2 Text. Multiplexing asymmetric signals.

(PDF)

S1 Fig. Multiplexing three signals for the temporally asymmetric STDP rule. Simulation

results of the STDP dynamics in the limit of slow learning and a linear Poisson downstream

neuron, Eq (13), with three input signals. (a), (b) and (c) The synaptic weights are shown as a

function of time, for populations 1,2 and 3, respectively. Each trace depicts the dynamics of a

single synaptic weight. The synapses (traces) are differentiated by color according to the pre-

ferred phases of thier pre-synaptic neurons, see legend. The initial conditions of the synaptic

weights were random with uniform distribution on the interval [0, 1]. The parameters used

in this simulation are: N = 120, λ = 0.001, �n1 � n1=ð2pÞ ¼ 7Hz, �n2 ¼ 11Hz, �n3 ¼ 15Hz,

D = 10Hz, σ = 0.81, γ = 0.9. We simulated the temporally asymmetric STDP rule, Eq (11), with

τ− = 50ms, τ+ = 5ms, μ = 0.01, α = 1.01. The delay of the downstream neuron was d = 10ms.

(TIF)

S2 Fig. Multiplexing asymmetric signals for the temporally asymmetric STDP rule. Simula-

tion results of the STDP dynamics in the limit of slow learning and a linear Poisson down-

stream neuron, Eq (13), for two asymmetric signals. (a) and (b) The synaptic weights are shown

as a function of time, for populations 1 and 2, respectively. Each trace depicts the dynamics of a

single synaptic weight. The synapses (traces) are differentiated by color according to the pre-

ferred phases of their pre-synaptic neurons, see legend. The initial conditions of the synaptic

weights were random with uniform distribution on the interval [0, 1]. The parameters used

in this simulation are N = 120, λ = 0.001, �n1 � n1=ð2pÞ ¼ 9Hz, �n2 ¼ 15Hz, A1 = A2 = 10Hz,

D1 = 15Hz, D2 = 10Hz. We simulated the temporally asymmetric STDP rule, Eq (11), with:

τ− = 50ms, τ+ = 20ms, μ = 0.01, α = 1.05. The delay of the downstream neuron was d = 10ms.

(TIF)

S3 Fig. Multiplexing as a limit cycle solution, symmetric learning rule. Simulation results of

the STDP dynamics in the limit of slow learning and a linear Poisson downstream neuron, Eq

(13). (a) and (b) The synaptic weights are shown as a function of time, for populations 1 and 2

in (a) and (b), respectively. Each trace depicts the dynamics of a single synaptic weight. The

synapses (traces) are differentiated by color according to the preferred phases of their pre-syn-

aptic neurons, see legend. (c) The dynamics of the order parameters: mean, �w, and the magni-

tude of the first Fourier component, ~w, are shown for populations 1 and 2, see legend. (d) The

dynamics of the phases, ψ1 and ψ2, is shown in red and pink, respectively, as a function of time.

The parameters used in this simulation are: N = 120, �n1 � n1=ð2pÞ ¼ 5Hz, �n2 ¼ 14Hz, λ =

0.001, γ = 1, σ = 0.6, D = 10Hz, N = 120, τ− = 50ms, τ+ = 5ms, μ = 0.001, α = 1.05 and d = 10ms.

(TIF)

S4 Fig. STDP dynamics with conductance based downstream neuron for the temporally

symmetric STDP rule. Results of two numerical simulation of STDP dynamics with a conduc-

tance based downstream neuron are presented: (a)-(d) using a downstream neuron with a
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linear f-I curve, and (e)-(h) using a downstream neuron with a non-linear f-I curve, see Details

of numerical simulations Methods. (a), (b), (e) and (f) The synaptic weights are shown as a

function of time for population 1 (in a and e) and population 2 (in b and f). The different traces

show the dynamics of different synapses colored by the preferred phase of the pre-synaptic

neuron, see legend. (c) and (g) The dynamics of the order parameters: the mean, �w, and first

Fourier component, ~w, are shown as a function of time for both populations, see legend. (d)

and (h) The dynamics of the phases, ψ1 and ψ2, is shown as a function of time in red and pink,

respectively. Here we used the temporally symmetric STDP rule, Eq (12). Additional parame-

ters are: �n1 � n1=ð2pÞ ¼ 11Hz, �n2 ¼ 14Hz, α = 1.05 and μ = 0.011. The learning rate λ in the

non-linear case is 5 times larger than in the linear case. Further details of the numerical simula-

tions appear in Methods.

(TIF)
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