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Irinotecan (CPT-11) in combination with 5-fluorouracil and leucovorin is a first-line
chemotherapy regimen for the treatment of colorectal cancer; however, its clinical
application is limited by the dose-limiting gastrointestinal toxicity of colitis. In our
previous studies, several bile acids (BAs) were found significantly elevated in the colon
of the CPT-11-induced rat colitis model. On the other hand, NLRP3 inflammasome has
been reported to play important roles in mediating colitis. Interestingly, BA was stated to
activate the NLRP3 inflammasome in some studies, while in some other reports, it showed
an inhibitory effect. We assumed that the inflammatory status in different circumstances
might have contributed to the controversial findings. In this study, we first discovered,
under non-inflammatory conditions, that supplementing BA could activate the NLRP3
inflammasome in THP-1-differentiated macrophages and promote inflammation. In
lipopolysaccharide (LPS)-induced inflammatory macrophages, however, BA inhibited
the NLRP3 inflammasome and reduced inflammation. Further experiments
demonstrated that Takeda G protein-coupled receptor 5 (TGR5) is essential in
mediating the inhibitory effect of BA, while phospho-SP1 (p-SP1) is key to the
activation. Furthermore, we applied the above findings to ameliorate CPT-11-caused
colitis in rats by inhibiting SP1 with mithramycin A (MitA) or activating TGR5 using oleanolic
acid (OA). Our findings may shed light on the discovery of effective interventions for
reducing dose-limiting chemotherapy-induced colitis.
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INTRODUCTION

Bile acids (BAs) are hydroxylated steroids, synthesized from cholesterol in the liver. They play
important roles in regulating lipid, glucose, and energy metabolism (McGlone and Bloom, 2019).
Disorders in BA homeostasis are associated with cholestatic liver diseases, dyslipidemia, fatty liver
diseases, cardiovascular diseases, and diabetes (Chiang, 2013). BA dysregulation is also found closely
related to intestinal diseases, such as inflammatory bowel disease and diarrhea (Vítek, 2015;
Vijayvargiya and Camilleri, 2019; Sinha et al., 2020). In colitis, the metabolic disorder of BA is
an important risk factor for inflammation. These effects of BA are mostly accomplished by
simulating its receptors such as BA-activated receptors, especially Farnesoid X receptor (FXR),
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TGR5, and sphingosine-1-phosphate receptor 2 (S1PR2) (Biagioli
and Carino, 2017; Hou et al., 2018; Zhao et al., 2018). For
example, it was reported that BA can exacerbate colitis by up-
regulating S1PR2 in mice (Zhao et al., 2018). However, there are
also studies showing that the activation of TGR5 and FXR can
lead to an anti-inflammatory effect (Chávez-Talavera et al., 2017;
Hou et al., 2018).

In the interaction between BA and inflammation, the role of
NLRP3 inflammasome is widely recognized. However, there are
controversies about the effect of BA on the NLRP3
inflammasome. Many studies claimed that BA could activate
NLRP3 inflammasome (Gong et al., 2016; Zhao et al., 2016; Hao
et al., 2017), while others concluded that BA had an inhibitory
effect on NLRP3 inflammasome (Guo et al., 2016a). For example,
Wang et al. reported that most BA including cholic acid (CA),
glycocholic acid (GCA), chenodeoxycholic acid (CDCA),
deoxycholic acid (DCA), ursodeoxycholic acid (UDCA),
lithocholic acid (LCA), and taurolithocholic acid (TLCA)
could significantly inhibit nigericin-induced NLRP3
inflammasome activation and IL-1β production in
macrophages via the TGR5–cAMP–PKA axis (Guo et al.,
2016a), while Gonzalez et al. demonstrated that CDCA and
DCA promoted NLRP3 inflammasome activation and IL-1β
production in various types of macrophages (Hao et al., 2017).
The key factors contributing to the opposite effect of BA on
NLRP3 inflammasome as well as the underlying mechanism
remain elusive.

CPT-11, known as a chemotherapeutic agent, is a selective
inhibitor of DNA topoisomerase I. The combination of CPT-11
with 5-fluorouracil and leucovorin is the first-line chemotherapy
for the treatment of metastatic colorectal cancer (Sears et al.,
1999; Sandmeier et al., 2005). However, CPT-11 could cause
severe gastrointestinal toxicity including colitis, which greatly
limited its clinical use (Sandmeier et al., 2005; Wang et al., 2020).
In our previous metabolomics studies, we found that the
metabolism of BA was disturbed in CPT-11-induced colitis in
rats, manifested by the significant up-regulated levels of CDCA,
DCA, GDCA, and TDCA in the colon tissue (Wang et al., 2015).
On the other hand, recent studies indicate that NLRP3

inflammasome plays an essential role in colitis induced by
CPT-11, and there is evidence showing that CPT-11 could
activate NLRP3 inflammasome and cause inflammation both
in vitro and in vivo (Li et al., 2015; Huang et al., 2020).

In the current study, in light of the vital role of BA in colitis, we
investigated the potential mechanism underlying the
aforementioned conflicting effect of BA on the NLRP3
inflammasome. As studies have reported, the release of
inflammatory factors (for example, TNF-α, IL-6, and IL-1β)
can be extensively promoted by LPS stimulation in phorbol
12-myristate 13-acetate (PMA)-differentiated THP-1 cells (Zou
et al., 2017; Zhao D. et al., 2019). In the current study,
“inflammatory condition” or “non-inflammatory condition”
was defined to distinguish the state of THP-1-induced
macrophages that receive LPS stimulation or not, respectively.
We found that BA could activate NLRP3 inflammasome via
promoting p-SP1 under non-inflammatory conditions, while
under inflammatory conditions, BA promoted the expression
of TGR5 and led to the inhibition of the NLRP3 inflammasome
in vitro. Utilizing these findings, in vivo experiments were
designed, and the results showed that the colitis caused by
CPT-11 was remarkably ameliorated with the inhibition of
SP1 or activation of TGR5. Taken together, our findings may
assist in discovering effective interventions for reducing
chemotherapy-induced colitis.

MATERIALS AND METHODS

Chemicals and Reagents
DCA, CDCA, GDCA, and PMA were purchased from Sigma-
Aldrich (St. Louis, MO, United States). TDCA was purchased
from J&K (Manhattan, NY, United States). MitA and SBI-115
were purchased from MedChemExpress (Monmouth Junction,
NJ, United States). OA was purchased from Aladdin ® (Los
Angeles, CA, United States). Roswell Park Memorial Institute
(RPMI) 1640 medium and fetal bovine serum were purchased
from Gibco (Grand Island, NY, United States). HEPES buffer was
purchased from Boster (Wuhan, China). Anti-NLRP3 (Lot#:
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19771-1-AP), anti-caspase-1/p20/p10 (#:22915-1-AP), anti-SP1
(Lot#: 21962-1-AP), anti-β-actin (Lot#: 66009-1-Ig), and HRP-
conjugated beta actin monoclonal antibody (Lot#: HRP-60008)
were obtained from Proteintech (Chicago, IL, United States).
Anti-p-SP1 (Lot#: AF3121) was obtained from Affinity (Affinity
Biosciences, United States). Anti-GPBAR1 (Lot#: BS60582) was
purchased from Bioworld Technology (MN, United States). Anti-
Pro-IL-1β (Lot#: WL02257) and anti-mature-IL-1β (Lot#:
WL00891) were purchased from Wanleibio (Shenyang, China).
Radioimmunoprecipitation (RIPA) buffer, bicinchoninic acid
(BCA) protein assay kit, and loading buffer were purchased
from Beyotime Biotechnology (Shanghai, China).
Phenylmethylsulfonyl fluoride (PMSF) was purchased from
Thermo Fisher Scientific (Waltham, MA, United States).
RNAiso Plus and PrimeScript™ RT reagent Kit were
purchased from TaKaRa (TaKaRa Biotechnology, Dalian,
China). IL-1β, IL-6, and TNF-α enzyme-linked
immunosorbent assay (ELISA) kits were purchased from 4A
Biotech (Co., Ltd., Beijing, China). ELISA kit for the
measurement of cyclic AMP (cAMP) was purchased from
GenScript (Nanjing, China).

Cell Culture
THP-1 cells were cultured in RPMI 1640 medium supplemented
with 10% fetal bovine serum, 1× HEPES buffer, 100 U/ml of
penicillin, and 100 μg/ml of streptomycin. THP-1 monocytes
were differentiated into macrophages by stimulating with
100 ng/ml of PMA for 48 h. The cells were then cultured in a
serum-free medium for 24 h to enhance the differentiation.

Cell Viability Assay
THP-1 monocytes were seeded into 96-well plates at a density of
3 × 105 cells/well. After differentiation, cells were exposed to BA
or cell culture medium as vehicle for 48 h. Cell viability was
measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-
tetrazolium bromide (MTT) assay.

Animal Experiments and Sample Collection
Fifty healthy 6–8-week-old male specific-pathogen-free Sprague-
Dawley rats weighing 180–200 g were purchased from Vital River
Laboratory Animal Technology Co., Ltd. (Pinghu, China,
Permission No. SCXK (Zhe) 2019-0001). The animals were
housed in a temperature-controlled environment (24 ± 2°C)
with a standard rodent diet under a 12 h/12 h-dark/light cycle.
All animal studies and procedures were conducted in accordance
with the United States National Institutes of Health Guide for the
Care and Use of Laboratory Animals and approved by the Animal
Ethics Committee of China Pharmaceutical University (License
No. SYXK 2018-0019).

After a week of acclimatization, the animals were randomly
divided into five groups (n = 10) including the control, model,
MitA, OA, and MitA+OA groups. The detailed procedure of the
animal experiment can be found in Supplementary Figure S1.
Briefly, the individuals in the MitA+OA group were injected with
MitA (intraperitoneally, 0.15 mg/kg) (Wei et al., 2016) and OA
(intragastrically, 100 mg/kg) for five consecutive days from day 1
and CPT-11 (intravenously, 120 mg/kg) each day for two

consecutive days from day 2. For the MitA group, the
administration was similar to that of the MitA+OA group
except that 0.5% CMC-Na (solvent of OA) was given instead
of OA. Similarly, normal saline (solvent of MitA) was given to the
OA individuals instead of MitA and the rest was in accordance
with the MitA+OA group. Individuals in the model group were
receiving equivalent 0.5% CMC-Na and normal saline, and CPT-
11. In addition, 0.5% CMC-Na, normal saline and the solvent of
CPT-11 (Trifan et al., 2002; Mego et al., 2015) were administered
to the individuals in the control group as vehicle.

The diarrhea score of each animal was monitored twice a day
referring to the scoring criteria in the existing literature (Kurita et al.,
2000). The colon tissue was collected on day 6. After being drained of
feces, the colon tissue was washed with normal saline, and then a
portion of the proximal colon of each rat was fixed in 10% formalin
for histological examination and the rest (middle and distal) were
stored at −80°C for Western blotting and ELISA analysis.

Enzyme-Linked Immunosorbent (ELISA)
Assay
The contents of cAMP, IL-1β, IL-6, and TNF-α in cell culture
supernatants or colon tissue homogenates were quantified by
ELISA kits according to the manufacturer’s instructions.

Western Blotting
Mature-IL-1β, pro-IL-1β, caspase-1, NLRP3, SP1, p-SP1, TGR5
(GPBAR1), and β-actin expression were analyzed using standard
Western blotting protocols. Cells and tissues were lysed by RIPA
buffer containing 1 mmol/L of PMSF, and total proteins were
extracted according to the manufacturer’s protocols. Then, the
protein concentration was measured using the BCA protein assay
kit. Proteins (30 μg) were separated by SDS-polyacrylamide and
transferred to polyvinylidene difluoride membranes (0.2 μm,
Millipore, MA, United States). The membranes were blocked
with 5% (w/v) nonfat milk for 2 h at room temperature and
incubated with primary antibodies at 4°C overnight. After being
washed three times with PBST, the membranes were incubated
with secondary antibodies conjugated to horseradish peroxidase
for approximately 1.5 h at room temperature. Then, the
immunoreactive bands were visualized using enhanced
chemiluminescence (ECL) (Millipore) by a Tanon 5200
chemiluminescent imaging system (Tanon Science and
Technology). The relative protein expression was calculated by
densitometric analysis using ImageJ software.

mRNA Preparation and qRT-PCR
Total RNA was extracted from THP-1 monocytes using RNAiso Plus
Kit. Then, the RNA concentration was measured by a Nano-Drop
2000 (Thermo Fisher Scientific, Waltham, MA, United States).
Complementary DNA (cDNA) was obtained by reverse
transcription with the PrimeScript™ RT Reagent Kit. Subsequently,
qRT-PCR was performed using SYBR Green I Master (Roche
Diagnostics, Basel, Switzerland) on a LightCycler 480 (Roche)
following the manufacturer’s instructions. The sequences of the
PCR primers used are as follows: IL-1β forward 5′-ATGATGGCT
TATTACAGTGGCAA-3′ and reverse 5′-GTCGGAGATTCGTAG
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CTGGA-3′; NLRP3 forward 5′-CGTGAGTCCCATTAAGATGGA
GT-3′ and reverse 5′-CCCGACAGTGGATATAGAACAGA-3′’; and
β-actin forward 5′-ATTGCCGACAGGATGCAGAA and reverse 5′-
GCTGATCCACATCTGCTGGAA-3′. Results were normalized to the
internal control β-actin, and the expression was calculated by the
2−△△CT method (Khan-Malek and Wang, 2017).

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 5.0 software
(GraphPad Software Inc., La Jolla, CA, United States). All in vitro
experiments were repeated at least three times independently with at
least three replicates, and the results were presented as mean ±
standard deviation (SD) unless otherwise specified. Independent
unpaired two-tailed Student’s t-test was performed to evaluate the

differences between two groups, and one-way analysis of variance
with Bonferroni correction was performed for multiple comparisons.
p < 0.05 was considered statistically significant. The survival rate was
summarized by Kaplan–Meier survival curves.

RESULTS

BAs Activate NLRP3 Inflammasome in
Non-Inflammatory Conditions
To assess the effects of the four BAs on NLRP3 inflammasome in
non-inflammatory conditions, we treated macrophages differentiated
from THP-1 monocytes for 4 h with 10 and 50 μM of CDCA, DCA,
GDCA, or TDCA. The concentrations were selected according to the

FIGURE 1 | BAs activate NLRP3 inflammasome in non-inflammatory conditions in macrophages. (A) Relative mRNA expression of NLRP3 and IL-1β with the
treatment of BA at 10 or 50 μM. IL-1β, caspase-1, and NLRP3 protein levels with the treatment of BA at (B) 10 μM and (C) 50 μM. (D) ELISA analysis of IL-1β in culture
medium after treating with BAs at 10 and 50 μM. Data are presented as mean ± SD (n = 3). Statistical analysis was performed using Student’s t test (*p < 0.05, **p < 0.01,
and n.s., not significant).
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published data (Guo et al., 2016a; Hao et al., 2017) and our cell
viability assay results (Supplementary Figure S2A). At a
concentration of 10 μM, CDCA and GDCA activated the mRNA
expression of IL-1β; however, DCA, GDCA, and TDCA significantly
activated the expression of IL-1β and caspase-1 in protein, while
CDCA hardly showed activating effects on it (Figures 1A,B). When
the concentration was increased to 50 μM, all BAs remarkably
increased the mRNA and protein expression of IL-1β, as well as
caspase-1 protein expression (Figures 1A,C). Little impact on pro-IL-
1β and pro-caspase-1 was observed (Figures 1B,C). Besides, all BAs
activated NLRP3 protein expression at both 10 and 50 μM (Figures
1B,C), althoughGDCA failed to present a significant promoting effect

on themRNAexpression ofNLRP3 (Figure 1A).Moreover, the IL-1β
level in the culture medium also increased with the BA treatment,
especially at 50 μM (Figure 1D). These results suggested that BA can
activate the NLRP3 inflammasome and show a pro-inflammatory
effect in non-inflammatory conditions.

BAs Inhibit NLRP3 Inflammasome in
Inflammatory Conditions
As reported in the existing literature, LPS incubation withmacrophages
differentiated from THP-1 monocytes could lead to a sharp increase in
inflammatory factors (Kuijk et al., 2008; Zhao D. et al., 2019; Zhao W.

FIGURE 2 | BAs inhibit NLRP3 inflammasome in inflammatory conditions in macrophages. Prior to the BA treatment, cells were pretreated with 250 ng/ml LPS for
1 h. (A) Relative mRNA expression of NLRP3 and IL-1βwith BAs at 10 or 50 μM. IL-1β, caspase-1, and NLRP3 protein levels after treating with BAs at 10 μM (B) and (C)
50 μM. (D) IL-1β in culture medium after treating with BAs at 10 and 50 μM. Data are presented as mean ± SD (n = 3). Statistical analysis was performed using Student’s
t test (*p < 0.05, **p < 0.01, ***p < 0.001, and n.s., not significant).
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et al., 2019). Our pre-experiments also confirmed this (data not shown).
Therefore, to establish an inflammatory condition, we pretreated the
macrophages differentiated from THP-1 monocytes with 250 ng/ml of

LPS for 1 h before BA stimulation. Opposite to what we observed in
non-inflammatory conditions, 10 μM of CDCA and TDCA inhibited
IL-1β on mRNA and protein level (Figures 2A,B). Although only

FIGURE 3 | SP1 mediates the activation of NLRP3 inflammasome in non-inflammatory conditions in macrophages. (A) Ranking of binding sites between different
transcription factors and NLRP3 gene (data were from the eukaryotic promoter database, from −2,000 to 100 bp relative to TSS, and the cut-off was p = 0.001) (https://
epd.epfl.ch). Western blot analysis of IL-1β, NLRP3, and SP1 inmacrophages differentiated from THP-1monocytes with (B) 10 μMand (C) 50 μMBA treatments for 4 h.
(D) NLRP3 expression analyzed by Western blot with different concentrations of MitA for 48 h. (E) Western blot analysis of IL-1β and NLRP3 after cells were
pretreated with 10 nM of MitA for 48 h prior to the stimulation with BAs at 50 μM for 4 h. Data are presented as mean ± SD (n = 3). Statistical analysis was performed
using Student’s t test (*p < 0.05, **p < 0.01).
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CDCA showed a significant inhibitory effect on the NLRP3 mRNA
expression, all the BAs significantly inhibited NLRP3 protein at 10 μM
(Figures 2A,B). At a concentration of 50 μM, all BAs could significantly
inhibit the mRNA and protein expressions of IL-1β and NLRP3
(Figures 2A,C). Besides, pro-IL-1β and pro-caspase-1 were barely
affected, while caspase-1 was inhibited by BA at both 10 and 50 μM
(Figures 2B,C). Furthermore, all BAs showed a restraint effect on the
levels of IL-1β in the culturemedium (Figure 2D). These results suggest
that BA can inhibit the NLRP3 inflammasome and show an anti-
inflammatory effect in inflammatory conditions.

SP1 Mediates the Activation of NLRP3
Inflammasome in Non-Inflammatory
Conditions
SP1 is one of the transcription factors of the NLRP3 gene with
the highest score based on the number of binding sites

(Figure 3A). Therefore, we investigated whether SP1 is
essential in mediating the activation process. Interestingly,
we found that p-SP1 was significantly promoted by BA in non-
inflammatory conditions, especially at 50 μM, which shared a
similar trend with IL-1β and NLRP3. However, there were no
obvious changes in SP1 with both 10 and 50 μM of BA
(Figures 3B,C). Then, we stimulated macrophages with a
series of concentrations of MitA (according to
Supplementary Figure S2B), a selective inhibitor of SP1.
The results show that MitA (<10 nM) could inhibit NLRP3
in a dose-dependent manner (Figure 3D). Moreover, after
48 h of pretreatment with MitA (Seznec et al., 2011; Liu et al.,
2018), the NLRP3 inflammasome activation induced by BA
was reversed (Figure 3E), indicating that SP1 mediates the
activation of NLRP3 by BA in non-inflammatory conditions.
We also determined the levels of SP1 and p-SP1 in
inflammatory conditions with BA treatment, and a very

FIGURE 4 | TGR5 participates in the inhibition of NLRP3 inflammasome in inflammatory conditions in macrophages. IL-1β, NLRP3, and TGR5 expressions
determined by Western blotting. The cells were pretreated with 250 ng/ml of LPS for 1 h and stimulated with BAs at (A) 10 μM and (B) 50 μM for 3 h. LPS-pretreated
macrophages were treated with 100 μMof SBI-115 and 50 μMof BAs, and the supernatants and lysates were prepared. (C) Level of cAMP in the supernatants analyzed
by ELISA. (D) IL-1β and NLRP3 expression in the lysates. Data are presented as mean ± SD (n = 3). Statistical analysis was performed using Student’s t test (*p <
0.05, **p < 0.01, and ***p < 0.001).
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mild increase of p-SP1 was observed compared to that in non-
inflammatory conditions (Supplementary Figure S3A).

TGR5 Participates in the Inhibition of NLRP3
Inflammasome Under Inflammatory
Conditions
As previous studies suggested, BA can inhibit the activation of
NLRP3 inflammasome via TGR5 signaling (Guo et al., 2016a).
In the present study, we confirmed that in inflammatory
circumstances induced by 250 ng/ml of LPS, BA promoted
the expression of TGR5 and inhibited the expression of IL-1β
and NLRP3 at the same time (Figures 4A,B). Then, 250 ng/ml
of LPS-pretreated macrophages was simultaneously stimulated
with BA and SBI-115, an antagonist of TGR5 (Masyuk et al.,
2017) (Supplementary Figure S2C). As shown in Figure 4C,

100 μM of SBI-115 could reverse the increase of the cAMP
content in the culture medium caused by BA. It is obvious that
among the four BAs, DCA promoted cAMP most remarkably
and SBI-115 showed the strongest effect against DCA
(Figure 4C) as well, which is consistent with the previous
findings that TGR5 is differentially activated by BA in the
strength order of DCA > LCA > CDCA > CA (Guo et al.,
2016b; Wahlström et al., 2016). Antagonizing TGR5 with SBI-
115 offsets the inhibitory effect of BA, especially DCA and
CDCA, on IL-1β and NLRP3 to some extent (Figure 4D),
indicating that TGR5 is involved in the inhibition of NLRP3
inflammasome by BA in inflammatory conditions. The level of
TGR5 was determined as well in non-inflammatory conditions
after BA treatment, and the increase is very limited compared
to that in inflammatory conditions (Supplementary
Figure S3B).

FIGURE 5 | Amelioration of the CPT-11-induced diarrhea in rats. (A) Representative images of colon tissues from each group at the last experimental day. (B) The
diarrhea score of each rat was monitored twice daily and is presented as mean ± SD (n = 8). (C) The change of the relative body weight of rats in different groups upon
CPT-11 administration. (D) HE staining was performed on rat colon after drug administration (at ×200 magnification). (D) IL-6, IL-1β, and TNF-a levels in rat colons. (E)
Expression of IL-1β, NLRP3, TGR5, SP1, and phospho-SP1 in rat colons determined by Western blotting. Data are presented as mean ± SD (n = 3). Statistical
analysis was performed using Student’s t test (*p < 0.05, **p < 0.01, ***p < 0.001, and n.s., not significant; the statistical analysis results in panels (B,C) can be found in
Supplementary Tables S1 and S2).
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Ameliorating CPT-11-Induced Colitis
Utilizing Inflammatory-Dependent
Bidirectional Effects of Bile Acids on NLRP3
Inflammasome
Based on what has been found in vitro, in vivo experiments were
designed to confirm whether an anti-inflammatory effect can be
achieved in CPT-11-induced colitis (Supplementary Figure S1).
However, beyond our expectation, the combination of MitA and
OA led to a much lower survival rate compared to the MitA or
OA group (Supplementary Figure S4), making the statistical
comparisons between MitA + OA and other groups difficult.
Therefore, only the data of control, model, MitA, and OA groups
are presented. Inflammation and hemorrhage in colon and
watery stool were observed in the model group. Notably, SP1
inhibitor MitA or TGR5 agonist OA dramatically alleviated these
adverse symptoms (Figure 5A). Besides, OA could significantly
ameliorate the weight loss and diarrhea induced by CPT-11, while
MitA hardly showed capability in this (Figures 5B,C).
Histopathological examination showed that MitA and OA
improved the colon damage and macrophage infiltration
caused by CPT-11 (Figure 5D and Supplementary Figure
S5). Moreover, we found that MitA had a stronger effect on
IL-1β, while OA showed a more powerful action on IL-6, and
both of them had a relatively weaker effect on TNF-α (Figure 5E).

To further clarify whether MitA and OA functioned via
inhibiting SP1 or activating TGR5, we detected the expression
of SP1, p-SP1, TGR5, IL-1β, and NLRP3 in the rat colons. The
results showed that p-SP1 and SP1 were significantly inhibited in
the MitA group compared with those in the model group, while
TGR5 was significantly promoted in the OA group. Besides, IL-1β
and NLPR3 were down-regulated in the groups of MitA and OA
(Figure 5F). Taken together, our work demonstrated that SP1
and TGR5 could be promising intervention targets for alleviating
chemotherapy-induced intestinal toxicity.

DISCUSSION

Emerging evidence has shown a strong association between BA and
intestinal diseases. Importantly, almost all inflammatory intestinal
diseases are accompanied with BA dysregulation (for example,
inflammatory bowel disease (Zhou et al., 2014; Fitzpatrick and
Jenabzadeh, 2020) and chemotherapy-induced colitis (Muls et al.,
2016; Andreyev et al., 2021)). For example, previous studies have
revealed the involvement of disturbed BA metabolism in CPT-11-
induced colitis (Fang et al., 2016). On the other hand,
inflammasomes, such as NLRP3 and AIM2, have been proved to
play crucial roles inCPT-11-induced gastrointestinal toxicity (Li et al.,
2015; Lian et al., 2017). Moreover, existing studies suggest that
repressing NLRP3 inflammasome can ameliorate intestinal
inflammatory injury (Gong et al., 2018; Shao et al., 2019; Cao
et al., 2020) as well as CPT-11-induced colitis (Li et al., 2015;
Huang et al., 2020). Therefore, it is essential to explore the
BA–NLRP3 inflammasome axis in the CPT-11 intestinal injury.
However, as mentioned before, there are controversial findings
regarding the effect of BA on the NLRP3 inflammasome.

In this study, we discovered that BA could activate NLRP3
inflammasome through promoting the transformation of SP1
into p-SP1 under non-inflammatory conditions. SP1 is a
transcription factor that is well known for its significant role
in cell growth, differentiation, apoptosis, and carcinogenesis
(Beishline and Azizkhan-Clifford, 2015; Vizcaíno et al., 2015).
Its encoded proteins are involved in many essential cellular
processes such as cell differentiation and immune responses
(Vellingiri et al., 2020). According to existing studies, multiple
post-translational modifications could mediate SP1 activation
(Higuchi et al., 2004; González-Rubio et al., 2015) including
phosphorylation, O-linked glycosylation, acetylation,
SUMOylation, or ubiquitylation (Beishline and Azizkhan-
Clifford, 2015), in which BA might be involved. On the other
hand, SP1 also correlates to colorectal cancer (Chen et al., 2018;
Yu et al., 2018). MitA, the selective inhibitor of SP1, is reported to
inhibit colorectal cancer (Quarni et al., 2019; Li et al., 2020).
Therefore, we speculate that the combination of MitA or other
SP1 inhibitors and CPT-11 might achieve a startling effect of
reducing the side effect and enhancing the anticancer efficacy
simultaneously in the treatment of colorectal cancer.

In inflammatory conditions, we show in this study that TGR5
participates in the inhibition of NLRP3 inflammasome by BA
in vitro, while in vivo TGR5 was significantly promoted by OA,
but not affected by CPT-11 and MitA treatments. TGR5 is a
metabolic regulator involved in glucose tolerance, energy
expenditure, and inflammation (Holter et al., 2020). As a
member of the G-protein-coupled receptor (GPCR)
superfamily, TGR5 can be activated by BA and then elevate
intracellular cAMP levels (Guo et al., 2016b; Keitel et al.,
2019). Recently, there are studies reporting that TGR5 has an
inhibitory effect on NLRP3. For instance, BA could lead to the
phosphorylation of NLRP3 via the TGR5–cAMP–PKA axis,
which serves as a critical brake on the NLRP3 inflammasome
activation (Guo et al., 2016a). In another study, BA reduced the
nuclear translocation of the nuclear factor (NF)-κB p65 and
lowered the NF-κB transcriptional activity to depress NLRP3
inflammasome through the TGR5–cAMP pathway (Keitel and
Häussinger, 2018). In addition, TGR5 has crucial protective
functions in augmenting bile composition and cytokine release
in cholestasis (Deutschmann et al., 2018; Willis et al., 2020).
Moreover, TGR5 is proved to improve colitis by modulating the
integrity of intestinal barrier and immune response (Cipriani
et al., 2011; Biagioli and Carino, 2017; Sorrentino et al., 2020),
indicating its potential in alleviating chemotherapy-induced
intestinal toxicity as an intervening target.

In this study, we investigated the interaction between BA and
TGR5 or SP1 in inflammatory or non-inflammatory conditions
in vitro, respectively. Studies manifest that DCA is a more potent
ligand of TGR5 than CDCA; it is therefore expected that DCA has
a more propounding effect on both NLRP3 and IL-1β than
CDCA. However, in our study, we observed that CDCA
(50 μM) exhibited a stronger inhibitory effect on NLRP3 and
IL-1β. In addition, our results showed that although DCA
exhibited a more promotive effect on the transformation of
SP1 into active p-SP1 than CDCA, it only more strongly
promoted IL-1β but not NLRP3. We speculate that the
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ultimate effect of BA on NLRP3 inflammasome is a converged
result from the opposite actions of SP1 and TGR5 and potentially
other mediators. Besides, since there is no clear borderline
between inflammatory and non-inflammatory conditions, at
what point BA switches its role from agonist to antagonist
needs to be further explored.

In vivo, we proved that MitA and OA are effective against
CPT-11-induced colitis. We assumed that the CPT-11-induced
colitis is a chronic progress from inflammation initiation to
recovery instead of a 100% inflammatory condition. The
accumulation of BAs after CPT-11 administration in colon
could promote the phosphorylation of SP1 and enhance the
inflammation. As the inflammation progresses, BAs could
promote the expression of TGR5 and relieve the inflammation
reaction to some extent. Our data show that CPT-11 exposure
leads to an increased expression of SP1 and p-SP1, while it has no
significant effect on the level of TGR5. MitA significantly
inhibited SP1 and p-SP1 and ameliorated inflammation, while
OA inhibited NLRP3 inflammasome and ameliorated colitis
through promoting TGR5. The results indicate that
inflammatory and non-inflammatory mechanisms may co-
exist in CPT-11-caused colitis.

We also explored whether the combination of MitA and OA was
more effective. However, the mortality rate was as high as 70% in the
MitA+OA group. MitA is an anticancer antibiotic and has been
reported to be effective in various types of cancers, including
colorectal cancer, testicular carcinoma, prostate cancer, etc. (Choi
and Choi, 2018; Liu et al., 2018; Novakova et al., 2018; Quarni et al.,
2019). In our pre-experiments, three different doses of MitA (0.05,
0.15, and 0.25mg/kg) were administered, and body weight, diarrhea
score, pathological changes, and inflammatory factors were recorded
or determined. No obvious adverse effect of concern was observed
(data not shown). OA belongs to the pentacyclic triterpene family, as
a weak agonist of TGR5, and is known for its hepato-protective effect.
It has also been reported that OA is effective in relieving dextran
sodium sulfate-induced colitis (Kang et al., 2015; Sen, 2020). OA is
generally recognized safe in a wide range of dosages to rats; for
example, no obvious adverse effect was observed in rats receiving
120mg/kg of OA for 9 weeks (Pollier and Goossens, 2012; Madlala
et al., 2015). In this context, we think there might be two reasons for
the unexpected, high mortality of the combination. One is the
drug–drug interaction, which can cause changes in the drug
concentration in local tissues and alter drug effect or toxicity
(Gessner et al., 2019). The other is intervening SP1 and TGR5 at
the same time probably over-regulated the NLRP3 inflammasome
and caused unknown fatal side effects. Further experiments are
needed to explore the actual mechanisms.

In conclusion, we demonstrated that in vitro BA could activate
NLRP3 inflammasome in non-inflammatory conditions
mediated by SP1 and inhibit NLRP3 inflammasome in
inflammatory conditions via TGR5. Treating rats receiving
CPT-11 with MitA to inhibit SP1 or OA to activate TGR5 can
alleviate the colitis. Our findings may shed lights on the discovery

of effective interventions for reducing chemotherapy-induced
colitis.
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