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Abstract: The paper presents an analytical, numerical and experimental analysis of the special
designed system for energy harvesting. The harvester system consists of two identical magnets
rigidly mounted to the tube’s end. Between them, a third magnet is free to magnetically levitate
(pseudo-levitate) due to the proper magnet polarity. The behaviour of the harvester is significantly
complicated by a electromechanical coupling. It causes resonance curves to have a distorted shape
and a new solution from which the recovered energy is higher is observed. The Harmonic Balance
Method (HBM) is used to approximately describe the response and stability of the mechanical and
electrical systems. The analytical results are verified by a numerical path following (continuation)
method and experiment test with use of a shaker. The influence of harvester parameters on the
system response and energy recovery near a main resonance is studied in detail.

Keywords: magnetic leviation; energy harvesting; electromagnetic induction; harmonic balance
method; experiment

1. Introduction

1.1. Energy Harvesting

Today, more than 40% of all energy consumption is in the form of electrical energy, which is
expected to grow to 60% by 2040 [1]. Among the technologies that support the growth of clean
energy is the energy harvesting (EH) process technology [2]. The EH is defined as a process where
small amounts of energy are recovered from ambient energy and transformed into an electrical
energy used immediately (or stored for later usage). An ambient energy is defined as many different
forms energy: thermal (e.g., radiation, solar), chemical (e.g., nuclear), electrical, magnetic (e.g.,
magnetisation), mechanical (e.g., potential, kinetic, elastic, fluid), triboelectric [3,4] and more. The
typical energy harvester device comprises one or more transducer mechanisms, power conditioning
module, and energy storage (Figure 1).

Figure 1. Typical energy harvesting process.
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The transducer mechanism converts energy from one energy type to a another, usually electricity.
The power conditioning module is necessary because the output of the transducer can be intermittent
or strongly disturbed, and at the wrong frequency, voltage and current to directly drive the device [5].
It rectifies the power and regulates the voltage value. The energy storage unit is needed to the energy
accumulate. Usually a rechargeable battery, capacitor, or supercapacitor is used. The power harvested
is large enough to power small electronic devices such as sensors [6], structural health monitoring [7–10]
or wireless transmission [11]. The wireless power transfer has been proposed as a new method energy
harvesting method. Liu et al. [12] proposed a 5G-based green broadband communication system with
simultaneous wireless information and power transfer. A joint optimization unit has been proposed
to improve the system performance. In [13], simultaneous cooperative spectrum sensing and energy
harvesting model for multi-channel cognitive radio is presented. The obtained results show that this
model can achieve higher throughput compared with the traditional. Moreover, the harvested energy
can compensate the sensing energy loss and guarantee enough transmission power.

1.2. Pseudo-Magnetic Levitation Harvesters

The electromagnetic induction is the most cost effective type of the transducer mechanism [14].
They are based on Faraday’s law of induction—that a change in the magnetic flux of a circuit will result
in the induction of an electromotive force. The electromagnetic harvesters are often modelled as a linear
devices, then only perform well over a narrow bandwidth close to their natural frequency [15–17].
Increasing the damping of the harvester by modifying the electromechanical coupling will extend the
bandwidth over which it functions effectively [17,18].

The effective improvement in the operating bandwidth can be achieved by introducing the
non-linearity, tuneable resonance, and bi-stability [19–21]. The interesting type of the strong nonlinear
electromagnetic harvesters use a pseudo-magnetic levitation effect [22–24] for energy recovery.
Note that magnetic levitation always occurs with a help of a mechanical constraint for stability.
The Earnshaw’s theorem proves that it is not possible to achieve magnetic levitation using any
combination of the fixed magnets and electric charges. Therefore, the proper term should be the
“pseudo-magnetic levitation”. However, in many papers, one can find the term magnetic levitation
(maglev) [10,25–27] instead of pseudo-magnetic levitation. The pseudo-maglev levitation harvesters
are characterized by simplicity of their construction, lack of springs and dampers (not a physical spring
that is easily worn out), therefore the time period of usage can be a very long. Moreover, the harvester
can recover energy under the external excitation in a low and high frequency ranges. As mentioned
earlier, the pseudo-magnetic levitation harvesters are strongly nonlinear systems, therefore are difficult
to analyse. Usually, the Finite Element Method has been used to solve the differential equations that
govern the dynamics of these systems. Then the magnetic forces, magnetic field distributions are
usually easy modelled [25,28]. Mann and Sims [26] presented a design for electromagnetic energy
harvesting from the nonlinear oscillations of magnetic levitation. They showed the nonlinear response
behaviour of the harvester to be strongly dependent on the damping level. Additionally, they showed
interesting aspect that the governing equation for relative displacement reduces to the form of Duffing’s
equation. This means that the potential energy function of the maglev oscillator may be expressed as:
monostable hardening, monostable softening and bistable. The exemplary potential functions of the
Duffing oscillator in Figure 2 are shown. The linear oscillator and nonlinear oscillator which exhibits
hardening and softening nonlinearity is monostable. However, for some parameter configurations the
oscillator becomes nonlinear bistable, having new stable equilibria.

Their second paper [27] presents analytical solutions for the linear response behaviour of the
energy maglev harvester. Their analysis include the inductance coil, but they assumed small value of
the electromechanical coupling and the resistance level. They applied the method of undetermined
coefficients for analytical analysis. Berdy et al. [29] investigated the power output of a magnetic
levitation vibration energy harvester on human participants while they walk and run on a treadmill.
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The measurement results show that the variation in power generated is relatively significant due to
the variation in walking and running gait styles as well as the angle of attachment of the device.
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Figure 2. The potential energy function of the Duffing oscillator.

The relevant studies that report the major achievements in the magnetic levitation harvesters in
paper [30] are presented. The authors proposed four selection criteria for the harvester comparison:
(1) two or more magnets (and one or more coils), (2) including at least one levitating magnet (and one
or more fixed magnets), (3) executes axial motions of the levitating magnet(s) and (4) architectures
with mono-stable electromagnetic-induction configurations. Moreover, the authors show a comparison
of our harvester with other single levitating devices.

This paper presents complex analysis of the single pseudo-levitating harvester which is solved
analytically by the HBM, numerically by the continuation method (CM) and verified by experimental
shaker tests. In the literature, the numerical and experimental studies of the maglev harvesters
were used. We propose the approximate analytical method to find an analytical solutions, and show
analytical influence of the system parameters on energy harvesting. Additionally, the stability analysis
of obtained analytical solutions is performed. All analytical results show a good compliance with the
numerical research and an experiment.

2. Energy Harvesting System Design

2.1. Magnetic Levitation Architectures

The analyzed single pseudo-levitating magnet harvester plays role of the pendulum tuned
mass damper. It is mounted on a special laboratory harvester–absorber system, which allows for
simultaneous vibration reduction and energy recovery. More information about this can be found
in [31,32].

The single levitating harvester in Figure 3a is presented. It consists of the cylindrical non-magnetic
tube with the two fixed ring permanent magnets (Figure 3b).

The ring magnets have 20 mm in diameter and 10 mm in height. The levitating (moving)
cylindrical permanent neodymium magnet of 20 mm in diameter and 30 mm in height is placed inside
the tube between the fixed ring magnets. It motion is limited by the repulsive force exerted by the
opposing magnetic field of magnets placed. The teflon surface was applied around the moving magnet
to reduce friction between the moving magnet and the inner tube’s surface. Additionally, special
air holes and gaps to air compression reduction are made. To prevent the magnet’s impact special
rubber bumpers are installed. The induction coil is wrapped around outside of the tube, and is wound
from 140 µm diameter Copper wire. The coil has 12,740 wires, the inductance of 1.46 H and the own
resistance of 1.15 kΩ. The separation distance between the moving and the bottom fixed magnet was
0.041 m. It can be changed by the screw system. This allows a modification in the magnetic suspension
parameters. The levitating magnet moving axially through the center of a coil will induce a voltage
across the coil terminals. The practical application of the magnet coil system can be shaker flashlights.
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If the flashlights vigorously shaken back and forth, then a magnet to move through a coil causing
charge to the battery [33].

2.2. Mathematical Model

The dynamics of the pseudo-maglev harvester can be modeled as the nonlinear spring-mass-
damper mechanical system (Figure 4a) with an external base excitation y(t), connected to the electrical
circuit (Figure 4b). The circuit consists of the coil with the inductance (L) and the own (RC) and load
(RL) resistances. The sum of RL and RC the total resistance (R) is called. When the magnet moves
inside the coil, then electromagnetic induction of voltage U(t) and current i(t) flow in the electrical
circuit occurs. The electrical circuit dissipates the produced energy across a load resistor (the recovered
current is converted into heat across the load resistor).

(a) (b)

Figure 3. Photo (a) and scheme of the single pseudo-levitating harvester (b). This system was originally
designed and applied as the pendulum tuned mass damper (see paper [31]).

(a) (b)

Figure 4. Physical model of pseudo-maglev harvester (a) and the electrical circuit comprising of the
coil and the external load resistor (b). The magnet oscillation causes the current induction in the
electrical circuit.

Defining a new coordinate z(t) = x(t)− y(t) which means the relative displacement between the
vibrating structure and the moving magnet, the equations of motion can be written:

mz̈(t) + cż(t) + kz(t) + k1z3(t) + αi(t) + mg = mQω2cos(ωt), (1)

Li̇(t) + (RL + RC)i(t) = αż(t). (2)
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The pseudo-maglev suspension is modelled as a magnetic spring with the stiffness components
k and k1 (Duffing type) and the linear dashpot described by the coefficient c. A cubic nonlinearity
comes from the magnetic restoring forces between the magnets [26,27,32]. The parameter m is the
magnet mass, while g is the gravitational acceleration. The excitation is assumed to be harmonic
y(t) = Qcos(ωt). The electrical and mechanical systems are coupled by the electromechanical coupling
coefficient α. It characterizes how the induced voltage is related to the velocity of the magnet. The terms
αi(t) and αż(t) are called electrodynamic Lorentz force (ed f ) and the well known electromotive force
(em f ), respectively. The fundamental relations for electromechanical systems is that em f = ed f [26].

In the literature, different models of α can be found [25,34,35]. Generally, this parameter depends
on the coil design and is a function of the magnet’s position versus the coil [18,34]. However in
paper [32] authors show that fixed value of the coupling coefficient can be accepted, provided that
it is properly chosen. They showed comparison between classical (fixed value) and novel (nonlinear
polynomial) electromechanical coupling modelling. Moreover, in the literature the coil inductance is
assumed to be very small and finally is neglected. This leads that the electrical current flow equation is
reduced [36] and the electromechanical coupling coefficient is part of damping called electromagnetic.

2.3. Shaker Test

The laboratory experiments have been performed using the electromagnetic shaker system
TIRAvib50101 which in Figure 5 is shown. The shaker was controlled by LMS.TestLab software which
provided the sinusoidal input excitation signal during vibration tests and reproduced environmental
conditions over a required frequency band. The two acceleration sensors for measuring the magnet’s
response and to control of the excitation have been applied. Measurements of the shaker acceleration
were obtained by mounting a sensor to the shaker surface. Measurements of the centre moving
magnet acceleration were obtained by a second accelerometer mounted on the special element glued
to the magnet.

Figure 5. Measuring stand: shaker TIRA vib 50101 with the harvester (a), the LMS SCADAS module
(b) with the analogue TIRA amplifiers (c), the load resistance module (d), the harvester DSP module
(e), the harvester amplifiers (f) and the PC with the TestLab software (g).

The vibration signals are recorded in LMS SCADAS and the data is processed with LMS.Test.Lab
software to obtain the acceleration and displacement spectres. The special designed harvester
module consists of the DSP MicroDAQ module with multi-core application processor OMAP
L137, the amplifiers, and the load resistance module which allowed to modify the resistance.
The experimental results have been formed by an upward and downward frequency sweep.
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3. Harmonic Balance Method (HBM)

3.1. Stability Analysis

Because the equations of motion (1) and (2) include nonlinear terms it is difficult to find their
strictly correct solutions. Therefore, in the neighbourhood of main resonance the approximate solutions
by the harmonic balance method (HBM) are sought. Generally, the HBM is an approximate analytical
method for the study of non-linear systems described by ODE equations. The main essence is to replace
the nonlinear parts the by specially-constructed functions to find approximate solutions of the nonlinear
systems. To verify the accuracy of the HBM, numerical simulations have been used. The numerical
simulation based on the numerical continuation technique in Auto07p software [37]. This method
gives a deeper understanding of the solution behaviour: stability, multiplicity and bifurcations.

The pseudo-maglev harvester response has a predominant basic frequency ω under the external
periodic excitation. Therefore, the first approximate solutions are assumed as follows:

z(t) = z0(t) + A(t)sin(ωt) + B(t)cos(ωt), (3)

i(t) = C(t)sin(ωt) + D(t)cos(ωt), (4)

where A(t), B(t), C(t), D(t) are unknown amplitudes of the harvester and amplitudes of the induced
current. The amplitude z0 is responsible for the vibration centre shift of the levitating magnet.

After substituting Equations (3) and (4) into Equations (1) and (2), and then balancing the
coefficients of the corresponding sine and cosine terms we get a set of first-order approximate
differential modulation equations. For better clarity, assumed notations A(t) ≡ A, B(t) ≡ B, C(t) ≡ C,
D(t) ≡ D and z0(t) ≡ z0.

ż0c + mg + z0(k +
3
2

A2k1 +
3
2

B2k1 + k1z2
0) = 0, (5)

c(Ḃ + Aω) + m(2Ȧω− Bω2) + Bk +
3
4

A2Bk1 +
3
4

B3k1 −mQω2 + 3Bk1z2
0 + Dα = 0, (6)

c(Ȧ− Bω)−m(2Ḃω + Aω2) + Ak +
3
4

A3k1 +
3
4

AB2k1 + 3Ak1z2
0 + Cα = 0, (7)

L(Ḋ + Cω)− α(Ḃ + Aω) + DR = 0, (8)

L(Ċ− Dω)− α(Ȧ− Bω) + CR = 0. (9)

Stability analysis of the harmonic solutions is carried out by using the approximate
Equations (5)–(9). Determining derivatives Ȧ, Ḃ, Ċ, Ḋ and ż0, we get the so-called amplitude
modulation equations which can be written:

ż0 = −
3k1 A2z0 + 3k1B2z0 + 2k1z3

0 + 2kz0 + 2gm
2c

, (10)

Ȧ =
−6k1 A2Bmω− 3k1 AB2c− 24k1Bz2

0mω + 4Bc2ω + 8Bm2ω3 − 8kBmω− 6k1B3mω

4(c2 + 4m2ω2)

−3k1 A3c− 12k1 Az2
0c− 4Acmω2 − 4kAc− 4Cαc + 8Qm2ω3 − 8Dαmω

4(c2 + 4m2ω2)
,

(11)

Ḃ =
6k1 A3mω− 3k1 A2Bc + 6k1 AB2mω + 24k1 Az2

0mω− 4Ac2ω− 8Am2ω3 + 8kAmω

4(c2 + 4m2ω2)

−3k1B3c− 12k1Bz2
0c− 4Bcmω2 − 4kBc + 4Qcmω2 − 4Dαc + 8Cαmω

4(c2 + 4m2ω2)
,

(12)
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Ċ =
−3k1 A3αc− 6k1 A2Bαmω− 3k1 AB2αc− 12k1 Az2

0αc− 4Aαcmω2 − 4kAαc− 6k1B3αmω

4L(c2 + 4m2ω2)

−24k1Bz2
0αmω− 8Bαm2ω3 − 8kBαmω− 4Cα2c− 8Dα2mω + 8Qαm2ω3 + 4DLc2ω

4L(c2 + 4m2ω2)

−4CRc2 + 16DLm2ω3 − 16CRm2ω2

4L(c2 + 4m2ω2)
,

(13)

Ḋ =
6k1 A3αmω− 3k1 A2Bαc + 6k1 AB2αmω− 4kBαc + 8Aαm2ω3 + 8kAαmω− 3k1B3αc

4L(c2 + 4m2ω2)

24k1 Az2
0αmω− 12k1Bz2

0αc− 4Bαcmω2 − 4Dα2c + 8Cα2mω + 4Qαcmω2 − 4CLc2ω

4L(c2 + 4m2ω2)

−4DRc2 − 16CLm2ω3 − 16DRm2ω2

4L(c2 + 4m2ω2)
.

(14)

To determined stability of the obtained solutions is based on the Jacobian eigenvalues analysis,
where the Jacobian takes the form∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ż0
∂z0
− λ ∂ż0

∂A
∂ż0
∂B

∂ż0
∂C

∂ż0
∂D

∂Ȧ
∂z0

∂Ȧ
∂A − λ ∂Ȧ

∂B
∂Ȧ
∂C

∂Ȧ
∂D

∂Ḃ
∂z0

∂Ḃ
∂A

∂Ḃ
∂B − λ ∂Ḃ

∂C
∂Ḃ
∂D

∂Ċ
∂z0

∂Ċ
∂A

∂Ċ
∂B

∂Ċ
∂C − λ ∂Ċ

∂D
∂Ḋ
∂z0

∂Ḋ
∂A

∂Ḋ
∂B

∂Ḋ
∂C

∂Ḋ
∂D − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (15)

The stability of the obtained solutions depends on the roots of λ. If all roots have the negative real
part then the solution is stable.

3.2. Approximate Analytical Solutions

For a steady state, amplitudes are constant thus the first-order derivatives are equal to zero

ż0 = 0, Ȧ = 0, Ḃ = 0, Ċ = 0, Ḋ = 0. (16)

Introducing Equation (16) into Equations (5)–(9) and after few mathematical manipulations we
obtain the following algebraic equations:

mg + z0(k +
3
2

A2k1 +
3
2

B2k1 + k1z2
0) = 0, (17)

Bk +
3
4

A2Bk1 +
3
4

B3k1 −mQω2 + Acω− Bmω2 + 3Bk1z2
0 + Dα = 0, (18)

Ak +
3
4

A3k1 +
3
4

AB2k1 − Bcω− Amω2 + 3Ak1z2
0 + Cα = 0, (19)

DR + CLω− Aωα = 0, (20)

CR− DLω + Bωα = 0. (21)

Note that Equations (20)–(21) are linear. Equations (17)–(21) have been solved with help of the
Mathematica software. After a few mathematical manipulations, the amplitudes C and D are:

C =
ω(−BR + ALω)α

R2 + L2ω2 , (22)

D =
ω(AR + BLω)α

R2 + L2ω2 . (23)
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Then Equations (22) and (23) are squared and added, where z2
1 = A2+B2. This leads to the fact

that current i (i2 = C2+D2) and the recovered power P = Ri2 responses are written in the simple form:

i =
ωαz1√

R2 + L2ω2
, P =

ω2α2z2
1R

R2 + L2ω2 . (24)

Introducing amplitudes C and D (Equations (22) and (23)) into Equations (18) and (19), we get
the amplitudes A and B:

A = −
mQω3(−c− Rα2

R2+L2ω2 )

(cR2ω+cL2ω3+Rωα2)2

(R2+L2ω2)2 + (k + 3
4 k1(z2

1 + 4z2
0) + ω2(−m + Lα2

R2+L2ω2 ))2
, (25)

B =
mQω2(k + 3

4 k1(z2
1 + 4z2

0) + ω2(−m + Lα2

R2+L2ω2 ))

(cR2ω+cL2ω3+Rωα2)2

(R2+L2ω2)2 + (k + 3
4 k1(z2

1 + 4z2
0) + ω2(−m + Lα2

R2+L2ω2 ))2
. (26)

Finally, the sixth-order non-linear polynomial equation describing the magnet’s amplitude and
the magnet vibration centre shift are obtained:

[9k2
1(R2 + L2ω2)]z6

1 + 24k1(R2 + L2ω2)[k−mω2 + 3k1z2
0 +

Lω2α2

R2 + L2ω2 ]z
4
1+

+16(R2 + L2ω2)[k2 + c2ω2 − 2kmω2 + m2ω4 + 6kk1z2
0 − 6k1mω2z2

0 + 9k2
1z4

0]z
2
1+

+16ω2α2[2kL + 2cR− 2Lmω2 + 6k1Lz2
0 + α2]z2

1−
−16m2Q2ω6(R2 + L2ω2) = 0,

(27)

mg + z0(k +
3
2

k1z2
1 + k1z2

0) = 0. (28)

The frequency–amplitude harvester response is given by solving of Equations (27) and (28).

4. Methods

In order to check the correctness of the HBM method, the obtained results were compared with
the numerical continuation method (CM) and the experiment. The CM is a very good numerical
method suited for tracing one-dimensional manifolds, curves (called branches) of solutions. It allows
to detect the bifurcation points, new solution branches and calculate the stable and unstable solutions.
The theoretical analysis is based on the parameters from the experimental laboratory rig (Figure 5).
Some of these are readily measurable: m = 0.09 kg, L = 1.46 H, RL = 0 ÷ 10 kΩ, RC = 1.15 kΩ and
Q = 0.6 mm. The damping coefficient is estimated from the logarithmic decrement method equals
c = 0.07 Ns/m. In order to determine the magnetic suspension parameters, the force–displacement
relationship was conducted with use of Shimadzu tensile tests. Of course, the linear stiffness depends
on the distance between the fixed and moving magnets [34]. In our case, these parameters were k =
640 N/m and k1 = 460 kN/m3. The value of k1 depends on geometry and size of the all magnets. The
distance between the moving magnet (with sensor) and the shaker was 0.15 m. It has been estimated
based on our own tests and suggestions from [38].

5. Results and Discussion

5.1. Single Pseudo-Levitating Magnet Vibration Centre Shift

The magnet-coil configuration influences the electromechanical coupling [32]. Therefore,
the magnet vibration centre must be taken into consideration. The detail analysis of the Equation (28)
shows that the magnet vibration centre z0 depends on the magnet oscillation amplitude z1.
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In Figure 6a, we can see that the magnet amplitude z1 influences the vibration center shift. At high
enough oscillation amplitudes, the moving magnet vibration centre shift is practically independent
from the linear stiffness (Figure 6a).
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Figure 6. An influence of the linear (a) and nonlinear (b) stiffness components on the magnet vibration
centre. The diagrams have been obtained for parameters k1 = 460 kN/m3 and k1 for k = 640 N/m from
the Equation (28).

Moreover, it can be seen that for z1 = 0 we observe the static displacement of the moving magnet.
Of course, an increase of the linear stiffness component k reduces the static displacement of magnet.

Figure 6b depicts the magnet amplitude influencing the vibration centre shift. The analysis was
done for three different nonlinear stiffness: k1 = 100 kN/m3 (red line), k1 = 460 kN/m3 (black line)
and k1 = 1000 kN/m3 (blue line). For the low magnet oscillation, the influence of the nonlinearity on
the vibration centre is weak. An increase of the oscillation amplitude causes that the vibration centre
is reduced.

5.2. Analytical Results

In order to show the influence of the amplitude excitation (Q), a series of analyses have been
performed. The exemplary resonance curves of the moving magnet and the recovered power versus
the frequency ω in Figure 7 are shown. The blue line corresponds with the case where Q = 0.1 mm,
the red line to Q = 0.5 mm, the green line to Q = 0.8 mm and the black line to Q = 1.1 mm.
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Figure 7. Analytical HBM results. The moving magnet’s resonance curves (a) and the recovered power
(b) under the external periodic excitation. The results have been calculated for the resistance R = 2.0
kΩ. The results have obtained from Equations (27) and (28). All resonance responses are stable.

The most effective energy harvesting occurs in the resonance conditions. The resonance peak is
located close to the frequency ω ≈ 88 rad/s. Of course, a greater magnet oscillation amplitude Q causes
an increase in the magnet response and leads to higher level of the recovered power. For example,
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an increase of the excitation amplitude about two times (from 0.6 mm to 1.1 mm) causes a two times
increase in the magnet vibration and a four times increase in the recovered power. Note that all
resonance curves are stable and have the linear behaviour.

The frequency response curves of the pseudo-maglev harvester under the total resistance R in
Figure 8 are shown. The analytical study has been done for the resistances: 0.5 kΩ (blue line), 1 kΩ
(red line), 2 kΩ (green line) and 5 kΩ (black line). Upon analysing and comparing the obtained results
from both diagrams, we can conclude that the resistance strongly influences the magnet dynamics and
energy harvesting.

An increase of R causes the magnet oscillation to become higher. This effect can be explained by
analysis of Equations (1) and (2), and neglecting the inductance (L = 0 H). Then, ed f force (Equation (1))
can be written as ed f = α2 ż

R . This means that the higher resistance decreases the electrical damping level
(ed f force). However, the EH under R looks quite different. A low value of R causes the resonance
peak not to be observed. An increase of R causes higher magnet oscillation but reduces the effective
bandwidth of the power (Figure 8b).

The parameter L (inductance) characterizes behaviour of the coil. It is defined in terms of that
opposing em f force or its generated magnetic flux and the corresponding electric current. The coil
inductance depends on the geometry of the current path as well as the magnetic permeability of nearby
materials. As mentioned earlier, much of the literature suggests that the coil inductance does not
influence the frequency response as well as energy harvesting. This is true only for the low inductance
(usually typical in real practice). Our analytical results (Figure 9a,b) show that the inductance lower
than 1H can be neglected.
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Figure 8. Analytical HBM results. Magnet’s resonance curves (a) and recovered power (b) under the
resistance influence. The results have been calculated for amplitude Q = 0.6 mm and have obtained
from Equations (27) and (28). All resonance curves are stable.

A main question seems to be when the L can be ignored. In this aim, the relationship between the
moving magnet response (Figure 10a) and the recovered current (Figure 10b) versus the coil inductance
has been plotted. For the analysis, three different resistance levels: R = 1 kΩ (red line), R = 2 kΩ
(black line) and R = 5 kΩ (blue line) have been selected. Assuming, that the neglect of L causes a
2% error in the magnet’s oscillation, then the maximal coil inductance can be: 1.28 H for R = 1 kΩ,
1.69 H for R = 2 kΩ and 2.57 H for R = 5 kΩ (Figure 10a). Whereas, for a 2% error in the recovered
current, the inductance can range: 1.84 H for R = 1 kΩ, 2.07 H for R = 2 kΩ and 2.25 H for R = 5 kΩ
(Figure 10b). The analysis clearly shows that the coil inductance can be ignored, but this depends on
the total resistance level.

The last analysed parameter is the electromechanical coupling coefficient (α). This parameter
characterizes how the induced current in the coil is related to the velocity of the moving magnet [32].
As shown in the amplitude-frequency, plot this parameter is a crucial from the dynamics (Figure 11a)
and energy harvesting (Figure 11b) point of view. We can see that the electromechanical coupling
coefficient strongly affects the magnet amplitude responses. If the electromechanical coefficient
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increases, then the magnet’s amplitude and the recovered energy are significantly reduced. This means
that α can be treated as the electrical damping coefficient (increases ed f force in Equation (1)).
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Figure 9. Analytical HBM results. Magnet’s resonance curves (a) and the recovered power (b) under
the coil inductance influence. The results have been calculated for amplitude Q = 0.6 mm and the
resistance R = 2 kΩ. The results have been obtained from Equations (27) and (28). All resonance curves
are stable.

0 1 2 3 4 5 6 7 8 9 10

L (H)

0

1

2

3

4

5

6

z
1
 (

m
)

10-3

R=2(k ) R=1(k ) R=5(k )

(a)

0 1 2 3 4 5 6 7 8 9 10

L (H)

0

1

2

3

4

5

6

7

8

9

10

i 
(m

A
)

R=2(k ) R=1(k ) R=5(k )

(b)

Figure 10. Influence of the coil inductance L on the magnet’s response (a) and the recovered current
(b). The results have been obtained for frequency ω = 88 rad/s.
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Figure 11. Analytical HBM results. Magnet’s resonance curves (a) and the recovered power (b) under
the electromechanical coupling coefficient. The results have been calculated for Q = 0.6 mm and R =
2 kΩ. The results have been obtained from Equations (27) and (28). The dashed line means unstable
solution obtained from HBM.
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Additionally, the jump amplitude phenomena (well-known as the foldover effect) close to the
main resonance is observed. For higher values of α the jump phenomena gradually disappears.
The jump phenomena causes coexistence of two stable and one unstable solutions and is positive for
EH. One of the responses is characterized by the higher energy input (from top branch). For example,
for α = 12 V/A the maximal recovered power from top branch equals about P = 2.7 W while from the
bottom branch is P = 0.03 W (Figure 11b). Moreover, the foldover effect causes a broadening effective
frequency bandwidth. For the coupling value of α = 20 V/A the effective frequency bandwidth is
located ω ≈ 82 ÷ 92 rad/s, but for α = 12 V/A the region became wider to ω ≈ 85 ÷ 125 rad/s.
Of course, the higher EH is strongly related with increasing of the magnet oscillation (Figure 11a).

5.3. Experimental Verification

A series of experimental tests for the two different resistances have been performed: R = 2 kΩ and
R = 10 kΩ. The exemplary resonance curves of the moving magnet response (z1) and the recovered
current (i) in Figures 12 and 13 are shown respectively. The experiment tests are marked by the red
plus signs. The blue line means the numerical stable solution, while the blue circle points denote the
stable solution obtained by the HBM.

(a) (b)

Figure 12. Magnet’s resonance curve (a) and the recovered current (b) for R = 2 kΩ and α = 70 V/A.
The marked black points denote the HBM results, the blue lines mean numerical results and the plus
signs are experimental results.

The HBM and CM results are compliance in the total frequency range. This means that the
first approximation of the assumed solutions is sufficient. The experimental results are similar to
the analytical and numerical. A few small differences probably come from the magnet-tube friction.
The maximal recovered current has been obtained close to the resonance peak ω = 88 rad/s equals i =
5.8 mA (what correspond power P = 0.067 W).

Modification in the coupling coefficient and the resistance values cause the resonance curves to
have a distorted shape and the foldover effect to appear (Figure 13a,b).

The blue lines mean the stable numerical solution, the blue circle points denote the stable solution
obtained by the HBM, the red lines mean the unstable numerical solution, and the red point show
the unstable analytical solution. The experimental verification marked again by the red plus signs.
The analytical and numerical results are in compliance. The foldover effect exhibits two stable and one
unstable solutions has been confirmed experimentally. The numerical recovered power from the top
branch equals P = 3.6 W, while about P = 0.036 W from the bottom branch .

The exemplary experimental and numerical recovered time histories in Figure 14 are shown. We
can see a current flow in the electrical circuit for two different electrical parameters configurations.
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(a) (b)

Figure 13. Magnet’s resonance curve (a) and the recovered current (b) for R = 10 kΩ and α = 25 Vs/m.
The marked black points denote the HBM results, the blue and red lines mean numerical results and
the plus signs are experimental results. The foldover effect toward high frequencies is observed. This is
commonly named hardening.

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6

t (s)

-8

-6

-4

-2

0

2

4

6

8

i 
(m

A
)

simulation experiment

(a)

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6

t (s)

-6

-4

-2

0

2

4

6

i 
(m

A
)

simulation experiment

(b)

Figure 14. Experimental and numerical recovered currents obtained for parameters: α = 70 V/A, R = 2
kΩ (a) and α = 25 V/A, R = 10 kΩ (b). The frequency and amplitude of excitation were ω = 88 rad/s
and Q = 0.6 m.

The red color means the recovered current from the pseudo-maglev harvester, while the black line
means numerical result. The numerical time histories are clear periodic signals, while the experimental
signals are slightly disturbed probably by the nonlinear friction between the levitating magnet and
tube, the model simplification and parameters identification. However, both signals have similar
periods and amplitudes.

6. Conclusions

The paper presents theoretical and experimental analysis of the single pseudo-levitating harvester.
The HBM method is successfully applied to obtain the analytical responses and calculation of the
stability solutions. The analytical, numerical and experimental results are in compliance already for
the first assumed approximation solutions. Moreover, the influence of the electrical parameters on
energy harvesting is investigated in detail.

The obtained results show that the magnet vibration centre shift depends on the magnet’s
oscillation amplitude. This is very a important conclusion because the magnet shift relative to the coil
changes the electromechanical coupling value.

The frequency response strongly depends on the resistance and electromechanical coupling
coefficient. An increase in the resistance causes the higher oscillation of the levitating magnet. Moreover,
the coupling coefficient strongly influences the resonance curve shape. In low values of α, the strong



Sensors 2020, 20, 1623 14 of 16

nonlinear behaviour is observed with two stable periodic solutions. The obtained results confirm that
the coil inductance can be neglected; however, this depends on the resistance level. For the analyzed
parameters, the coil inductance can be neglected if is smaller then 1.28 H. The maximum recovered
current from numerical tests was 3.6 W, while from the experiment it was about 1 W.

The obtained results show that for the tested device the recovered power reaches few watts. It is
expected that in larger structures, the harvested energy will get higher amounts. The effectiveness
of the systems is relatively small—about 2% of input. However, the proposed device is a part of the
pendulum absorber/harvester system. Therefore, the recovered current mainly will come from the
vibration mitigation.

A more detailed experimental investigation and the shaping of the electromechanical coupling by
the special designed magnet-separators stacks and the energy leakage problem will be carried out in a
future work.
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