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Development of efficient electrocatalysts combining the features of low cost and high

performance for both the hydrogen evolution reaction (HER) and oxygen evolution

reaction (OER) still remains a critical challenge. Here, we proposed a facile strategy to

construct in situ a novel hierarchical heterostructure composed of 0D−2D CoSe2/MoSe2
by the selenization of CoMoO4 nanosheets grafted on a carbon cloth (CC). In such

integrated structure, CoSe2 nanoparticles dispersed well and tightly bonded with MoSe2
nanosheets, which can not only enhance kinetics due to the synergetic effects, thus

promoting the electrocatalytic activity, but also effectively improve the structural stability.

Benefiting from its unique architecture, the designed CoSe2/MoSe2 catalyst exhibits

superior OER and HER performance. Specifically, a small overpotential of 280mV is

acquired at a current density of 10 mA·cm−2 for OER with a small Tafel slope of 86.8

mV·dec−1, and the overpotential is 90mV at a current density of 10 mA·cm−2 for

HER with a Tafel slope of 84.8 mV·dec−1 in 1M KOH. Furthermore, the symmetrical

electrolyzer assembled with the CoSe2/MoSe2 catalysts depicts a small cell voltage of

1.63 V at 10 mA·cm−2 toward overall water splitting.

Keywords: cobalt selenide, molybdenum selenide, hierarchical heterostructure, bifunctional electrocatalysts,

overall water splitting

INTRODUCTION

Hydrogen is a promising energy source that boasts a high power density and environmental
friendliness; therefore, electrolysis of water is hotly pursued as a renewable, efficient,
and pollution-free technique (Amiinu et al., 2017; Luo et al., 2018; Zhu et al., 2018).
Electrocatalytic water splitting consists of the hydrogen evolution reaction (HER) and oxygen
evolution reaction (OER), and electrocatalysts as the chemical reaction centers play a
critical role in the water splitting electrolyzer. Although some noble metal oxide catalysts
(RuO2 and IrO2) have high electrocatalytic performance for the OER and some noble
metal catalysts (Pt and Ir) deliver good electrochemical property in the HER, the high
cost and scarcity restrict their wide industrial application (Trasatti, 1972, 1984). Therefore,
noble-metal-free catalysts with high stability and efficiency are crucial to large-scale hydrogen
production from water splitting. Currently, the OER activity in alkaline solution is the
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bottleneck in overall water splitting due to the sluggish kinetics
arising from the multiproton-coupled electron transfer steps
(Jamesh and Sun, 2018). In practice, the HER catalyst in the
electrolyzer should be compatible with the OER catalyst and
functions in the same medium. Hence, development of suitable
bifunctional noble-metal-free electrocatalyts with both high HER
and OER performance in alkaline media is of great significance.

In recent years, transition metal dichalcogenides (TMDs)
have attracted significant research interests owing to their earth-
abundant reserves and acceptable activity for electrocatalytic
HER (Xie et al., 2013; Zhang et al., 2017a; Xue et al., 2018; Wang
et al., 2019). Particularly, layered MoSe2 has been considered as
a promising HER electrocatalyst because of its unique structure
features and high electrochemical activity (Shi et al., 2015;
Chen et al., 2018a; Zhang et al., 2018). Theoretical research has
demonstrated that the Gibbs free energy for H atom absorption
on the edge of MoSe2 is lower than that of MoS2 due to the more
metallic nature of MoSe2, revealing the higher HER performance
(Tang et al., 2014; Lai et al., 2017; Yang et al., 2018). In addition,
it also has been experimentally confirmed that the unsaturated
Se edges in MoSe2 nanosheets are extremely active as the S
edges in MoS2, which is responsible for the high HER activity
(Jaramillo et al., 2007; Tang and Jiang, 2016). However, similar
to MoS2, the HER activity of layered MoSe2 is largely limited
by its poor conductivity and serious aggregation or restacking
during the synthesis procedure (Mao et al., 2015; Qu et al.,
2015), inhibiting the practical application of MoSe2 catalyst.
Therefore, it is significant to improve the electrochemical activity
of MoSe2-based catalyst. Recent works have shown that coupling
MoSe2 with other transition metal selenides and constructing
heterostrucurted materials could be an effective approach to
further enhance the electrochemical performance of MoSe2.
For instance, Wang et al. found that the MoSe2@Ni0.85Se
nanowire delivered enhanced kinetics and performance for
HER in alkaline conditions due to the high density of active
edges of MoSe2 and the good conductivity of Ni0.85Se (Wang
et al., 2017a). Zhang et al. synthesized 3D MoSe2/NiSe2
nanowires, which significantly enhanced HER activity with a
low Tafel slope and overpotential in 0.5M H2SO4, because the
3D structure affords more active sites (Zhang et al., 2017a).
Liu et al. fabricated MoSe2-NiSe@carbon heteronanostructures
and achieved glorious HER catalytic properties and excellent
durability in both acidic and base conditions (Liu et al., 2018).
In addition, the hierarchical mesoporous MoSe2@CoSe/N–C
composite also exhibits outstanding HER activity (Chen et al.,
2019b). Despite significant success, most of previous reports
mainly focused on the improvement of HER performance, while
the OER activity of MoSe2 catalyst in alkaline media has been
ignored. Hence, the rational design and fabrication of MoSe2-
based bifunctional electrocatalysts with satisfactory activity and
stability toward overall water splitting in alkaline solution still
remain a big challenge.

In this work, we developed a facile in situ phase separation
strategy to construct a novel hierarchical heterostructure
consisting of 0D−2D CoSe2/MoSe2 via the selenization of
CoMoO4 nanosheets supported on a carbon cloth (CC)
(Figure 1). Due to the in situ phase transformation, CoSe2

nanoparticles are uniformly anchored on MoSe2 nanosheets
in the integrated structure, which can not only enhance
reaction kinetics because of the synergetic effects, thus boosting
the electrocatalytic activity, but also effectively suppress the
aggregation/restacking of MoSe2 nanosheets, thereby improving
the structural stability. Moreover, the hierarchical structure
assembled by 0D−2D CoSe2/MoSe2 could provide abundant
active sites for the electrochemical reactions. As a result, the
designed CoSe2/MoSe2 architecture exhibits outstanding OER
and HER performance in alkaline media. More specifically, a
small overpotential of 280mV is achieved at a current density
of 10 mA·cm−2 for OER with a small Tafel slope of 86.8
mV·dec−1, and the overpotential is 90mV at a current density of
10 mA·cm−2 for HER with a Tafel slope of 84.8 mV·dec−1 in 1M
KOH.Moreover, the symmetrical electrolyzer assembled with the
CoSe2/MoSe2 catalysts delivers a small cell voltage of 1.63V at 10
mA·cm−2 toward overall water splitting.

EXPERIMENTAL SECTION

Synthesis of CoMoO4 Nanosheet
Firstly, a pristine carbon cloth (CC) was treated with nitric
acid solution overnight, subsequently ultrasonicated in deionized
(DI) water and dried in an oven at 80◦C for 2 h. After that, 1
mmol cobalt acetate, 1 mmol ammonium molybdate, 2 mmol
urea, and 5 mmol ammonium fluoride were dissolved in 30mL
DI water, followed by ultrasonication for 30min. Then, the
homogeneous solution was poured into a 50-mL Teflon-lined
stainless autoclave with the CC kept at 150◦C for 6 h. After
cooling to room temperature, the CC was washed with DI water
for several times and dried in a vacuum freeze-dryer overnight.
Finally, the obtained sample was treated at 400◦C for 2 h with a
ramp rate of 5◦C min−1 in an argon atmosphere.

Synthesis of CoSe2/MoSe2
The as-prepared CoMoO4 precursor was reacted with 0.5 g
selenium powder at 450◦C for 1 h under an Ar/H2 (90%/10%)
atmosphere to form the CoSe2/MoSe2.

Synthesis of CoSe2
The CoSe2 was prepared through two steps. Firstly, the treated
CC was immersed in a 0.1M Co(NO3)2 solution for the
electrodeposition of Co (Yang et al., 2015). Then, the collected
sample was reacted with 0.5 g selenium powder under an Ar/H2

(90%/10%) atmosphere at 450◦C for 1 h.

Synthesis of MoSe2
Firstly, MoS2 was prepared via hydrothermal reaction with the
CC at 200◦C for 12 h, followed by heating at 400◦C for 2 h to
form MoO3 (Wu et al., 2018). Then, the obtained MoO3 was
reacted with 0.5 g selenium powder at 450◦C for 1 h under an
Ar/H2 (90%/10%) atmosphere.

Preparation of Pt/C
Four milligrams of 20% Pt/C and 20 µL 5% Nafion solution were
added into 1mL solution of isopropanol and DI water (9:1) and
then sonicated to form a uniform solution. Finally, the 1∗1 cm2
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FIGURE 1 | Schematic illustration of the fabrication of CoSe2/MoSe2.

CC was soaked in the homogeneous solution and dried in air at
atmospheric temperature.

Preparation of RuO2
Four milligrams of RuO2 and 20 µL 5% Nafion solution were
added into 1mL solution of isopropanol and DI water (9:1),
and then the sample was sonicated to form a uniform solution.
Finally, the 1∗1 cm2 CCwas soaked in the homogeneous solution
and dried in air at atmospheric temperature.

CHARACTERIZATION

The phase composition of the samples were characterized
by X-ray diffraction (XRD, Bruker D8A A25), and the
chemical states were determined through X-ray photoelectron
spectroscopy (XPS, ESCALB 250Xi). The morphology and
microstructure were recorded via field emission scanning
electron microscopy (FE-SEM, FEI Nova NANOSEM 400) and
high-resolution transmission electron microscopy (HR-TEM,
JEM-2100 UHR STEM).

ELECTROCHEMICAL MEASUREMENTS

All samples made use of a three-electrode system performed by
a biologic VSP300 type electrochemical workstation (Biologic
Science Instruments, France). The sample of CoSe2/MoSe2 was
put on the electrode holder as the working electrode with a
mass loading of 4 mg/cm2, the saturated calomel electrode (SCE)
was the reference electrode, and a carbon rod served as the
counter electrode. The electrolyte was 1M KOH solution with
saturated N2. Linear sweep voltammetry (LSV) was characterized
by polarization curves of OER with a scanning rate of 5mV
s−1 from 0 to 0.8V vs. SCE. Similarly, the polarization
curves of HER were determined under the same condition
from 0 to −0.8V vs. SCE. The potentials were standardized
by a reversible hydrogen electrode (RHE) as shown in the
following: E (RHE) = E (SCE) + 0.059 × pH with instrument
automatic 85% iR compensation. The electrochemically active

surface area (ECSA) was calculated by cyclic voltammetry (CV)
performed from −0.3 to −0.2V vs. SCE with different scanning
rates of 40, 60, 80, 100, and 120mV s−1. Electrochemical
impedance spectroscopy (EIS) measurements were conducted
by biologic VMP3 (Biologic Science Instruments, France) from
100KHz to 0.1Hz. The overall water-splitting electrolyzer was
performed with CoSe2/MoSe2 as electrodes and 1M KOH as
the electrolyte.

RESULTS AND DISCUSSION

Figure 2A presents the FE-SEM image of the as-prepared
CoMoO4 precursor, which presents uniform nanosheets (with
a lateral size of 2µm) perpendicularly grown on the CC
substrate with high coverage. After a selenization process,
the obtained CoSe2/MoSe2 sample well maintains the pristine
morphology of the CoMoO4 precursor (Figure 2B). Moreover,
the high-magnification SEM image further reveals that lots of
nanoparticles are well dispersed on the surface of the nanosheet
(Figure 2C), implying the structure and phase evolution during
the selenization treatment. The elemental maps in (Figure 2D)
show that Mo, Co, and Se are uniformly distributed throughout
the nanosheets. In addition, the low-resolution TEM images
in (Figures 2E,F) display that nanoparticles are uniformly
distributed on the nanosheet during the thermal reduction
procedure, forming the 0D/2D structure. Furthermore, the high-
resolution TEM (Figure 2G) shows the lattice fringes of 0.26 nm
and 0.65 nm corresponding to the (111) and (002) planes of
CoSe2 and MoSe2, respectively (Qu et al., 2016; Liu et al., 2017),
demonstrating the successful formation of the CoSe2/MoSe2 after
the selenization reaction.

To investigate phase evolution during the selenization process,
the crystal structure and phase composition of the obtained
samples were characterized by X-ray diffraction (XRD) analysis
(Figure 3A). The diffraction peaks of CoMoO4 precursor (in the
black line) can be well indexed to the CoMoO4 phase (JCPDSNo:
21-0868) (Wang et al., 2016). After the thermal reduction, some
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FIGURE 2 | FE-SEM images of (A) CoMoO4 and (B,C) CoSe2/MoSe2; (D) elemental maps of CoSe2/MoSe2; (E,F) TEM of CoSe2/MoSe2; (G) HR-TEM images of

CoSe2/MoSe2.

new diffraction peaks can be observed. The diffraction peaks at
around 13.7 ◦, 27.6 ◦, 31.4 ◦, and 37.8 ◦ can be assigned to the
MoSe2 phase (JCPDS No: 77-1715) (Qu et al., 2016), while the
other peaks could be attributed to the phase of CoSe2 (JCPDS
No:53-0449) (Liu et al., 2017). The XRD result clearly manifests
the successful phase separation of the CoSe2 and MoSe2 from the
CoMoO4 precursor via the selenization process.

X-ray photoelectron spectroscopy (XPS) measurement was
carried out to analyze the composition and chemical state of
as-prepared samples. (Figure 3B) illustrates the high-resolution
Co 2p peaks at 778.8 eV (Co 2p3/2), 793.7 eV (Co 2p1/2),
780 eV (Co 2p3/2), and 796 eV (Co 2p1/2), corresponding to
CoSe2 and cobalt–oxide bond, while those peaks at 784.1 eV
and 801.5 eV are the satellite peaks (Mu et al., 2016; Wang
et al., 2017b; Gao et al., 2018). Furthermore, the fine Mo 3d
XPS spectrum (Figure 3C) shows the main peaks at 228.8 eV
and 231.9 eV, which represent the Mo 3d5/2 and Mo 3d3/2 of
MoSe2 (Wang et al., 2018a,b). Additionally, the peak located

at 230 eV can be ascribed to the Se 3s of MoSe2 (Zhao
et al., 2018). The Se 3d XPS spectrum (Figure 3D) displays the
characteristic of CoSe2 and MoSe2 at 54.5 eV and 55.4 eV in
agreement with the Se 3d5/2 and Se 3d3/2, respectively (Gao et al.,
2018). Moreover, the peak at around 59.8 eV is confirmed to
correspond to the selenium–oxygen bond (Kong et al., 2014).
According to these results, the selenization process induced
the phase separation from CoMoO4 into the nanoscale CoSe2
and MoSe2.

It is generally recognized that highly efficient electrocatalysts
worked in alkaline solution is the bottleneck for large-scale
application of overall water splitting. Linear sweep voltammetry
(LSV) at a scanning rate of 5mV s−1 was characterized by
the electrocatalytic HER and OER capacities of the samples
by a three-electrode system in 1M KOH solution with
saturated N2. By contrast, CoSe2, MoSe2 (Figure S1), RuO2,
and Pt/C catalysts were performed in the same condition.
The HER polarization curves and corresponding Tafel slops
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FIGURE 3 | (A) XRD patterns of CC, CoMoO4, and CoSe2/MoSe2; high-resolution XPS spectra of (B) Mo 3d, (C) Co 2p, and (D) Se 3d of CoSe2/MoSe2.

are depicted in (Figures 4A,B). The overpotential (η10) and
Tafel slope of CoSe2/MoSe2 are 90mV and 84.8 mV·dec−1,
which are better than those of CoMoO4 (277mV, 123.6
mV·dec−1), CoSe2 (205mV, 195.2 mV·dec−1), and MoSe2
(199mV, 152.4 mV·dec−1). CoSe2 has a metallic character,
which can promote the dissociation of water and provide
protons under alkaline conditions, thus improving the HER
performance of MoSe2 (Kwak et al., 2016). In addition, the
hierarchical nanosheet array assembled by the CoSe2/MoSe2
provides abundant active sites for the electrochemical reaction
at the phase interface, which can further enhance the HER
performance (Zhang et al., 2017a). Therefore, the CoSe2/MoSe2
catalyst exhibits improved HER performance benefiting from
the synergistic effect. The catalyst of Pt/C illustrates an
overpotential (η10) (59mV) and Tafel slope (36.9 mV·dec−1) in
1M KOH that are similar to those in other literatures (Chen
et al., 2018b; Wan et al., 2018). Moreover, the overpotential
of CoSe2/MoSe2 is superior to those of recently reported
selenide catalysts such as NiSe NWs/Ni Foam (96mV) (Tang
et al., 2015), EG/cobalt selenide/NiFe–LDH (260mV) (Hou
et al., 2016), o-CoSe2/P (104mV) (Zheng et al., 2018),
CoSe2 NCs (520mV) (Kwak et al., 2016), Co0.75Ni0.25Se/NF
(106mV) (Liu et al., 2019), 1T MoSe2/NiSe (120mV) (Zhang

et al., 2019), and SWCNTs/MoSe2 (219mV) (Najafi et al.,
2019) (Table S1).

The electrocatalytic OER properties are determined by LSV
and polarization measurements as shown in (Figures 4D,E).
The CoSe2/MoSe2 catalyst shows a lower overpotential (η10 of
280mV) than those of the CoMoO4 (352mV), CoSe2 (322mV),
MoSe2 (404mV), and RuO2 (318mV), respectively. More
importantly, the OER performance of the designed CoSe2/MoSe2
sample exceeds those of recently reported selenide catalysts in
OER, for instance, the Ag–CoSe2 (320mV) (Zhao et al., 2017),
CoSe2 NCs (430mV) (Kwak et al., 2016), CoSe2/DETA (392mV)
(Guo et al., 2017), NiCo2Se4 holey nanosheets (295mV) (Fang
et al., 2017), NiSe–Ni0.85Se/CP (300mV) (Chen et al., 2018a),
SWCNTs/MoSe2 (295mV) (Najafi et al., 2019), 1T/2H MoSe2
(397mV) (Li et al., 2019), and CoSe2@MoSe2 (309mV) (Chen
et al., 2019c) (Table S2). Furthermore, the corresponding Tafel
slope of CoSe2/MoSe2 is 86.8 mV·dec−1, which is smaller
than those of the CoMoO4 (101.8 mV·dec−1), CoSe2 (124
mV·dec−1), MoSe2 (130mV·dec−1), and RuO2 (93.4mV·dec−1).
The CoSe2/MoSe2 has lower overpotential and smaller Tafel,
which can be attributed to its unique hierarchical heterostructure,
facilitating electron transfer and accelerating OER kinetics. In
this heterostructure, the transfer of electrons fromCoSe2 phase to
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FIGURE 4 | (A) HER polarization curves of CoMoO4, CoSe2/MoSe2, CoSe2, MoSe2, and Pt/C; (B) Tafel slopes; (C) galvanostatic of CoSe2/MoSe2 for HER; (D) OER

polarization curves of CoMoO4, CoSe2/MoSe2, CoSe2, MoSe2, and RuO2; (E) Tafel slopes in OER; (F) galvanostatic of CoSe2/MoSe2 for OER.

MoSe2 phase in the CoSe2/MoSe2 interface can result in electron-
poor Co species and electron-rich Mo species (Liu et al., 2018).
It is believed that the Se anion can affect the electron transfer
between Co and Mo species, which is important for boosting
catalytic ability (Yan et al., 2019). Besides, the formation of
CoOOH is the primary cause to promote OER activity (Liu et al.,
2015), and the increased 3d−4p repulsion between the center

of the metal d band and the center of the p band of the Se site
further promotes the rapid transfer of dioxygen molecules, thus
improving OER performance (Li et al., 2017).

To understand the effects of the structure and composition
of prepared catalyst on the electrochemical performance, several
CoSe2/MoSe2 catalysts were collected at different selenization
temperatures and the HER and OER performance were evaluated
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FIGURE 5 | Electrochemical double-layer capacitance with the CV curves acquired at different scanning rates from 40, 60, 80, 100, and 120mV s−1: (A)

CoSe2/MoSe2, (B) CoSe2, and (C) MoSe2; (D) current densities (1j = janode – jcathode, at 0.82 V) as a function of scanning rates of CoSe2/MoSe2, CoSe2, and

MoSe2 with the corresponding slope being twice that of the Cdl values.

by LSV analysis (Figure S2). It can be seen that the CoSe2/MoSe2
sample obtained at 450◦C (CoSe2/MoSe2-450) possesses better
electrocatalytic properties than other counterparts, which can be
ascribed to its superior structure. As shown in (Figure S3), with
the selenization temperature increasing, the size of nanoparticles
on the surface of nanosheets increased as well, indicating
higher crystallinity. Generally, larger particle size will reduce
the active surface of catalyst (Zhang et al., 2017b; Chen et al.,
2019a). Therefore, when the selenization temperature elevated
to 500◦C (CoSe2/MoSe2-500), the catalytic performance slightly
declined owing to its larger particle size and lower active
surface. In addition, (Figure S4) displays the composition of
the CoSe2/MoSe2 catalysts achieved at a different selenization
temperature. As can be seen, when the selenization process
proceeded at low temperature, the obtained CoSe2/MoSe2
catalyst has poor MoSe2 phase and low crystallinity, which are
responsible for the poor electrochemical catalytic performance
of the catalysts (CoSe2/MoSe2-350 and CoSe2/MoSe2-400).
Therefore, the catalyst synthesized at 450◦C shows the best

performance, benefiting from the appropriate crystal structure
and phase composition.

The electrochemically active surface area (ECSA) of as-
prepared catalyst was evaluated by the double-layer capacitance
(Cdl), which was measured by CV in a non-Faradaic reaction
potential range (Deng et al., 2015). The Cdl values of the
CoSe2/MoSe2 (1.6 mF cm−2) is higher than those of CoSe2 (0.63
mF cm−2) and MoSe2 (0.8 mF cm−2), as shown in (Figure 5),
suggesting more active sites of the CoSe2/MoSe2 catalyst.
Furthermore, the smaller Rct value for the CoSe2/MoSe2 catalyst
in the EISmeasurement (Figure S5) implies the promoted charge
transfer and boosted kinetics, which can be ascribed to the
abundant interfaces and synergetic effect between the CoSe2
and MoSe2.

The structural stability is another significant parameter
for catalysts in HER and OER. (Figures 4C,F) show a
galvanostatic for CoSe2/MoSe2 catalyst in both theHER andOER
processes. The morphology and composition of the catalyst after
galvanostatic cycling are characterized by SEM and XPS. The
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FIGURE 6 | (A) LSV curves of water splitting with CoSe2/MoSe2 as the anode and cathode; (B) galvanostatic testing of the CoSe2/MoSe2-based water splitting

electrolyzer for 12 h at 10mA cm−2.

CoSe2/MoSe2 could well inherit the pristine sheet-like structure,
demonstrating good structural stability. In addition, the fine XPS
spectra of the Co 2p, Mo 3d, Se 3d acquired from the sample
of CoSe2/MoSe2 after galvanostatic measurement confirm the
reservation of CoSe2 and MoSe2 (Figure S6), indicating phase
stability during the electrochemical reactions.

To investigate its practical application of the obtained
catalyst, an overall water splitting electrolyzer is assembled with
CoSe2/MoSe2 as electrodes in 1M KOH. It can decompose
water at a low cell voltage of 1.63V (current density at 10
mA·cm−2) (Figure 6A), and the efficiency is similar to those

constituting of the noble-metal-based cathode and anode (RuO2

vs. Pt/C). Moreover, the overall water splitting performance
of the CoSe2/MoSe2 is better than those of other recently

reported non-noble metals at the same current density, such
as (Ni,Co)0.85Se NSAs (1.65V) (Xiao et al., 2018), a-CoSe/Ti
mesh (1.65V) (Liu et al., 2015), CoOx-CoSe (1.64V) (Xu et al.,
2016), Co0.85Se@NC (1.76V) (Meng et al., 2017), CoB2/CoSe2
(1.73V) (Guo et al., 2017), NiSe2/Ni (1.64V) (Zhang et al., 2018),
1T/2H MoSe2/MXene (1.64V) (Li et al., 2019), and Ni3Se2/CF
(1.65V) (Shi et al., 2015) (Table S3). Additionally, CoSe2/MoSe2
electrolyzer exhibits a slight increase in the potential after being
cycled for 12 h in alkaline solution (Figure 6B).

CONCLUSION

In summary, a novel hierarchical 0D−2D Co/Mo selenide was
developed by a facile in situ phase separation strategy. Benefiting
from its unique structure and composition, the constructed
CoSe2/MoSe2 catalyst exhibits small η10 of 280mV and 90mV

and Tafel slopes of 86.8 mV·dec−1 and 84.8 mV·dec−1 for OER
and HER, respectively. Furthermore, the electrolyzer comprising
CoSe2/MoSe2 as the bifunctional catalyst shows a small water
splitting cell voltage of 1.63V at a current density of 10
mA·cm−2. This work provides insights into rational design and
development of economical and valid bifunctional catalysts for
overall water splitting.
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