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Abstract: Although the anti-tumor and anti-infective properties of β-glucans have been well-
discussed, their role in bone metabolism has not been reviewed so far. This review discusses
the biological effects of β-glucans on bone metabolisms, especially on bone-resorbing osteoclasts,
which are differentiated from hematopoietic precursors. Multiple immunoreceptors that can recog-
nize β-glucans were reported to be expressed in osteoclast precursors. Coordinated co-stimulatory
signals mediated by these immunoreceptors are important for the regulation of osteoclastogenesis
and bone remodeling. Curdlan from the bacterium Alcaligenes faecalis negatively regulates osteoclast
differentiation in vitro by affecting both the osteoclast precursors and osteoclast-supporting cells.
We also showed that laminarin, lichenan, and glucan from baker’s yeast, as well as β-1,3-glucan
from Euglema gracilisas, inhibit the osteoclast formation in bone marrow cells. Consistent with these
findings, systemic and local administration of β-glucan derived from Aureobasidium pullulans and
Saccharomyces cerevisiae suppressed bone resorption in vivo. However, zymosan derived from S. cere-
visiae stimulated the bone resorption activity and is widely used to induce arthritis in animal models.
Additional research concerning the relationship between the molecular structure of β-glucan and
its effect on osteoclastic bone resorption will be beneficial for the development of novel treatment
strategies for bone-related diseases.
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1. Introduction

The β-glucans, a group of polysaccharides consisting of β-(1,3)-linked β-D

-glucopyranosyl units as the backbone and β-(1,6)-linked branching chain, exist widely
in fungi, plants, some bacteria, seaweeds, and cereals [1,2]. While the anti-tumor, anti-
infective, and immunomodulatory activities of β-glucans have been well discussed [3–7],
their role in bone metabolism has not been reviewed.

Bone remodeling is essential for bone tissue homeostasis and involves the removal
of the old bone followed by its subsequent replacement with the newly formed bone.
Bone remodeling is strictly coordinated by the bone-forming osteoblasts [8] and bone-
resorbing osteoclasts [9]. Osteocytes, which act as mechano-sensors in the bone tissue, are
also responsible for bone remodeling [10]. Among these cells, osteoclasts have received
significant attention as the target cells for skeletal diseases, and there is accumulating
evidence that the modification of ostetoclastogenesis by several molecules may lead to the
development of a novel treatment strategy. In the following sections, the concise biological
effects of β-glucans on osteoclast differentiation and function are presented.

2. Immunoreceptor-Mediated Regulation of Ostetoclastogenesis

Osteoclasts derived from hematopoietic precursors are responsible for the bone resorp-
tion, which is essential for the bone remodeling process [11]. Receptor activator of nuclear
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factor kappa B ligand (RANKL), a type II membrane protein, is expressed in several cells
including osteoblasts [12] and osteocytes [13]. RANKL binds to the functional receptor
(RANK) on osteoclast precursors and induces osteoclast differentiation [11,14,15]. The
binding of RANKL to RANK initiates the recruitment of tumor necrosis factor receptor-
associated factor 6 (TRAF6), followed by activation of the canonical NF-κB pathway and
mitogen-activated protein kinases (MAPK) [16,17]. Activation of these signaling pathways
is crucial for induction of the nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1)
as well as for the c-fos and calcium signaling pathways [18]. NFATc1 is the master tran-
scription factor for osteoclastogenesis and its auto-amplification promotes the efficient
induction of a number of osteoclast-specific genes.

The immune and bone regulation system share a number of molecules. Multiple
immunoreceptors in innate immune cells are important for the coordinated co-stimulatory
signal that regulates osteoclastogenesis and bone remodeling [19]. The immunoreceptor
tyrosine-based activation motif (ITAM) containing adaptor proteins and receptors were
found in osteoclast precursors as well as myeloid cells [20–22]. Src is one of the important
factors for osteoclast activation [23,24] and works in coordination with the ITAM path-
way [25]. RANKL phosphorylates and activates Src, and activated Src kinase forms a
complex with spleen tyrosine kinase (Syk), leading to the phosphorylation and subsequent
activation of Syk. Syk induces calcium oscillation via the activation of phospholipase Cγ

(PLCγ), which is required for the activation and induction of NFATc1 in osteoclasts [26–29].
These findings indicate that the ITAM-mediated co-stimulatory signals in the immune
system are required for osteoclast differentiation induced by RANKL. Progression of os-
teoimmunology revealed the molecular mechanisms involved in the cross-regulation of
bone metabolism and immune system [30].

Osteoclast precursors from a Syk-deficient mouse failed to differentiate normally
in the presence of RANKL and macrophage colony-stimulating factor (M-CSF) [31,32].
Syk deletion in myeloid cells showed reduced susceptibility to alveolar bone loss in the
mice periodontal ligature model [33]. Taken together, these results indicate that several
agents attenuate RANKL-mediated osteoclast formation by downregulating Syk signaling,
suggesting that Syk could be a potential target for the treatment of osteoclast-related
diseases [33–39].

3. β-Glucan Receptors in Osteoclasts

Several receptors are responsible for the recognition of β-glucans (Figure 1). Dectin-1
is a type II membrane receptor containing extracellular C-type lectin domain [40] and ITAM
at the intracellular tail [41]. Dectin-1 recognizes several fungal pathogens by binding to
β-glucans and plays a pivotal role in the innate immune responses [42]. Flow cytometric
analysis revealed that dectin-1 is predominantly expressed on the surface of myeloid cells,
such as monocytes/macrophages and neutrophils, especially in the alveolar region [43].
Moreover, dectin-1 expression was revealed on the cell surface of CD11b−/loLy6Chi popu-
lations; these osteoclast precursor cells were found to be expanded in the inflammatory
arthritis model [44]. While the expression of dectin-1 was reported in osteoclast precur-
sors, its expression was not observed in the osteoblast/stromal lineage [45]. Activation of
dectin-1 induces Syk and activates the ITAM downstream signaling pathway, resulting in
the stimulation of inflammatory response of the macrophages [46] and dendritic cells [47].
However, the effect of the interaction of β-glucans and dectin-1 on osteoclastogenesis
is unclear.
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Figure 1. Schematic image of β-glucan recognition receptors identified in osteoclasts and their 
precursors. 
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bound integrin-αM (CD11b) and integrin-β2 (CD18) chain. CD11b binds and recognizes β-
glucans [48], while CD18 transmits the signal of CD11b to the Syk cascade [6]. CR3 was 
reported to show high binding ability to β-glucans and initiate cytotoxic responses and 
phagocytosis of human and mouse leukocytes [49–51]. A recent study revealed that the 
Candida albicans killing capability of neutrophils was dependent on β-glucan recognition 
by CR3 followed by the activation of the CR3/Syk pathway, leading to light chain 3B-II 
(LC3B-II) accumulation [52]. CR3 is reported as a principal receptor required for the 
neutrophil extracellular trap formation induced by curdlan [53]. CR3 was expressed on 
the tartrate-resistant acid phosphatase (TRAP) positive mononuclear osteoclasts in the 
bone trabecular surface [54]. During the osteoclast differentiation of bone marrow cells, 
CR3 was expressed in mononuclear osteoclasts, but not in multinuclear cells, suggesting 
that CR3 may play an important role in the early stage of osteoclastogenesis [55]. 
Florescence-activated cell sorting experiments also reported that murine 
monocyte/macrophage cell line RAW264.7 cells with low CD11b expression impaired the 
osteoclast differentiation ability induced by RANKL [56]. Moreover, a recent study 
demonstrated that CD11b promoted RANKL-induced osteoclast differentiation by 
stimulating the signaling pathway mediated by Syk [57]. In contrast to these findings, 
decreased bone mass and increased osteoclast numbers were observed in CD11-deficient 
mice [58]. Furthermore, the activation of CR3 signaling by fibrinogen suppressed the 
RANKL-induced osteoclast differentiation via the recruitment of transcriptional repressor 
B-cell lymphoma 6 (Bcl6), followed by the downregulation of NFATc1 [58]. 

Other receptors, such as toll-like receptor 2 (TLR2) and CD5, have been reported to 
recognize β-glucans [59]. TLRs are the cell surface proteins that directly recognize diverse 
ligands via the extracellular domains, followed by the activation of cytoplasmic signaling 
that involves the adapter myeloid differentiation factor 88 (MyD88). Binding of curdlan 
to TLR2 and CR3 enhances immunoreactivity and the M1 polarization of macrophages 
through the signaling cascade mediated by MAPK and NF-κB [60,61]. The interaction of 
β-glucan from baker’s yeast with CR3 and TLR2 on the surface of RAW264.7 cells also 
activated inflammatory responses via the MAPK and NF-κB signaling cascade [62]. On 
the other hand, β-glucans derived from of Grifola frondosa (an edible mushroom in China 
and Japan) showed anti-inflammatory activity induced by lipopolysaccharide (LPS) in 
RAW264.7 cells via interaction with TLR2 rather than dectin-1 or CR3 [63]. TLR1-9 is 
expressed on osteoclast progenitors, and several ligands for TLRs have been shown to 

Figure 1. Schematic image of β-glucan recognition receptors identified in osteoclasts and their pre-
cursors.

Complement receptor 3 (CR3), also termed as Mac-1, consists of the non-covalently
bound integrin-αM (CD11b) and integrin-β2 (CD18) chain. CD11b binds and recognizes
β-glucans [48], while CD18 transmits the signal of CD11b to the Syk cascade [6]. CR3 was
reported to show high binding ability to β-glucans and initiate cytotoxic responses and
phagocytosis of human and mouse leukocytes [49–51]. A recent study revealed that the
Candida albicans killing capability of neutrophils was dependent on β-glucan recognition
by CR3 followed by the activation of the CR3/Syk pathway, leading to light chain 3B-
II (LC3B-II) accumulation [52]. CR3 is reported as a principal receptor required for the
neutrophil extracellular trap formation induced by curdlan [53]. CR3 was expressed on the
tartrate-resistant acid phosphatase (TRAP) positive mononuclear osteoclasts in the bone
trabecular surface [54]. During the osteoclast differentiation of bone marrow cells, CR3
was expressed in mononuclear osteoclasts, but not in multinuclear cells, suggesting that
CR3 may play an important role in the early stage of osteoclastogenesis [55]. Florescence-
activated cell sorting experiments also reported that murine monocyte/macrophage cell
line RAW264.7 cells with low CD11b expression impaired the osteoclast differentiation
ability induced by RANKL [56]. Moreover, a recent study demonstrated that CD11b
promoted RANKL-induced osteoclast differentiation by stimulating the signaling pathway
mediated by Syk [57]. In contrast to these findings, decreased bone mass and increased
osteoclast numbers were observed in CD11-deficient mice [58]. Furthermore, the activation
of CR3 signaling by fibrinogen suppressed the RANKL-induced osteoclast differentiation
via the recruitment of transcriptional repressor B-cell lymphoma 6 (Bcl6), followed by the
downregulation of NFATc1 [58].

Other receptors, such as toll-like receptor 2 (TLR2) and CD5, have been reported to
recognize β-glucans [59]. TLRs are the cell surface proteins that directly recognize diverse
ligands via the extracellular domains, followed by the activation of cytoplasmic signaling
that involves the adapter myeloid differentiation factor 88 (MyD88). Binding of curdlan
to TLR2 and CR3 enhances immunoreactivity and the M1 polarization of macrophages
through the signaling cascade mediated by MAPK and NF-κB [60,61]. The interaction of
β-glucan from baker’s yeast with CR3 and TLR2 on the surface of RAW264.7 cells also
activated inflammatory responses via the MAPK and NF-κB signaling cascade [62]. On
the other hand, β-glucans derived from of Grifola frondosa (an edible mushroom in China
and Japan) showed anti-inflammatory activity induced by lipopolysaccharide (LPS) in
RAW264.7 cells via interaction with TLR2 rather than dectin-1 or CR3 [63]. TLR1-9 is
expressed on osteoclast progenitors, and several ligands for TLRs have been shown to
regulate osteoclastogenesis [64]. Staphylococcus aureus peptidoglycan and Poryhyromonas
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gingivalis (periodontopathic bacteria) directly activated RANKL-induced osteoclast differ-
entiation via the NF-κB/NFATc1 axis mediated by TLR2 [59,65,66]. The synthetic ligand
for TLR2 stimulated osteoclast formation induced by RANKL via the upregulation of
lectin-like oxidized low-density lipoprotein receptor-1 (OLR1) and RANK [67]. On the
other hand, lipoteichoic acid derived from S. aureus inhibited osteoclast differentiation of
bone marrow cells derived from wild-type mice, but not from TLR2-deficient mice [68].

4. Biological Effect of β-Glucans on Bone
4.1. Inhibitory Effects of β-Glucans on Osteoclast Differentiation In Vitro

Molecular biological analyses of several β-glucans derived from Alcaligenes faecalis
(curdlan), Saccharomyces cerevisiae (baker’s yeast and zymosan), Laminaria sp. (laminarin),
Cetraria islandica (lichenan), Euglena gracilis, Aureobasidium pullulans (black yeast), and
Hordeum vulgare L. (barley) were performed to elucidate the bioactivity of β-glucans on
osteoclastogenesis. The inhibitory effects of β-glucans on osteoclast differentiation were
studied in vitro (Table 1).

We reported that curdlan, a linear β-1,3 glucan from the bacterium Alcaligenes faecalis,
inhibited osteoclastic differentiation, maturation, and bone resorption of bone marrow cells
and RAW264.7 cells by binding to the dectin-1 receptor expressed on osteoclast precursors,
followed by the downregulation of Syk signaling [45]. The interaction of curdlan with
dectin-1 also showed the inhibitory effect on osteoclast differentiation via interleukin 33
(IL-33) secretion, followed by enhancement of V-maf musculoaponeurotic fibrosarcoma
oncogene homolog B (MafB) expression [69]. We also found that β-glucan from baker’s
yeast suppressed osteoclast differentiation by downregulating NFATc1 activation. This
inhibition of NFATc1 activation by β-glucan from baker’s yeast was dependent on the
suppression of NF-κB signaling and c-fos expression, the stimulation of the negative
regulator of osteoclastogenesis (interferon regulatory factor 8 (Irf-8)), and degrading the
Syk protein via autophagy and the ubiquitin/proteasome system [70]. Consistent with
these findings, the bone marrow cells containing zymosan particles failed to differentiate
into osteoclasts [71,72]. Interestingly, osteoclasts that contained zymosan particles have
a potential to form ruffled boarder and resorption pits on dentin slices, suggesting that
zymosan did not affect osteoclast function [71]. Together, these β-glucans seemed to
suppress osteoclastogenesis at the step of osteoclast precursor differentiation into mature
osteoclasts. We demonstrated the obvious inhibitory effect of laminarin, lichenan, glucan
from baker’s yeast, and β-1,3-glucan from Euglena gracilisas, as well as curdlan, on osteoclast
differentiation from bone marrow cells. However, glucan from black yeast and β-D-glucan
from barley showed a lesser inhibitory effect on osteoclast differentiation compared with
other β-glucans (Figure 2). We have no explanation for these discrepancies; however, it is
possible that these results reflect differences of purity and three-dimensional (3D) structure
(e.g., β-(1,6)-linked side chains) of each of the β-glucans (Table 2). It is known that a
certain amount of molecular weight is required for the biological activity of β-glucans. A
recent study reported that a split-luciferase complementation assay is useful strategy to
characterize the side chain structure of β-glucans [73]. Structural analyses of β-glucans are
also currently under investigation in our laboratory.
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Table 1. Inhibitory effects of β-glucans on osteoclast differentiation in vitro.

β-Glucan Cell Receptor Effect Molecular Mechanisms References

Curdlan BMCs
RAW264.7 Dectin-1 Direct Suppression of NFATc1 activation by down-regulation of Syk

signaling [45]

Curdlan BMCs Dectin-1 Direct Suppression of NFATc1 activation by stimulation of MafB induced
by IL-33 [69]

β-glucan from
baker’s yeast

BMCs
RAW264.7 Dectin-1 Direct

Suppression of NFATc1 activation by down-regulation of NF-κB
and c-fos, stimulation of Irf-8, and induction of autophagy and

ubiquitin/proteasome-mediated Syk protein degradation
[70]

Zymosan BMCs TLRs Direct Unknown [71,72]

Curdlan
(low MW)

BMCs cultured
with osteoblasts

TLR2
TLR6 Indirect Suppression of RANKL expression on osteoblasts [74]

BMCs: bone marrow cells; NFATc1: nuclear factor of activated T-cells, cytoplasmic 1; Syk: spleen tyrosine kinase; MafB: V-maf muscu-
loaponeurotic fibrosarcoma oncogene homolog B; IL-33: interleukin 33; NF-κB: nuclear factor kappa B; Irf-8: interferon regulatory factor 8;
TLRs: toll-like receptors; MW: molecular weights; RANKL: receptor activator of nuclear factor kappa B ligand.

Molecules 2021, 26, x FOR PEER REVIEW 5 of 13 
 

 

Table 1. Inhibitory effects of β-glucans on osteoclast differentiation in vitro. 

β-Glucan Cell Receptor Effect Molecular Mechanisms References 

Curdlan 
BMCs 

RAW264.7 
Dectin-1 Direct 

Suppression of NFATc1 activation by down-regulation of Syk 
signaling 

[45] 

Curdlan BMCs Dectin-1 Direct 
Suppression of NFATc1 activation by stimulation of MafB 

induced by IL-33 
[69] 

β-glucan from 
baker’s yeast 

BMCs 
RAW264.7 

Dectin-1 Direct 
Suppression of NFATc1 activation by down-regulation of NF-
κB and c-fos, stimulation of Irf-8, and induction of autophagy 
and ubiquitin/proteasome-mediated Syk protein degradation 

[70] 

Zymosan BMCs TLRs Direct Unknown [71,72] 
Curdlan  

(low MW) 
BMCs cultured 
with osteoblasts 

TLR2 
TLR6 

Indirect Suppression of RANKL expression on osteoblasts [74] 

BMCs: bone marrow cells; NFATc1: nuclear factor of activated T-cells, cytoplasmic 1; Syk: spleen tyrosine kinase; MafB: 
V-maf musculoaponeurotic fibrosarcoma oncogene homolog B; IL-33: interleukin 33; NF-κB: nuclear factor kappa B; Irf-8: 
interferon regulatory factor 8; TLRs: toll-like receptors; MW: molecular weights; RANKL: receptor activator of nuclear 
factor kappa B ligand. 

 
Figure 2. Effect of each of the β-glucans on osteoclast formation of bone marrow cells. Bone marrow cells isolated from 
the femurs and tibias of 6-week-old male ddY mice were incubated with macrophage colony-stimulating factor (M-CSF; 
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Figure 2. Effect of each of the β-glucans on osteoclast formation of bone marrow cells. Bone marrow cells isolated from
the femurs and tibias of 6-week-old male ddY mice were incubated with macrophage colony-stimulating factor (M-CSF;
20 ng/mL) and receptor activator of nuclear factor kappa B ligand (RANKL; 40 ng/mL) in the presence or absence of
each β-glucans (50 µg/mL). All the procedures were approved by the Animal Care and Use Committee of Kyushu Dental
University. (a) Cells were cultured for four days and stained for tartrate-resistant acid phosphatase (TRAP) activity. Scale
bars indicated 500 µm. (b) TRAP-positive multinucleated cells containing three or more nuclei were considered as osteoclasts
and were counted using light microscopy. Data are presented as mean ± S.D of three independent samples. *** p < 0.0001
compared with the non-β-glucan treatment group (none).
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Table 2. Source and structure of β-glucans in Figure 1.

β-Glucan Cell Structure

Curdlan Alcaligenes faecalis var. myxogenes Linear chain of β-D-(1-3)-glucopyranosyl units

Laminarin Laminaria sp.
Linear chain of β-D-(1-3)-glucopyranosyl units with

some 6-O-branching in the main chain and some
β-(1,6)-intrachain links

Lichenan Cetraria islandica Linear chains of β-D-glucopyranosyl units linked via
(1,3) and (1,4) linkage

Glucan from baker’s yeast Saccharomyces cerevisiae Linear chain of β-D-(1-3)-glucopyranosyl units

β-1,3-glucan from Euglena gracilis Euglena gracilis Linear chain of β-D-(1-3)-glucopyranosyl units

Glucan from black yeast Aureobasidium pullulans Backbone of β-D-(1-3)-glucopyranosyl units with one
β-D-(1-6)-branching unit every three residues

β-D-glucan from barley Hordeum vulgare L. Linear chains of β-D-glucopyranosyl units linked via
(1,3) and (1,4) linkage

It was also shown that low-molecular-weight curdlan (MW 3000 kDa) suppressed
osteoclast differentiation from mouse bone marrow cells, indirectly induced by RANKL
via the TLR2/TLR6 signaling pathways in primary osteoblastic cells [74]. These studies
indicated that curdlan potentially downregulates RANKL-induced osteoclastogenesis by
affecting both the osteoclast precursors and osteoclast-supporting cells.

4.2. Inhibitory Effects of β-Glucans on Bone Resorption In Vivo

Significant evidence concerning the inhibitory effect of β-glucan on bone resorption
was demonstrated in the in vivo animal models (Table 3), especially in the field of dental
science. Oral administration of polycan derived from Aureobasidium pullulans attenuated
alveolar bone loss, osteoclast numbers, and concentrations of inflammatory cytokines,
such as interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α), induced by ligature
placement in rats [75]. Other researchers showed that topical administration of a mixture
of polycan and calcium gluconate significantly inhibited the bacterial proliferation, IL-β
expression, and alveolar bone loss induced by ligature placements in rats [76]. Furthermore,
in ovariectomized mice, oral administration of an extracellular polymer derived from A.
pullulans, which contained 40% β-glucan [77] mixed with the leaf extract of Textoria morbifera,
significantly reduced the osteoporotic symptoms [78].

Table 3. Inhibitory effects of β-glucans on bone loss in the in vivo animal models.

β-Glucan Organism Analysis Results References

Polycan Male Sprague-Dawley
rats

Methylene blue assay
Detection of IL-1β and TNF-α
Measurement of MPO activity

MDA measurement
iNos activity measurement

Histopathology and histomorphology

Inhibited ligature-induced
periodontitis and related
alveolar bone loss via an

antioxidant effect.

[75]

Polycan Male SD (Crl:CD1) rats

Measurement of alveolar bone loss
Microbiological analysis

Measurement of MPO activity
Detection of IL-1β and TNF-α

MDA measurement
iNos activity measurement

Histopathology

Inhibited ligature-induced
experimental periodontitis and

related alveolar bone loss
mediated by antibacterial,

anti-inflammatory, and
anti-oxidative activities.

[76]
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Table 3. Cont.

β-Glucan Organism Analysis Results References

Polycan Female
Sprague-Dawley rats

Detection of serum levels of
osteocalcin, bALP, calcium and

phosphorus
Detection of urinary levels of

deoxypyridinoline and creatinine
Measurement of BMC, BMD and FL
Histology and histomorphometry

Preserved bone mass and
strength, and increased the
rate of bone formation in

ovariectomy-induced
osteoporosis model.

[77]

β-glucan from
Aureobasidium

pullulans
Female ICR mice

Measurement of BMD, bone weight,
and FL

Detection of serum levels of
osteocalcin and bALP

Measurement of femur mineral
contents

Histopathology

Mixture of extracellular
polymeric substances isolated
from A pullulans and Textoria
morbifera Nakai inhibited the

ovariectomy-induced
osteoporotic symptoms.

[78]

β-glucan from
Saccharomyces

cerevisiae
Male Wistar rats

Detection of β-cell function
Detection of serum levels of TNF-α

and IL-10
Measurement of alveolar bone loss

Histometric analysis

Inhibited the systemic
inflammatory profile,

prevented alveolar bone loss,
and improved β-cell function

in streptozotocin-induced
diabetic model with

periodontitis.

[79]

β-glucan from
Saccharomyces

cerevisiae
Male Wistar rats

Measurement of blood glucose
RT-PCR for COX-2, RANKL and OPG

Morphometric analysis for alveolar
bone loss

Reduced blood glucose levels
and attenuated alveolar bone
loss in streptozotocin-induced

diabetes model with
periodontitis.

[80]

Soluble
β-1,3/1,6-

glucan from
Saccharomyces

cerevisiae

Male Wistar rats

Radiographic examination
Measurement of corticosterone

Detection of serum levels of IL-10,
TGF-β1 and TNF-α

Inhibited ligature-induced
periodontal bone loss. [81]

IL-1β: interleukin 1β; TNF-α: tumor necrosis factor α; MPO: myeloperoxidase; MDA: malondialdehyde; iNOS: inducible nitric oxide
synthase; ALP: alkaline phosphatase; BMC: bone mineral content; BMD; bone mineral density; FL: failure load; IL-10: interleukin 10;
RT-PCR: reverse transcription-polymerase chain reaction; COX-2: cyclooxygenase 2; RANKL: receptor activator of nuclear factor kappa B
ligand; OPG: osteoprotegerin; TGF-β: transforming growth factor β.

As with the polycan, β-glucan derived from Saccharomyces cerevisiae reduced alveolar
bone loss in diabetic rat models with periodontal disease via the downregulation of RANKL
and upregulation of osteoprotegerin (OPG) [79,80] The Wistar rats that were administered
soluble β-1,3/1,6-glucan from S. cerevisiae showed the suppression of periodontal bone
loss induced by tooth ligature. Moreover, the plasma level of the hypothalamic-pituitary-
adrenal (HPA) axis, TGF-β, and interleukin 10 (IL-10), which suppress osteoclast differen-
tiation induced by LPS challenging, were significantly enhanced in rats treated with the
soluble β-1,3/1,6-glucan [81].

4.3. Effects of β-Glucans on Bone Regeneration and Bone Metabolism

In addition to the protective activities for osteoclastic bone resorption, the biological
effect of β-glucans on bone regeneration were also reported both in vitro and in vivo. A
fabricated scaffold composed of curdlan, chitosan, and hydroxyapatite promoted adhesion,
proliferation, alkaline phosphatase (ALP) activity, calcium deposition, and mineralized
nodule formation in osteoblasts without affecting the proinflammatory cytokine secre-
tion [82–87]. Consistent with these findings, the implantation of the composite composed
of elastic hydroxyapatite and curdlan into the bone defect site in patients with long bone
fracture assisted bone regeneration without the appearance of inflammation [88]. Fur-
thermore, a four week administration of a mixture of polycan and calcium gluconate
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improved bone metabolism, as indicated by increased biochemical bone formation markers
(bone-specific ALP, serum calcium, and serum phosphorus) and reduced biochemical bone
resorption markers (urinary deoxypyridinoline, urinary cross-linked N-telopeptide of
type-1 collagen, urinary calcium, and urinary phosphorus) [89]. These results indicated
that the application of β-glucans as a biocompatible strategy might be a potential candidate
in bone regeneration and formation.

4.4. Catabolic Effects of β-Glucans on Bone and Cartilage Tissue

Although several studies have demonstrated the biological effects of β-glucans on
bone regeneration and attenuation of inflammatory bone resorption, the degenerative ac-
tivity of β-glucans has also been reported. The supernatant released from mouse peritoneal
macrophages, stimulated with zymosan that was derived from S. cerevisiae, induced the
bone resorption activity in vitro, which is mainly dependent on the effect of IL-1α [90].
Another group of researchers also reported that C. albicans-derived soluble β-glucan ac-
tivated the inflammation and multinucleation of osteoclasts, which was mediated by the
interaction with dectin-1, but not with TLR-4 [91].

On the basis of these findings, zymosan has been widely used to induce arthritis
in animal models for many years. An intra-articular injection of zymosan stimulated
acute inflammation, matrix metalloproteinase-2 (MMP-2) production, loss of proteogly-
can, chondrocyte hypertrophy, bone erosion, and osteophyte formation, all regulated by
complementary activity in mouse knee joints [92–98]. Furthermore, an intraperitoneal
injection of curdlan and zymosan developed spondylarthritis features, such as synovial
proliferation and bone erosion in mice [99,100], and the impairment of bone healing in rat
fracture model [101].

5. Conclusions

Accumulating evidence suggests that β-glucans downregulate osteoclast differentia-
tion and protect bone resorption in several animal models of osteoporosis and periodontitis.
A variety of studies also demonstrated that scaffolds composed of β-glucans are effective
in promoting bone regeneration and formation. This positive impact of β-glucans on bone
tissue has led us to expect the possibility of β-glucans being used as an effective therapeutic
agent against bone diseases in the future.

However, contrasting effects of β-glucans isolated from different sources were ob-
served on the bone tissue. Although several studies have reported that the immunomod-
ulating [102], anti-tumor [103], anti-diabetes [104,105], and anti-oxidant [2] activities of
β-glucans are dependent on their structure, research on the biological activity of β-glucans
in bone remodeling is still at the primary stage. Further studies are needed to elucidate
the receptor and specific signaling pathways activated by different structures of β-glucans.
The progression and evidence in the field of osteoimmunology that highlight the close
relationship between the immune system and bone metabolism will help in this elucida-
tion [106].

The pharmaceutical application of β-glucans is also limited by its purity, toxicity,
viscosity, and weak solubility [7,107]. As an acceptable level of solubility is one of the
most important parameters for pharmaceutical agents, improvement of the low solubility
of β-glucans is required. Several studies have demonstrated a modified procedure of β-
glucans production to improve its rheological parameters [7,108]. Previous studies reported
that physical modifications including ultrasonication [109,110], heat degradation [111],
and gamma irradiation [112] induced polymer degradation and improved solubility of
β-glucans. Moreover, chemical modifications of β-glucans, such as sulfation [113,114],
phosphorylation [115–117] and oxidation [118,119], also increase its solubility. Further
extensive research is needed to validate the therapeutic potential of β-glucans in the
bone-related diseases in the medical, dental, and pharmaceutical fields.
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