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ABSTRACT
In vertebrates, sex determination occurs along a continuum from strictly genotypic
(GSD), where sex is entirely guided by genes, to strictly environmental (ESD), where
rearing conditions, like temperature, determine phenotypic sex. Along this
continuum are taxa which have combined genetic and environmental contributions
to sex determination (GSD + EE), where some individuals experience environmental
effects which cause them to sex reverse and develop their phenotypic sex
opposite their genotypic sex. Amphibians are often assumed to be strictly GSD with
sex reversal typically considered abnormal. Despite calls to understand the relative
natural and anthropogenic causes of amphibian sex reversal, sex reversal has
not been closely studied across populations of any wild amphibian, particularly in
contrasting environmental conditions. Here, we use sex-linked molecular markers
to discover sex reversal in wild populations of green frogs (Rana clamitans)
inhabiting ponds in either undeveloped, forested landscapes or in suburban
neighborhoods. Our work here begins to suggest that sex reversal may be common
within and across green frog populations, occurring in 12 of 16 populations and
with frequencies of 2–16% of individuals sampled within populations. Additionally,
our results also suggest that intersex phenotypic males and sex reversal are not
correlated with each other and are also not correlated with suburban land use.
While sex reversal and intersex are often considered aberrant responses to human
activities and associated pollution, we found no such associations here. Our data
perhaps begin to suggest that, relative to what is often suggested, sex reversal may be
a relatively natural process in amphibians. Future research should focus on assessing
interactions between genes and the environment to understand the molecular
and exogenous basis of sex determination in green frogs and in other amphibians.

Subjects Conservation Biology, Ecology, Evolutionary Studies, Zoology, Ecotoxicology
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INTRODUCTION
Sex-determining (SD) modes occur along a continuum bounded by genotypic sex
determination (GSD), where phenotypic sex is entirely controlled by genes on sex
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chromosomes, to environmental sex determination (ESD), where environmental
conditions (e.g., temperature) determine sex in the absence of any genetic sexual
predisposition (Sarre, Georges & Quinn, 2004; Sarre, Ezaz & Georges, 2011; Grossen,
Neuenschwander & Perrin, 2011; Bachtrog et al., 2014; Capel, 2017). Modes along this
continuum combine GSD and environmental effects (EE) where some individuals are
genetically-predisposed to develop as a given sex and can undergo environmentally-
mediated sex reversal and develop their phenotypic sex opposite their genotypic sex
(termed GSD + EE in Valenzuela, Adams & Janzen, 2003; Valenzuela et al., 2014; Grossen,
Neuenschwander & Perrin, 2011). Vertebrate sex determination displays strong taxonomic
patterning. Fish and non-avian reptiles show repeated transitions between GSD, ESD, and
GSD + EE whereas GSD is the rule in both mammals and birds (Sarre, Georges & Quinn,
2004; Sarre, Ezaz & Georges, 2011; Bachtrog et al., 2014; Capel, 2017).

Perceptions of amphibian sex determination have shifted over time. At the turn of
the 20th century, biologists believed amphibian sex determination to be the result of
interactions between innate (i.e., genetic) forces and environmental conditions
(King, 1909, 1919; Witschi, 1929). By the middle of the 20th century, after karyotyping
myriad vertebrate sex chromosomes, biologists concluded that the environment was
the dominant determiner of amphibian sex and that the genetic basis to sex was
weak or non-existent (Ohno, 1967). In recent decades, a dearth of evidence from wild
populations has led scientists to conclude that amphibians have strict GSD, with
environmentally-mediated sex determination considered an aberrant response to extreme
temperatures or contamination (Hayes, 1998; Nakamura, 2009; Sarre, Ezaz & Georges,
2011; Evans, Alexander Pyron & Wiens, 2012; Bachtrog et al., 2014; Capel, 2017).
We note, however, that emerging theory suggests that sex reversal may be an important
process for amphibian evolution (Perrin, 2009; Grossen, Neuenschwander & Perrin, 2012).

Conclusions about amphibian sex determination have predominantly been drawn
from laboratory experiments which have identified putative mechanisms and patterns of
environmental sex reversal in amphibians mediated by temperature (Witschi, 1914, 1929,
1930; Hsu, Yu & Liang, 1971, Dournon et al., 1984; Lambert et al., 2018) or natural
and anthropogenic chemicals (Lambert et al., 2017; Hayes et al., 2002; Pettersson & Berg,
2007;Hermelink et al., 2010; Lambert, 2015; Lambert, Skelly & Ezaz, 2016; Tamschick et al.,
2016a, 2016b). By contrast, the documentation of discordances between phenotypic and
genotypic sexes has not been well studied across populations of any amphibian taxon in
the wild, particularly in contrasting ecological contexts.

The only direct evidence (i.e., discordance between phenotypic and genotypic sexes) for
environmental sex reversal in wild amphibians comes from studies inferring multiple
sexually-discordant genotypic female (XX♂) common frogs (Rana temporaria)
from a single population (Alho, Matsuba & Merila, 2010) and for an individual
sexually-discordant genotypic male (XY♀) common frog (Rodrigues et al., 2018). Key to
resolving the role of environmental variation causing sex reversal are studies assessing sex
reversal frequencies across multiple populations and in different ecological contexts
(e.g., developed or undeveloped landscapes). In fact, almost a decade ago,Wedekind (2010)
called for field-based research aimed at describing frequencies of sex reversal in
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anthropogenic environments and environmental contexts with lower degrees of human
activities to better untangle the extent to which sex reversal is related to natural vs
anthropogenic causes. To our knowledge, no efforts to this effect have been made as of yet.
Our study here aims to begin filling in this knowledge gap.

Green frogs provide a unique opportunity to study possible sex reversal in contrasting
ecological conditions. We previously found that intersex green frogs (phenotypic
male with testes exhibiting egg-like cells) commonly occur in suburban ponds
(Smits, Skelly & Bolden, 2014) and that metamorphosing froglet phenotypic sex ratios vary
along a forest-to-suburban land use gradient and are most skewed (biased toward
phenotypic males) in forests (Lambert et al., 2015). Intersex and skewed sex ratios are
regularly used as evidence for environmental sex reversal in amphibians, both as responses
to temperature (Witschi, 1914, 1929, 1930; Hsu, Yu & Liang, 1971; Dournon et al., 1984;
Lambert et al., 2018) and chemicals (Hayes et al., 2002; Pettersson & Berg, 2007;
Lambert, 2015; Lambert, Skelly & Ezaz, 2016; Tamschick et al., 2016a, 2016b).

We have also reported that, compared to forested ponds, suburban ponds harbor a
diversity of contaminants known to influence sexual differentiation (Lambert et al., 2015).
Three uncontaminated forested ponds and three suburbanized ponds from this prior
work (Lambert et al., 2015) were studied here. Additionally, green frog tadpoles have a long
larval period (ca. 1 year) and laboratory experiments show that green frog tadpoles can
develop gonads of their predisposed genotypic sex early in larval development and
then functionally sex reverse under certain environmental conditions, degenerating
original gonads and developing the gonads of the opposite sex (Mintz, Foote & Witschi,
1945). By surveying green frogs along a forest-to-suburban land use gradient
(Fig. 1; Fig. S1) and using a novel set of sex-linked molecular markers (Lambert, Skelly &
Ezaz, 2016), we investigate the prevalence of environmental sex reversal across wild green
frog populations and estimate the degree to which it represents a natural process or a
response to human activities.

Figure 1 Representative aerial images of three study ponds. From left to right, ponds represent a
varying degree of entirely forested with no residential land cover (A), an intermediate degree of suburban
land cover (B), and a higher degree of suburban land cover (C). Ponds are depicted by blue polygons at
the center of each image and land cover is shown within a 200 m radius of pond edges. Imagery is in the
public domain and can be obtained from CT DEEP at http://www.cteco.uconn.edu/metadata/dep/
document/ORTHO_2010_4Band_NAIP_FGDC_Plus.htm. Full-size DOI: 10.7717/peerj.6449/fig-1
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METHODS
Frog sampling
We focused on adult frogs to complement prior studies on intersex (Murphy et al., 2006;
Skelly, Bolden & Dion, 2010; Smits, Skelly & Bolden, 2014), though are careful to distinguish
GSD + EE here from sequential hermaphroditism which occurs in some fishes which
sex reverse as adults (Bachtrog et al., 2014). Sexually-discordant adult frogs would have
established their phenotypic sex opposite their genotypic sex prior to metamorphosis and not
as adults. FromApril 25 to July 21, 2016 we collected adult phenotypic female and male green
frogs from 16 ponds along a forest-suburban land use gradient (Fig. S2; Table S1).
Nine ponds were studied in prior work (Smits, Skelly & Bolden, 2014; Lambert et al., 2015)
and we recently acquired access to seven others. We collected frogs in buckets containing
source pond water chilled on ice. Upon returning to the laboratory, we euthanized frogs
with an overdose of buffered MS-222 and confirmed phenotypic sex via dissection
and observation of the gonads. After euthanasia, we collected two samples of skeletal muscle
from each frog in 95% ethanol and fixed each specimen in 10% buffered formalin.
Pond and frog data are summarized in Table S1. In total, we collected 464 adult green frogs
(m = 29, range = 6–92) from the 16 study ponds. Of this sample, we collected a total of
129 phenotypic females (m = 8.1, range = 2–17) and 335 phenotypic males (m = 20.9,
range = 4–75). Most phenotypic females were gravid, but a small proportion were spent,
newly ovulating, or immature (Table S1). This study was approved by Yale IACUC protocols
2013-10361 and 2015-10681 and sampling was approved by CT DEEP Permit 0116019b.

Land use classification
We identified ponds surrounded either entirely by undeveloped forests or by suburban
neighborhoods (Fig. 1) using modeling analyses of high-resolution remotely-sensed
imagery to classify the degree of suburban land use surrounding each of our study ponds
(Fig. S3). To do this, we used a 2010 statewide orthophoto of Connecticut provided
by the CT Department of Energy and Environmental Protection. This orthophoto was
one-m resolution, was composed of four bands (infrared and natural color), and was taken
during leaf-on (Fig. S3). We performed a supervised classification using the spatial
analyst tools in ArcMap 10.1 (ESRI). Our targeted land cover types included trees, lawns,
buildings, and roads or other paved surfaces. We supervised the classification with
representative pixels (Fig. S2) surrounding each of the 16 ponds and estimated the percent
cover of each land cover type. Ultimately, we merged lawn, building, and paved surface
cover types into a single “Percent Suburban” predictor variable.

Testicular histology
For histological analysis, we included all males from eleven ponds and randomly selected
22 males from the five remaining ponds with higher sample sizes (�26 males sampled).
Following Skelly, Bolden & Dion (2010), we removed the left testis from each male.
At the Histology Core at the Yale School of Medicine, we retained every 20th section starting
10 sections into the gonad (Skelly, Bolden & Dion, 2010; Smits, Skelly & Bolden, 2014)
and stained sections with hematoxylin and eosin. Each section was assessed for intersex
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(the presence of oocytes) under a Leica BF200 compound microscope. We only included
samples in our analyses which had at least four high quality sections. Sections were considered
high quality if the staining was consistent and the gonad was predominantly intact.

Genotyping
Tissue samples were preserved in 95% ethanol and transported to Diversity Arrays
Technology Pty. Ltd. (Bruce, ACT, Australia) for genetic sequencing. We genotyped each
frog at each of five recently identified sex-linked single nucleotide polymorphism (SNP)
loci (RaclCT001, -003, -005, -007, and -009) (Lambert, Skelly & Ezaz, 2016) using
DArTMP methods. For each locus, females are homozygous for the most common allele
(i.e., X-chromosome allele) and males are heterozygous (i.e., have both a X- and
Y-chromosome allele). Depending on the locus, we used either a multiplex or monoplex
polymerase chain reaction (PCR) with locus-specific primers (Table S4) amplifying several
base pairs around the sex-linked SNP locus. In the first round of PCR, the locus
specific products were amplified in 30 cycles. In the second round of PCR, the
sample-specific barcoded primers were used to identify individual frogs. The products of
the second round of PCR were then sequenced on an Illumina Hiseq 2500.

Genotypic sex assignments
Many anamniote taxa have homomorphic sex chromosomes which have traditionally
made it challenging identify the sex chromosomes and the master SD gene for any given
taxon (Alho, Matsuba & Merila, 2010; Rodrigues et al., 2014, 2018). For amphibians,
an entirely non-recombining master SD gene has been discovered in only one amphibian
species (Xenopus laevis) to date (Yoshimoto et al., 2008, 2010; Kloc & Kubiak, 2014).
Through a variety of approaches (candidate genes, microsatellites, GBS), several studies
have identified sex-linked genetic loci in a small number of amphibian taxa
(Berset-Brandli et al., 2006; Stock et al., 2011; Lambert, Skelly & Ezaz, 2016; Brelsford,
Dufresnes & Perrin, 2016; Brelsford et al., 2017). Individual sex-linked loci are likely to
experience recombination and will therefore inaccurately identify genotypic sex at
varying frequencies when analyzed individually. However, probabilistic Bayesian statistical
methods are valuable techniques which allow us to statistically assign genotypic sex
frommultiple sex-linked genetic markers even in the absence of direct recombination rates
at each locus from parent and offspring linkage analyses (Alho, Matsuba & Merila, 2010).
By extension, such models provide inference into sex reversal by identifying sexual
genotype-phenotype discordance, accounting for variation among loci in genotypic sexing
reliability due to recombination. We take this approach in this study.

We used Bayes’ theorem (below) to estimate the probability that each frog was a given
genotypic sex and use Bayesian generalized linear models to estimate the probability
that sex reversal was related to land use.

PðFemale j Allele combinations across lociÞ

¼ PðAllele combination across loci j FemaleÞ � PðFemaleÞ
PðAllele combination across loci j FemaleÞ � PðFemaleÞ þ PðAllele combination across loci j MaleÞ � PðMaleÞ
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We used prior combinations of genotypes across loci (Table S5) in the original set of
23 adult females and 54 adult males used to identify these sex-linked markers
(Lambert, Skelly & Ezaz, 2016). We assumed the probability of being either sex was 0.5 but
found that the value of P(Female) and P(Male) do not heavily influence the outcome
of this analysis.

For the frogs here, we observed 31 different combinations of genotypes across loci for
the sequenced markers. A total of 18 of these combinations were present in the original set
of frogs used to identify the markers. These combinations were present in most
sampled frogs in the study reported here. However, thirteen combinations, representing
88 individual frogs, were not previously observed. For these 13 combinations, we were not
able to use prior combinations of genotypes. Instead, we used the prior frequencies
of individuals with a given number of male and female genotypes for across all markers
(e.g., an individual displaying a female genotype at three loci and a male genotype at
two loci) regardless of the order of each locus. In most cases, the phenotypic sex
and probable genotypic sex of these individuals were concordant.

Because of the possible effects of recombination influencing interpretation of
sex reversal, we performed a second, but otherwise identical, analysis using just
RaclCT001 and RaclCT003 (Table S6) because through our previous study we found that
these two loci confidently assigned genotypic sex on their own (Lambert, Skelly &
Ezaz, 2016). We constrained our analysis to individuals which had sequence data
for both loci and individuals which had genotypes observed in our previous dataset.
These criteria ultimately only excluded 13 phenotypic females and eight
phenotypic males.

Statistical analyses of sex
We analyzed putative associations between frequencies of sex reversal and intersex with
land use within a Bayesian probabilistic framework following McElreath (2015) and
using the maximum a posteriori (map) function in the R (v 3.4.0) package “rethinking.”
To do so, we modeled the probability of female-to-male sex reversal, male-to-female sex
reversal, or intersex as binomial responses and used flat prior distributions for
intercepts and land use slopes. For each the probability of female-to-male sex reversal,
male-to-female sex reversal, and intersex, we developed two models. One model
only included only an intercept term and the other include an intercept term and a term
for suburban land use. We similarly modeled whether intersex frequencies were associated
with female-to-male, male-to-female, or total sex reversal frequencies.

We evaluated performance among models using the widely applicable information
criterion (WAIC) which takes the averages of log-likelihoods over the posterior
distribution of a given model. WAIC values are particularly helpful inference metrics for
evaluating Bayesian probabilistic generalized linear models because they do not rely on a
Gaussian posterior distribution, therefore making them useful for binomial models
like those used here. Furthermore, we assessed the relative predictive power of different
models by comparing changes in WAIC (dWAIC in Table S3) and weighted model
probabilities using Akaike weighted ranking (McElreath, 2015).
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We note that, because sex reversal likely occurs during larval development and because
the adult population represents multiple aggregated cohorts, it would be challenging
to interpret any associations or lack of associations between sex reversal frequencies and
environmental variables (e.g., temperature or pH) which may vary between years. Because
of this, we limited our analyses to suburban land use which has remained a relatively
constant measurement of the relative anthropogenic impact among populations over the
past several years.

Water chemistry
Our prior work demonstrated that the presence and diversity of endocrine disrupting
chemicals capable of impacting vertebrate sexual differentiation are positively correlated
with a suburban land use gradient (Lambert et al., 2015). Similarly, basic water
quality parameters are also well known to be correlated with urban land use gradients
(Dow & Zampella, 2000; Conway, 2007; Zampella et al., 2007; Brans et al., 2017), including
in our own work (Lambert et al., 2015;Holgerson et al., 2018). As an additional layer to this
study, we measured multiple water chemistry parameters to evaluate its association
with the land use gradient as a relative measure of human influence among ponds. At most
visits to each pond, we measured water conductivity (specific conductance), pH, and
dissolved oxygen. For the first two measurements, we used an Oakton PCSTestr
35 Multiparameter probe. For dissolved oxygen, we used an YSI ProODO Handheld
Optical meter. Conductivity in particular is a useful proxy for myriad contaminant sources
entering urban ponds (Dow & Zampella, 2000; Conway, 2007; Zampella et al., 2007).

To characterize how land use might be associated with different water variables
(conductivity, pH, dissolved oxygen, and temperature) we used linear models which
included the percent of suburban land cover surrounding each pond as well as sampling
date as predictor variables. If sampling date was not significant (at p < 0.05) in the
model, we instead used linear mixed effects models with the “lmer” function in the lme4
package in R, treating sampling date as a random effect to account for repeated measures,
and treated suburban land use as the only fixed effect. For mixed effects models,
we calculated an R2 with the “r.squaredGLMM” function in the R package MuMIn.

RESULTS
Sex phenotype-genotype discordance
We inferred sex reversal from discordances between frog phenotypic sex and genotypic sex
across five sex-linked markers, finding evidence that sex reversal occurs across most
populations and in both directions. From 464 frogs (Table S1) collected across 16
populations, we observed sexual phenotype-genotype discordance in 4.5% (n = 21) of frogs
and in 75% of populations (Fig. 2). Nine populations exhibited a single direction of
sexual discordance while three populations exhibited bidirectional sexual discordance
(Fig. 2). Across populations, 8.5% (n = 11, 89% credible interval 5.4–13.4%) of genotypic
females had a male phenotype, whereas 3% (n = 10, 89% credible interval 1.8–4.9%) of
genotypic males had a female phenotype.
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Contrary to expectations that human land use drives sex reversal, we observed no such
relationships between sex reversal frequencies, in either direction, and land use (Fig. S1).
We detected sex phenotype-genotype discordant frogs in all uncontaminated forested
ponds. Bayesian analyses indicated that suburban land use was not associated with
frequencies of sexually-discordant genotypic females (XX♂; posterior probability = 0.500,
89% credible interval 0.495–0.510) nor sexually-discordant genotypic males (XY♀;
posterior probability = 0.503, 89% credible interval 0.495–0.507) (Table S5; Fig. S1). In all
cases, models only containing intercepts carried the majority of Akaike model weighting
compared to models including suburban land use (Table S2). Similarly, WAIC values
across models for either sex reversal type were relatively similar and standard errors
of each models’ WAICs were relatively high (Table S2). Importantly, changes in WAIC
values (dWAIC) between the suburban model and the better model (lowest WAIC) with
only an intercept were low. Additionally, the standard errors of estimated dWAIC
were relatively high compared to actual dWAIC values. All metrics suggest no influence of
land use on sex reversal. While it is possible that forested ponds studied here were exposed
to some unmeasured contaminants, our previous work demonstrated that suburban
land cover is a reliable proxy for the presence and extent of contamination in these ponds
(Lambert et al., 2015).

To address the possibility that recombination could obscure the genotype-phenotype
relationship leading to false positives for sex reversal, we performed a secondary
analysis using a restricted dataset including only the most tightly sex-linked markers
(those with alleles showing the strongest association with sex; see Methods).

Figure 2 Sex reversal and intersex are widespread but are not associated with suburban land use.
Percent of each frog population comprised of sexually-discordant frogs (A) and percent of phenotypic
males with intersex testes (B). Ponds are arrayed in descending order from greatest frequency of sexually-
discordant genotypic females (XX-males; left bars) followed by the greatest frequency of sexually-discordant
genotypic males (XY-females; right bars). Intersex and sexual discordance are not correlated. Percentages
between panels indicate the percent of the landscape surrounding each pond that is comprised of suburban
land use. Pond names match those in Table S1 and COAN, Forest2, Forest5, and Forest6 are forested.
Table S1 also includes sample sizes. Full-size DOI: 10.7717/peerj.6449/fig-2
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This additional analysis provided qualitatively identical results (Table S3). Every individual
identified as sex-reversed in this restricted analysis was previously assigned as sex-reversed
in the original analysis. Of the 21 individuals excluded in this secondary analysis
(see Methods for exclusion criteria), three had previously been assigned as sex-reversed
and the remaining 18 were sex-concordant. No individuals present in both analyses
were identified as sex-reversed in the first analysis but not in the second analysis.
Across populations, 7% (n = 8, 89% credible interval 4.0–12.0%) of genotypic females
displayed a male phenotype, whereas 3% (n = 10, 89% credible interval 1.8–5.0%)
of genotypic males were phenotypically female. As with the prior analysis, we detected
sexually-discordant frogs in all uncontaminated forested ponds. Model comparisons
indicated a slight advantage of the model including suburban land cover
(negative effect; posterior probability = 0.487, 89% credible interval 0.475–0.50) over an
intercept-only model, suggesting a slight correlation between suburban land use and
female-to-male sex reversal. However, the credible interval overlapped with 0.50, all model
comparison metrics (Table S3) were only modestly different between the two models,
and the proportional change in log odds was only 0.95 indicating the relationship between
female-to-male sex reversal and suburban land use was minimal. Bayesian analyses
for sexually-discordant genotypic males (XY♀) was not influenced by suburban land
use (posterior probability = 0.503, 89% credible interval 0.495–0.507) (Table S3).

Intersex
Of 246 phenotypic males histologically examined, 23 had intersex testes (9.3%, 89%
credible interval 6.8–12.9%). Of the intersex frogs, sex-linked markers indicated that
91% (n = 21) were genotypically male while 9% (n = 2) were genotypically female, although
a higher proportion of sexually-discordant phenotypic males (XX♂) were intersex
compared to sexually-concordant phenotypic males (XY♂) (Fig. 3). While
sexually-discordant phenotypic male (XX♂) frogs were limited in number, the posterior
probability for genotypic sex influencing intersex frequencies was 0.28 (89% credible
interval 0.10–0.60) and the proportional change in log odds of being intersex as a
genotypic female (XX♂) compared to being a genotypic male (XY♂) was 0.40.
This indicates that the odds of a sexually-concordant male (XY♂) being intersex is
60% lower than the odds for a sexually-discordant genotypic female (XX♂) such that
20% of sexually-discordant genotypic females (XX♂) were intersex whereas only
9% of sexually-concordant males (XY♂) were intersex. We note, though, that
although XX♂ have a higher probability of being intersex, most intersex frogs were
XY♂. Because most sexually-concordant males (XY♂) develop typical testicular
morphology whereas many sex-reversed genotypic females (XX♂) likely retain oocytes
in their testes, this result reflects differences in the frequency of XX♂ and XY♂ in
wild populations.

We identified intersex phenotypic males in 10 of 16 populations (Fig. 2; Table S1). Half
of ponds surrounded by suburban land cover had intersex males; for suburban ponds with
intersex males, intersex frequencies ranged from 5.3% to 33.3% (Table S1). All four
forested ponds harbored intersex males with intersex frequencies ranging from 4.3% to
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19% of males in a given pond (Table S1). Bayesian models suggested intersex frequencies
were not associated with human land use (posterior probability = 0.498, 89% credible
interval 0.493–0.503; Table S2; Fig. S1). WAIC and dWAIC standards errors were
again high and Akaike weighting again did not favor the model including suburban land
use (Table S2; Fig. S1). This result is mirrored by data (H.E. Bement & D.K. Skelly, 2011,
unpublished data) showing equal intersex frequencies in green frog populations from
each of three forested (range 6.7–25% intersex) and three suburban ponds (range 4.3–17%
intersex). Models also indicated that intersex frequencies were not associated with rates

Figure 3 Intersex phenotypic males can be either genotypic males or genotypic females. Two testi-
cular oocytes from an intersex green frog (A). While, overall, there are more genotypic males than
genotypic females which are intersex (B), sexually-discordant genotypic females have a higher probability
of exhibiting intersex than sexually-concordant males. Of phenotypic males histologically assessed, 10
were genotypic females and 236 were genotypic males. Full-size DOI: 10.7717/peerj.6449/fig-3
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of female-to-male (posterior probability 0.49, 89% credible interval 0.46–0.52),
male-to-female (posterior probability 0.53, 89% credible interval 0.49–0.56), or total sex
reversal frequencies (posterior probability 0.51, 89% credible interval 0.47–0.54).

Water chemistry
Dissolved oxygen, pH, conductivity, and temperature all increased with increasing
suburban land cover surrounding ponds. The model (full model R2 = 0.29, p < 0.001)
for dissolved oxygen included both Percent Suburban (p = 0.002, estimate = 0.06 ± 0.02)
and Sampling Date (p < 0.001, estimate = -0.07 ± 0.02). Dissolved oxygen generally
declined throughout the season by 0.7 mg/L every 10 days and, controlling for Sampling
Date, dissolved oxygen increased by 0.6 mg/L for every 10% increase in landscape
composition that was suburban land cover.

For pH, the model (full model R2 = 0.22, p < 0.001) included both Percent Suburban
(p < 0.001, estimate = 0.02 ± 0.003) and Sampling Date (p = 0.04, estimate = 0.006 ± 0.003).
Generally, pH increased throughout the season by 0.06 every 10 days and,
controlling for Sampling Date, pH increased by 0.2 for every 10% increase in
suburban land cover composition.

In the linear regression (full model R2 = 0.44, p < 0.001) for conductivity,
Percent Suburban was significant (p < 0.001) but Sampling Date was not (p = 0.10).
A linear mixed effects model treating Sampling Date as a random effect found a
significant positive correlation between conductivity and the fixed effect Percent Suburban
(R2 = 0.43, p < 0.001, estimate = 6.5 ± 0.9). Conductivity increases on average by
65 microsiemens for every 10% increase in landscape comprised of suburban land cover.

For temperature, the model (full model R2 = 0.52, p < 0.001) included both Percent
Suburban (p < 0.001, estimate = 0.06342 ± 0.01528) and Sampling Date (p < 0.001,
estimate = 0.12419 ± 0.0141). Generally, temperature increased throughout the summer by
1.2 �C every 10 days throughout the summer and, controlling for Sampling Date,
temperature increased by 0.6 �C for every 10% increase in landscape composition that was
suburban land cover.

These data help reconfirm the use of our suburban land use gradient as a proxy for
contamination. Chemical data from forested and suburban pond studied here and in prior
work can be found in Lambert et al. (2015).

DISCUSSION
Our study suggests that sex reversal in green frogs may be common and frequent.
By identifying sex reversal from discordances between phenotypic and genotypic sexes
inferred across sex-linked markers, we found evidence for sex reversal in 12 of 16
populations. Interestingly, our analyses suggest sex reversal occurs independently of
human land use and occurred in all undeveloped, forested frog populations. While we
cannot discount possible contamination from unmeasured sources, our recent chemical
analyses have demonstrated that our suburban land use gradient is a reliable proxy
for the presence, diversity, and concentration of contaminants which can influence sexual
development (Lambert et al., 2015). Importantly, our evidence to date indicates minimal
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or no detectable contamination in the types of forested ponds we studied, including
three of the four forested ponds studied here. Sexual development in green frogs is likely a
complex process whereby some individuals develop sexually-concordant, some develop
sexually discordant early in larval development, and some begin developing as their
predisposed genotypic sex but sex reverse into the opposing phenotypic sex later in larval
development but prior to metamorphosis. Our results supports earlier findings from
European common frogs (Alho, Matsuba & Merila, 2010; Rodrigues et al., 2014) to suggest
that the environment plays a greater role in determining sexual trajectories in amphibians
than is typically discussed (Miura, 2017; Sarre, Ezaz & Georges, 2011; Evans, Alexander
Pyron & Wiens, 2012; Bachtrog et al., 2014; Capel, 2017) and may not necessarily be a
response to anthropogenic conditions. Our findings here elucidate new patterns of sex
reversal and intersex in wild frogs and highlight areas of future research needed to more
clearly identify underlying mechanisms as well as the ecological and evolutionary
ramifications of sex reversal and intersex.

Potential causes of sex reversal
The bidirectional sexual discordance observed here perhaps indicates that green
frog sexual development may be influenced by multiple factors. Laboratory experiments
show the direction of amphibian sexual differentiation away from the genotypically
predisposed sex (e.g., genotypic female to phenotypic male or genotypic male to
phenotypic female) can vary by species, demes, and environmental conditions
(Miura et al., 2016; Tamschick et al., 2016a). The bidirectional sex reversal observed here in
adult green frogs could possibly indicate that amphibian sexual differentiation is guided by
multiple environmental (temperature and chemical) factors or yearly variation in the
environment. If this were true, it may be challenging to identify specific mechanisms of sex
reversal. Unfortunately, green frogs require 2–3 years post-metamorphosis to mature and
survive for up to 7 years (Shirose & Brooks, 1995) and so we are unable to assess sex
reversal frequencies as a function of a single year’s water conditions in the adults sampled
here due to multiple overlapping cohorts. Additionally, we cannot discount that frogs
may have moved from the environment which led to their intersex or sex-reversed
condition before they were collected. Additional studies assessing patterns in
environmental conditions with sex reversal frequencies in wild cohorts of larval or
metamorphosing amphibians for which the collection site and the larval environment are
known to be the same will be critical for identifying putative drivers (e.g., temperature,
pH, dissolved oxygen, organic chemicals, etc.) of sex reversal as well as
contributions to cohort sex ratio variation.

Intersex
While we identified both genotypically female and male intersex frogs, intersex and
sexual genotype-phenotype discordance frequencies were not correlated, perhaps
suggesting the mechanisms underlying intersex and sex reversal may be different.
By extension, this suggests that we cannot conflate intersex and sex reversal as has been
suggested previously (Murphy et al., 2006). The few experiments which have assessed both
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intersex and genotypic sex have not reported relationships between sex reversal and
intersex (Hayes et al., 2010; Tamschick et al., 2016a, 2016b). Future experimental
and field studies should assess any relationship between intersex and sex reversal to better
understand the conditions and mechanisms underlying these processes. We note that
intersex is likely a terminal phenotype in most amphibians and, at least in green frogs, is
not evidence of sequential hermaphroditism which currently is not known to occur in
amphibians. Phenotypic males with intersex testes may represent two developmental
scenarios. In one pathway, larval genotypic females either partially or completely develop
their ovaries but are later environmentally-induced to sex reverse, degenerating their
ovaries and developing testes prior to metamorphosis. This pathway has been
experimentally demonstrated in green frog tadpoles previously (Mintz, Foote & Witschi,
1945). Alternatively, genotypic males may experience abnormal gonadal differentiation
but do not flip their sexual trajectories toward being phenotypic females
(Tamschick et al., 2016a, 2016b). Both field-based and experimental research could
provide exciting insight into the relative contribution of these two developmental pathways
to intersex frequencies in the wild.

In recent years, discussions about amphibian sexual development have often been
guided by striking results from laboratory-based ecotoxicological studies which have led to
the impression that sex reversal and intersex are predominantly the result of human
factors (Hayes et al., 2002, 2010; Pettersson & Berg, 2007; Tamschick et al., 2016a, 2016b).
However, previous work in other frog species throughout the past century (Witschi, 1914,
1929, 1930; Hsu, Yu & Liang, 1971) including a field survey in Africa (Du Preez
et al., 2009), also indicates that intersex can be widespread among wild populations and
may not be necessarily related to contaminants but rather natural environmental factors
like temperature. It currently remains unclear what environmental conditions cause
intersex to develop in green frogs and other taxa. Our findings that sexual
genotype-phenotype discordance and intersex frequencies were not associated with
land use is therefore intriguing and perhaps surprising. These results should prompt a
reconsideration of the perception that these sexual characteristics are predominantly of
anthropogenic origin.

Evolutionary and ecological implications
Despite having experienced at least 32 transitions between GSD (e.g., XY vs ZW
sex chromosome) systems (Evans, Alexander Pyron & Wiens, 2012), amphibians are not
generally believed to naturally undergo sex reversal (but see Perrin, 2009; Alho, Matsuba &
Merila, 2010; Rodrigues et al., 2018). Yet, most mechanistic models of sex determination
transitions invoke a role for environmentally-sensitive sex determination (Bull, 1981;
Grossen, Neuenschwander & Perrin, 2011; Quinn et al., 2011; Schwanz et al., 2013;
Muralidhar & Veller, 2018). Our findings in conjunction with research on
European common frogs should encourage future investigation in to whether sex
reversal influences transitions among amphibian SD modes.

Numerical modeling suggests that the frequency of sexually-discordant genotypic
females (XX♂) reported here should have minimal effects on population size
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or viability unless sexually-discordant genotypic females (XX♂) have reduced fitness
(Cotton & Wedekind, 2009; Wedekind, 2010). The low frequency of sexually-discordant
genotypic males (XY♀) in green frogs, however, may permit the type of sex-chromosome
rejuvenation suggested by the “fountain of youth” hypothesis (Perrin, 2009;
Grossen, Neuenschwander & Perrin, 2012).

Sex chromosome recombination
The main complication with identifying sex reversal in taxa like amphibians, fishes,
and non-avian reptiles is having to identify and rely on sex-linked genetic loci which
may or may not be the SD locus. While “the SD locus” should experience no
recombination, other loci on the sex chromosomes will experience varying degrees of
recombination depending on their proximity to the SD locus as well distance between the
loci and the centromere. Therefore, while a number of loci may all be sex-linked
based on their corresponding location to SD locus, certain individual sex-linked loci
will show different degrees of recombination and therefore sex-linkage. Because of this
heterogeneity in linkage, alleles associated with the heterogametic sex chromosome
(e.g., Y or W) will possibly be observed in the opposite genotypic sex and the
heterogametic sex will occasionally exhibit the homogametic sex’s genotype at certain
sex-linked loci (Hussain et al., 1994). Recombination rates for sex-linked loci
can be directly estimated with family inheritance data from both parents and their
offspring (Matsuba, Miura & Merila, 2008). While having directly estimated
recombination rates would be useful to our study, we are not prevented from
identifying informative sex-linked loci in their absence (Lambert, Skelly & Ezaz, 2016;
Brelsford et al., 2017).

Bayesian probabilistic modeling approaches like the one used here and first used by
Alho, Matsuba & Merila (2010) to infer sex reversal in European common frogs are
useful tools for inferring the genotypic sexes of individuals across multiple loci by
accounting for variation in sex-linkage and, by extension, recombination. As we discussed
previously (Lambert, Skelly & Ezaz, 2016), the sex-linked loci identified for green frogs
show varying degrees of sex-linkage, likely due to recombination. RaclCT001 is a
particularly interesting locus because its alleles were perfectly sex-linked (all females were
homozygous for the common X-allele and males were heterozygous) across 23 adult
females and 54 adult males in the original dataset (Lambert, Skelly & Ezaz, 2016). And in
this current study of over 400 frogs, RaclCT001 was again perfectly sex-linked outside
of inferred sex-reversed individuals suggesting that it is either at or very near the SD locus
in these populations and experiences minimal if any recombination. By analyzing across
multiple loci, and in particular locus RaclCT001, we can accurately assign the
genotypic sex to green frogs in our study population even if multiple loci for an individual
are apparently discordant. Although we cannot fully discount the possibility that sex
chromosome recombination influenced our results, the methods we employed account for
variation in sex-linkage and allow for useful inference into individuals’ genotypic sex,
and therefore sex reversal, in the absence of a well-established SD locus. Recombination
likely accounted for variation in sex-linkage at several of the loci (RaclCT005, -007,
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and -009) used here but was unlikely to be so extreme to as result in our analyses
mis-assigning genotypic sexes. Our analyses using either the complete sex-linked markers
set or only the most tightly sex-linked loci produced similar results, validating our
interpretations of sex reversal. However, future work in this system using family data will
be useful for unequivocally disentangling the effects of recombination in these markers,
if there is any.

CONCLUSIONS
By inferring sex reversal in green frogs living in different anthropogenic and undeveloped
ecological contexts, we provide early support that sex reversal might be a relatively
natural and frequent process in this species. Our study highlights the need for more
research on amphibians in various ecological contexts and for biologists studying
sex reversal and sexual development to report some metric of the ecological conditions
of the populations they study. In recent years there has been a substantial focus on
contaminant-caused intersex and sex reversal. Yet there are few studies assessing intersex
or sex reversal in replicate undeveloped landscapes, particularly as a contrast to developed
landscapes with known contamination. As called for almost a decade ago by
Wedekind (2010), such data are critical for disentangling the extent to which sex reversal is
of anthropogenic or natural origins. Additionally, our work should spark interest in
understanding how well “control” conditions in laboratories represent baseline conditions
for sexual development. Even in undeveloped landscapes with minimal contamination,
amphibian larvae develop in heterogeneous environments comprised of myriad

Figure 4 Phylogeny of vertebrate sex determination, now including sex reversal in amphibians.
Genotypic sex determination (GSD), environmental sex determination (ESD), and sex reversal (GSD
+ environmental effects (EE)) are variable across the vertebrate phylogeny. Amphibians were previously
generally thought to only exhibit strict GSD. We provide early data here (red dashed circle) that
environmental sex reversal may be a natural process in amphibians.

Full-size DOI: 10.7717/peerj.6449/fig-4
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natural chemicals as well as varying temperature regimes. Therefore, sex reversal could very
well be an outcome of multi-stressor response (including temperature). While our study
focused on adult frogs, and therefore cannot draw conclusions about putative drivers of
intersex or sex reversal, future research focused on sexual development in larval and
metamorphosing amphibians in the wild could help identify any natural or anthropogenic
mechanisms of sex reversal and the development of intersex.

Our study shines new light on sex reversal in an amphibian species and begins to
expand our understanding of sex reversal in amphibians relative to other vertebrates
(Fig. 4). Even so, our study was limited to a single species and in a relatively constrained
region of its large range. Future investigations into patterns of environmental sex reversal
in other species, particularly from diverse amphibian taxa including salamanders
and caecilians, as well as various ecological contexts are paramount for understanding
the evolutionary and ecological drivers and consequences of dynamic amphibian sexual
development. Concentrated efforts in recent years coupled with modern genomics
tools have illuminated an astonishing diversity of SD modes in fishes and squamates
(Pennell, Mank & Peichel, 2018). We are now ready for a focused investigation of
the sexual diversity of living amphibians.
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