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Abstract

Background: Living things come in all shapes and sizes, from bacteria, plants, and
animals to humans. Knowledge about the genetic mechanisms for biological shape
has far-reaching implications for a range spectrum of scientific disciplines including
anthropology, agriculture, developmental biology, evolution and biomedicine.

Results: We derived a statistical model for mapping specific genes or quantitative
trait loci (QTLs) that control morphological shape. The model was formulated within
the mixture framework, in which different types of shape are thought to result from
genotypic discrepancies at a QTL. The EM algorithm was implemented to estimate
QTL genotype-specific shapes based on a shape correspondence analysis. Computer
simulation was used to investigate the statistical property of the model.

Conclusion: By identifying specific QTLs for morphological shape, the model
developed will help to ask, disseminate and address many major integrative
biological and genetic questions and challenges in the genetic control of biological
shape and function.

Background
Morphological shape is one of the most conspicuous aspects of an organism’s

phenotype and provides an intricate link between biological structure and function in

changing environments [1,2]. For this reason, comparing the anatomical and shape fea-

ture of organisms has been a central element of biology for centuries. Nowadays,

attempts have been made to unlock the genetic secrets behind phenotypic differentia-

tion in developmental shape [3], understand the origin and pattern of shape variation

from a developmental perspective [4,5], and predict the adaptation of morphological

shapes in a range of environmental conditions [6].

Three major advances in life and physical science during the last decades will make

it possible to study shape variation and its biological underpinnings. First, DNA-based

molecular markers allow the identification of quantitative trait loci (QTLs) and bio-

chemical pathways that contribute to quantitatively inherited traits such as shape. In

his seminal review, Tanksley [3] summarized some major discoveries of genes for fruit

size and shape in tomato. In a long process of domestication, tremendous shape varia-

tion has occurred in tomato fruit from almost invariably round (wild or semiwild

types) to round, oblate, pear-shaped, torpedo-shaped, and bell pepper-shaped (culti-

vated types). Some of the QTLs that cause these differences, namely fw2.2, ovate, and

sun, have been cloned [7-9].
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Second, digital technologies through computerized analyses and processing

procedures can obtain a comprehensive representation of the involved objects, capable

not only of representing most of the original information, but also of emphasizing

their less redundant portions [10-15]. Third, statistical and computational technologies

have well been developed for analyzing high-dimensional, large-scale, high-throughput

data of high complexity [16,17]. With the development of missing data analysis, Lander

and Botstein [18] have been able to pioneer an approach for dissecting complex quan-

titative traits into individual QTLs using genetic linkage maps constructed with mole-

cular markers. There has been a vast wealth of literature in the development of QTL

mapping models (see [19-25] among many others).

The motivation of this study is to develop a statistical and computational model

for mapping specific QTLs that are responsible for differences in morphological

shape. Historically, genetic mapping has been focused on the genetic control of a

trait at a static point, ignoring the dynamic behavior and spatial properties of the

trait. Now, by integrating the developmental principle of trait growth, a new

genetic mapping approach, called functional mapping [26-28], can be used to study

the dynamic control of genes in time course. The central idea of functional map-

ping is to connect the genetic control of a developmental trait at different time

points through robust mathematical and statistical equations. Complementary to

functional mapping, the model developed for shape mapping in this study links

gene action with key morphometric parameters of a shape within a statistical fra-

mework. We will perform computer simulation to examine the statistical properties

of the model.

Model
Genetic Design

We assume a backcross design although the model can be modified to accommodate

any other mapping designs. Consider a backcross progeny population of size n,

founded with two inbred lines that are sharply contrasting in leaf shape. Because of

gene segregation, there is a range of variation in leaf shape among the backcross pro-

geny. Such shape variation is illustrated in Fig. 1 by using leaf morphology in cucurbit

plants [29]. To map the shape trait, the mapping population is typed for a panel of

molecular markers from which a genetic linkage map covering the genome is con-

structed. The statistical approach for linkage analysis and map construction is reviewed

in Wu et al. [30]. Assume that there are some specific QTLs responsible for the

Figure 1 The diagram of twelve leaf shapes from the backcross population. Five of them are wild
Cucurbita argyrosperma sororia and seven of them are cultivated cucurbita argyrosperma.
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biological shape. The approach being developed aims to detect and map such QTLs by

capitalizing on knowledge about shape analysis and biological principles behind shape

formation and variation.

Shape Analysis

According to the definition of Kendall [31], “shape is all the geometrical information

that remains when location, scale and rotational effects are filtered out from an

object”. Assume that each backcross progeny is measured for the leaf shape as shown

in Fig. 1. For a given shape, Ii (i = 1, ..., n), described by a black and white image, it is

gridded as an L × L matrix, where L is the number of pixels in the row and column.

At each point in the matrix, we use 0 to denote the background (black) and 1 to

denote the leaf (including an arbitrary shape of it) (white). The 1/0 value of the matrix

is assumed to follow a Bernoulli distribution. All these n shapes, T = {I1, I2, ..., In},

need to be aligned, in order to minimize the interference caused by pose variations.

This can be carried out by establishing a coordinate reference with respect to position,

scale and rotation, commonly known as pose to which all shapes are aligned

[10,12,14]. Denote the pose parameter for each shape Ii by pi = [a, b, h, θ]T where a

and b correspond to x and y translations, h is the scaling parameter, and θ corre-

sponds to rotation. The transformed image of Ii, based on the pose parameter pi, is

denoted by Ĩi, defined as

  I x y I x yi i( , ) ( , ),=
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(1)

The translation matrix T [p] is the product of three matrices: a translation matrix M

(a, b), a scaling matrix H(h), and an in-plane rotation matrix R(θ). The transformation

matrix T [p] maps the coordinates (x, y) Î R2 into coordinates ( , ) x y Î R2, where x, y

= 1, ..., L.

An effective strategy to jointly align the n binary images is to use a gradient descent

to minimize the following energy function:
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where Ω denotes the image domain. Minimizing the energy function (2) is equivalent

to simultaneously minimizing the difference between any pair of binary images in the

training database. What we would like to estimate is the pose parameter pi for each Ii.

The derivative respective to pi of equation (2) is
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Hence, we can obtain the value of ∇
pi E as long as pi and Ĩi are given in each

iterative step. The steepest gradient algorithm is then used to minimize E in (2) and

get the pose parameter pi for each shape Ii. All the training shapes after the alignment

procedure described above are obtained (see Fig. 2).

Statistical Model

After all the training shapes are aligned, a shape representation scheme needs to be

chosen for T = { Ĩ1, Ĩ2, ..., Ĩn}., i.e., the transformed images, which now become contin-

uous variables. The signed distance function was used as a shape descriptor to
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represent the contours of the shape. Each contour is embedded as the zero level set of

a signed distance function with negative distances assigned to the inside and positive

distances assigned to the outside. This technique yields n level sets functions Y = {Y1,

Y2, ... Yn} corresponding to above n aligned training shapes. From the standpoint of

QTL mapping, we treat Y = {Y1, Y2, ..., Yn} as the multiple phenotypic traits of n indivi-

duals. For a progeny i (i = 1, 2, ..., n), we have
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Thus, each individual has a total of m = L2 phenotypes.

For the backcross progeny population, there are always two different genotypes at

each locus. The genotypes at a shape QTL, expressed as QQ (denoted as 1) and Qq

(denoted as 2), cannot be observed directly but can be inferred from the markers that

are linked to the QTL. For this reason, the basic statistical model for QTL mapping is

based on a mixture model, in which each observation Y is assumed to have arisen

from one of the two groups of QTL genotypes, each group being modeled from a den-

sity function (frequently a normal distribution is assumed). Thus, the population den-

sity function of Y is

f Y f Yj i

j

j i j( | , , ) ( | , ),|     =
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2

(5)

where ω represents the mixture proportions (ω1|i, ω2|i), which are constrained to be

nonnegative and sum to unity, �j is the expectation parameter specific to different

QTL genotypes j = 1, 2, and h is the variance-covariance parameter common to all

genotype groups, and fj(Yi|�j,h) is the probability density function for QTL genotype j.

After images are transformed, Yi can be assumed to follow a multivariable normal dis-

tribution, i.e.,
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Figure 2 Leaf shapes after alignment for leaf shapes shown in Fig. 1.
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with the expectation matrix of each QTL genotype expressed as
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and (m × m) residual variance-covariance matrix of the variables ∑. If some patterns

exist, we will use �j to model the mean structure of μj and h to model the covariance

structure of ∑.

In order to simplify the problem, we use the most natural sampling strategy to utilize

the L × L rectangular grid of the training shapes to generate m = L × L lexicographi-

cally ordered samples (where the columns of the matrix grid are sequentially stacked

on top of one other to form one large row). Also, we assume that all the observations

in the long row are independent among the progeny. Now, from equation (5), we get

the likelihood function as
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where the mean matrix of QTL genotype j (μj) is modeled by parameter �j, and cov-

ariance matrix (∑) modeled by parameter h.

Computational Algorithm

To obtain the maximum likelihood estimates (MLEs) of parameters in likelihood (8),

we implement a standard EM algorithm. In the E step, we compute the posterior prob-

ability with which a backcross individual carries a QTL genotype j using

Ω ij
j f j Yi j

l fll i l
=
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In the M step, we estimate the parameters using

 jk
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1

1
, (10)

for j = 1, 2 and k = 1, 2, ..., m.

The EM steps are iterated between equations (9) and (10) until the estimates con-

verge to stable values. It should be pointed out that the data set for shape analysis is

highly sparse and high-dimensional. For example, if a shape is described by (256 ×
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256) pixels, i.e., L = 256, then we will have m = 2562 = 65, 536, and an (n × 65, 536)

matrix for the phenotypic observations. Several approaches will be developed to model

the structure of the variance-covariance matrix. One of the simplest approaches is to

use  = 1
2 2 2L . This choice is large enough to assure that various levels of differ-

ences lie well within a Gaussian distribution.

Hypothesis Tests

A hypothesis about the existence of a significant QTL that controls a morphological

shape can be tested by calculating the log-likelihood ratio under the hypotheses:

H H0 1 2 1 1 2: . : .   = ≠ vs (11)

As like an usual mapping approach, shape mapping has a problem of uncertain

distribution for the log-likelihood test statistic. However, an empirical approach

based on permutation tests, which does not rely on the distribution of log-likelihood

ratios, can be used to determine the threshold for claiming the existence of a signifi-

cant QTL.

Computer Simulation
Cucurbit (Cucurbita argyrosperm) plants display tremendous variation in leaf shape

between cultivars and wild types [29]. By mimicking leaf morphologies of this species,

we performed simulation studies to examine the statistical behavior of our shape map-

ping model. A backcross population of 200 progeny was simulated for a linkage group

with 11 equally spaced markers. A QTL that determines leaf shape is hypothesized on

the third marker interval. The phenotypic values of the shape were simulated with a

(75 × 75) dimension by Yi = ξiμ1 + (1-ξi)μ2 + ei, where μj is the mean shape matrix for

QTL genotype j (j = 1, 2), ξi is the indicator variable defined as 1 and 0 if progeny i

carries QTL genotype QQ (1) and qq (2), respectively, and ei follows a multivariate

normal distribution with mean vector zero and covariance matrix ∑. To simplify com-

puting, we assumed that ∑ is an identity matrix. We designed two simulation schemes

to test our shape mapping algorithm.

The first scheme assumes that there exists a “big” QTL which triggers a tremendous

effect on the difference in leaf shape of cucurbit plants between their cultivars and

wild types. This QTL has two different genotypes, one, QQ, corresponding to the wild

type shape (right) and the second, Qq, to the domesticated shape (left) (Figure 3A).

The QTL genotypes are determined by the conditional probability of a QTL genotype,

conditional upon the genotypes of the two markers that flank the QTL (see [30]). Part

of the 200 progeny simulated with two assumed QTL genotypes were given in Figure

3B, in which some leaf shape looks more like the wild type, some more like the domes-

ticated type, and the other is in between. The model described above was used to ana-

lyze the simulated data. The log-likelihood ratio test statistic calculated under

hypotheses (11) is greater than the critical threshold for testing the existence of a QTL

obtained from permutation tests, suggesting that two genotype-specific shapes for QQ

and Qq were detected and identified. Figure 3B also illustrates the shapes of two

detected QTL genotypes from the simulated data. As shown, the estimated shapes are

similar to the true shapes for the two backcross QTL genotypes, suggesting that our

model has great power to identify the QTL that control morphological shape.
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The second scheme simulated two QTLs that determine the differences of

leaf shape among wild-type plants and domesticated plants, respectively. Compared

to the “big” QTL assumed in the first scheme, these two QTLs are “small” because

their two genotypes correspond to slightly different leaf shapes. Figures 4 and 5

provide the results about shape mapping for wild-type plants and domesticated

plants, respectively. In the upper panel (A) of each figure, two original QTL

genotypes are assumed, from which 200 backcross progeny were simulated with a

range of leaf shape. The middle panel (B) gives part of the backcross. In the bottom

panel (C), two genotypes were estimated using our algorithm. It can be seen that

the model can well detect a QTL even if it has a small effect on morphological

shape.

To show the fitness of our model, we put the estimated QTL genotypes on the simu-

lated backcross population for the first (A) and second (B and C) simulation scheme

(Fig. 6). The leaf shape of two QTL genotypes in each case well covers the simulated

leaf shape, showing a good fitness of the mapping model. Also, we calculated the den-

sity functions for each simulated progeny and two QTL genotypes for each simulation

scheme (Fig. 7). The “big” QTL displays two distinct modes of distribution (Fig. 7A),

whereas there is a small difference in the density functions of two genotypes for each

of two “small” QTLs (Fig. 7B,C). By comparing Fig. 1A with Fig. 7B and 7C, we can

Figure 3 The first simulation scheme: A “big” QTL controls differences in leaf shape between wild
types and cultivars for cucurbit plants. A: Two given QTL genotypes, QQ for the wild type (left) and Qq
for the cultivar (right); B: Part of the simulated backcross progeny; C: Two estimated QTL genotypes, QQ for
the wild type (left) and Qq for the cultivar (right).
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obtain the basic information about how well different QTL genotypes are separated

when QTLs exert different effects on leaf shape.

Discussion
When specific genes that control morphological shape and physiological function are

identified, we are in an excellent position to address fundamental questions related to

growth, development, adaptation, domestication, and human health. In the past dec-

ades, the increasing availability of DNA-based markers has inspired our hope to map

genes or quantitative trait loci (QTLs) for complex phenotypes [19-25]. However, only

several studies have been alert to map so-called shape genes; a few successful examples

are the positional cloning of genes for fruit shape in tomato [3,7-9]. These successes

result from the fact that a major mutation occurs to determine shape difference. For

many quantitatively inherited shape traits, genetic mapping will provide a powerful

tool for characterizing QTLs affecting morphological shape. Klingenberg and collea-

gues [4,5] have developed quantitative genetic theory to estimate the heritability of

shape by integrating geometric shape analysis. This theory was used to map specific

QTLs for morphometric shapes in the mouse [32,33]. Airey et al. [34] used Procrustes

superimposition to study shape differences in the cortical area map of inbred mice.

In this article, we present a new statistical model for mapping shape QTLs in a seg-

regating population. The new model embeds shape analysis within a mixture model

framework in which different types of morphological shape are defined for individual

genotypes at a QTL. The model was solved using a traditional shape correspondence

Figure 4 The second simulation scheme: A “small” QTL controls differences in leaf shape among
different plants from wild types of cucurbit plants. A: Two given QTL genotypes, QQ for the wild type
(left) and Qq for the cultivar (right); B: Part of the simulated back-cross progeny; C: Two estimated QTL
genotypes, QQ for the wild type (left) and Qq for the cultivar (right).
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analysis approach and EM algorithm. The advantage of shape mapping lies in its

capacity to quantify subtle differences in any corner of a morphological shape and

detect specific QTLs that contribute to these differences. Results from simulation stu-

dies suggest that the model has reasonably high power to detect a QTL that control

shape difference. Even with a modest sample size (200), the model is able to discern

the effect of a QTL with a small effect on morphological shape. The model can be

easily extended to model epistatic interactions on morphological shape by including

more components in the mixture model.

The model will be needed to be modified for integrating developmental events and

their consequences into ontogenetic trajectories of shape. Modern biological studies

display an increasing interest in understanding shape variation in ontogenetic processes

that bring about differentiation at an adult stage [35-37]. In a longitudinal study of

radiographs of the Denver Growth Study, Bulygina et al. [37] investigated the morpho-

logical development of individual differences in the anterior neurocranium, face, and

basicranium. The modified model can map the QTLs that cause variation in shape

developmental trajectories.

In biology, a cell or organ fulfill certain biological functions through its shape. Shape

is thought to govern the extent and pattern of energy, matter and signal transduction

through the surface and inner structure of the biological object. For this reason, an

understanding of biological curvature and texture has received a surge of interest in

structural biology. The new model can be extended to map the QTLs that determine a

Figure 5 The second simulation scheme: A “small” QTL controls differences in leaf shape among
different plants from cultivars of cucurbit plants. A: Two given QTL genotypes, QQ for the wild type
(left) and Qq for the cultivar (right); B: Part of the simulated backcross progeny; C: Two estimated QTL
genotypes, QQ for the wild type (left) and Qq for the cultivar (right).
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three-dimensional (3D) shape and texture of a biological object. Vision technologies

have been developed to estimate the 3D shape of an object from 2D image data with-

out information about its texture (albedo), its pose and the illumination environment

[38,39]. These technologies include a 3D morphable model (3DMM) that represents

the 3D shapes and textures as a linear combination of shapes and textures principal

Figure 6 The fitness of estimated QTL genotypes to simulated leaf shape in a backcross. A: A “big”
QTL for the shape difference between wild types and cultivars of cucurbit plants. B: A “small” QTL for the
shape difference between different wild types. C: A “small” QTL for the shape difference between different
cultivars.
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components, a stochastic Newton optimization algorithm that ts the 3DMM to a single

facial image, thereby estimating the 3D shape, the texture and the imaging conditions,

and a multi-features fitting algorithm that uses not only the pixel intensity but also

other image cues such as the edges and the specular highlights. Statistical models can

be developed to map QTLs that control the 3D shape and texture of a biological object

Figure 7 Density functions of leaf shape for the simulated backcross (yellow) and two QTL
genotypes. A: A “big” QTL for the shape difference between wild types and cultivars of cucurbit plants. B:
A “small” QTL for the shape difference between different wild types. C: A “small” QTL for the shape
difference between different cultivars.

Fu et al. Theoretical Biology and Medical Modelling 2010, 7:28
http://www.tbiomed.com/content/7/1/28

Page 12 of 14



with image data. A series of hypothesis tests about the genetic control of topological

features (such as stepness and ridgeness) and texture of a shape will be formulated.
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