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Abstract

Over the past decade, artificial intelligence (AI) has contributed substantially
to the resolution of various medical problems, including cancer. Deep learning
(DL), a subfield of Al is characterized by its ability to perform automated fea-
ture extraction and has great power in the assimilation and evaluation of large
amounts of complicated data. On the basis of a large quantity of medical data
and novel computational technologies, Al, especially DL, has been applied in
various aspects of oncology research and has the potential to enhance cancer
diagnosis and treatment. These applications range from early cancer detection,
diagnosis, classification and grading, molecular characterization of tumors, pre-
diction of patient outcomes and treatment responses, personalized treatment,
automatic radiotherapy workflows, novel anti-cancer drug discovery, and clini-
cal trials. In this review, we introduced the general principle of AI, summarized
major areas of its application for cancer diagnosis and treatment, and discussed

Abbreviations: Al, artificial intelligence; ML, machine learning; DL, deep learning; DNN, deep neural network; CNN, convolutional neural network;
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1 | BACKGROUND

At a workshop in Dartmouth in the summer of 1956,
McCarthy et al. [1] coined the term “artificial intelligence
(AI)”, also known as “machine intelligence”. To put it sim-
ply, Al is defined as a programmed machine that can
learn and recognize patterns and relationships between
inputs and outputs and use this knowledge effectively for
decision-making on brand-new input data [1, 2]. Machine
learning (ML) and deep learning (DL) are the predom-
inant methods used to actualize AI and are sometimes
used synonymously. In the field of computer science, ML
is a subfield of AI, and DL is a specific subset of ML
that focuses on deep artificial neural networks (Figure 1).
Over the past decade, following advances in big data, algo-
rithms, computer power, and internet technology, DL has
achieved unprecedented success in various tasks in vari-
ous fields, including facial recognition, image classifica-
tion, voice recognition, automatic translation, and health-
care [3]. Given the great number of patients diagnosed with
cancers each year worldwide [4], there is an acute inter-
est in the application of Al in oncology, and such interests
include making accurate diagnosis of cancers using patho-
logical slides and radiological images, predicting patient
outcomes, and optimizing treatment decisions. Al there-
fore has the potential to solve the problem of unbalanced
distribution of medical resources and improve cancer
care.

Inspired by brain neural architecture, DL uses deep neu-
ral networks (DNN5s) to develop sophisticated models with
multiple hidden layers to analyze various types of data
and develop prediction outputs (Figure 1) [5]. Unlike con-
ventional ML techniques, which require careful engineer-
ing to design a feature extractor that transforms raw data
(such as the pixel values of an image) into relevant dis-
criminatory features before data input, DL algorithms feed
the machine with raw data with which it can automat-
ically learn the optimal deep features that best fit the
task through a training process [6, 7]. This ability likely
explains the fact that DL algorithms have been consistently
improved in many common Al tasks, such as image recog-
nition, pattern recognition, speech recognition, and nat-
ural language processing. Consequently, a majority of Al

its future directions and remaining challenges. As the adoption of Al in clinical
use is increasing, we anticipate the arrival of AI-powered cancer care.

artificial intelligence, cancer diagnosis, cancer research, cancer treatment, convolutional neu-
ral network, deep learning, deep neural network, oncology

research within the oncology field involves the utilization
of DL.

Among DNN models, convolutional neural networks
(CNNs) are the most popular DL architectures. They have
been used for cancer lesion detection, recognition, seg-
mentation and the classification of medical images [8-10].
The architecture of a typical CNN (Figure 1) is structured
by stacking three main layers: convolutional layers, pool-
ing layers, and fully-connected layers. In doing this, CNNs
transform the original images layer by layer from pixel val-
ues to the final prediction scores. The convolutional lay-
ers involve combining input data (feature map) with con-
volutional kernels (filters) to form a transformed feature
map. The filters in the convolutional layers are automat-
ically adjusted based on learned parameters to extract the
most useful features for a specific task. Yet, there is a draw-
back; it is difficult to tell what features are learned by the
CNNs, which is known as the “black box”.

Over the past five years, large amounts of researches
have applied DL to cancer diagnosis, precision medicine,
radiotherapy, and cancer research (Figure 2). Moreover,
the American Food and Drug Administration (FDA) have
approved a number of Al algorithms related to oncology
(Table 1) and published a fast-track approval plan for Al
medical algorithms in 2018. Here, we provided an overview
of the recent and enormous progresses in the application of
Al in oncology in this review (Figure 3). We also highlight
the limitations, challenges, and future implications of AI-
powered cancer care.

2 | CANCER SCREENING, DIAGNOSIS,
CLASSIFICATION, AND GRADING

Cancer screening for early detection, accurate cancer diag-
nosis, classification and grading are the key determinants
of treatment decisions and patient outcomes. Over the past
few years, there is increasing interest in the applications
of Al in these critical areas (Table 2), sometimes with per-
formance equivalent to human experts and advantages
in scalability and time-saving. More importantly, Al has
shown its potential in solving challenging problems that
humans simply cannot do.
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FIGURE 1
examples. CNN, convolutional neural network

2.1 | Cancer screening and early
detection

Cancer screening has contributed to decreasing the mor-
tality of some common cancers [11, 12]. The most suc-
cessful examples are the identification of precancerous
lesions (e.g., cervical intra-epithelial neoplasia [CIN] for
cervical cancer screening, and adenomatous polyps for col-

The relationship between artificial intelligence, machine learning, and deep learning and commonly used algorithms as

orectal cancer screening) where the treatment leads to a
decrease in the incidence of invasive cancer [13]. Given
the requirement for high throughput technology and a fast
turnaround, automation is being used to improve the effi-
ciency of cancer screening.

For cervical cancer screening, Wentzensen et al. [14]
developed a DL classifier for p16/Ki-67 dual-stained (DS)
cytology slides trained on biopsy-based gold standards.
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FIGURE 2 Publication statistics of deep learning by cancer
area over the past five years, searched on PubMed. A. Publication
statistics of deep learning by cancer diagnosis, precision medicine,
radiotherapy, and cancer research. B. Publication statistics of deep
learning for different cancer sites

In independent testing, Al-based DS had equal sensitiv-
ity and substantially higher specificity compared with a
Pap smear and manual interpretation of DS. Most impor-
tantly, Al-based DS reduced unnecessary colposcopies by
one-third compared with Pap smears (41.9% vs. 60.1%, P

< 0.001), while it had a similar performance in identi-
fying high-grade CIN, which indicates immediate treat-
ment. For colorectal cancer screening, a prospective ran-
domized controlled trial including 1,058 patients showed
that Al-assisted colonoscopy significantly increased ade-
noma detection rates and the mean number of ade-
nomas found per patient compared with conventional
colonoscopy (29.1% vs. 20.3%), which was attributed to a
higher number of diminutive adenomas found [15]. This
is particularly important because a 1% increase in the ade-
noma detection rate is associated with a 3% decrease in col-
orectal cancer incidence [13].

Automated nodule detection and classification on low-
dose computed tomography (CT) and mammography for
lung and breast cancer screening have attracted signifi-
cant attention. Several successful CNN-based models have
achieved classification accuracies of 80% to 95% [16-18],
which shows their transformative potential in lung cancer
screening. Ardila et al. [19] proposed a DL algorithm that
uses patients current and prior low-dose CT scans to pre-
dict the risk of lung cancer with outstanding results (area
under the curve [AUC] of receiver operating characteristic
= 0.944). Improvement in breast cancer screening with Al
mammography has also been verified in preclinical studies
[20-24], as well as in clinical settings [25]. McKinney et al.
[25] established an AI system for breast cancer screening
using an ensemble of three CNN-based models. A reduc-
tion in the numbers of false positives and false negatives
was observed compared with the original decisions made
in the course of clinical practice. In an independent study
by six radiologists, the AUC for the Al system was 11.5%
higher than the average AUC achieved by the 6 radiolo-
gists. Notably, this AI system has the ability to generalize
from the training data to multicenter data.

TABLE 1 Summary of FDA-approved artificial intelligence devices in the field of oncology
Al algorithm Company FDA approval date Indication
ClearRead CT Riverain Technologies 09/09/2016 Detection of pulmonary nodules
QuantX Quantitative Insights 07/19/2017 Diagnosing breast cancer
Arterys Oncology DL Arterys 01/25/2018 Liver and lung cancer diagnosis
cmTriage CureMetrix 03/08/2019 Detection of suspicious breast lesions
Koios DS Breast Koios Medical 07/03/2019 Breast lesion malignancy evaluation
ProFound AI Software V2.1 iCAD 10/04/2019 Breast lesion malignancy evaluation
Transpara ScreenPoint Medical BV 03/05/2020 Breast lesion malignancy evaluation
syngo.CT Lung CAD Siemens Healthcare GmbH 03/09/2020 Detection of pulmonary nodules
MammoScreen Therapixel 03/25/2020 Breast lesion malignancy evaluation
Rapid ASPECTS iSchema View 06/26/2020 Detection of suspicious brain lesions
InferRead Lung CT.AI InferRead Lung CT.AI 07/02/2020 Detection of pulmonary nodules
HealthMammo Zebra Medical Vision 07/16/2020 Detection of suspicious breast lesions

Abbreviations: FDA, Food and Drug Administration; Al, artificial intelligence; CT, computed tomography; DL, deep learning; CAD, computer-aided diagnosis.
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Summary of key papers applying deep learning to cancer diagnosis and treatment

Application Reference

Screening
Pathology [14]
Endoscopy [15]
Radiology [16]
Radiology [17]
Radiology [18]
Radiology [19]
Radiology [20]
Radiology [21]
Radiology [22]
Radiology [23]
Radiology [24]
Radiology [25]

Diagnosis
Pathology [30]
Pathology [31]
Pathology [32]
Pathology [33]
Pathology [35]
Pathology [36]

Task

Automation of dual stain cytology in cervical
cancer screening

Automation of polyp detection

Predicting invasiveness of pulmonary
adenocarcinomas

Lung nodule classification: benign/malignant
Lung nodule classification: benign/malignant
Lung nodule classification: benign/malignant
Breast lesion classification: benign/malignant
Breast lesion classification: benign/malignant
Breast lesion classification: benign/malignant
Breast lesion classification: benign/malignant
Breast lesion classification: benign/malignant

Breast cancer prediction

Invasive breast cancer detection
Breast cancer nodal metastasis detection
Breast lesion classification: benign/malignant

Detection of lymph node metastases in breast
cancer

Diagnosis of gastric cancer
Predicting origins for cancers of unknown
primary

Performance

Sensitivity, 87%

False positive rate, 7.5%
AUC, 0.788

Sensitivity, 98.45%
Accuracy, 79.5%
AUC, 0.944

AUC, 0.909

AUC, 0.860

AUC, 0.870

AUC, 0.860

AUC, 0.890

AUC, 0.8107

DSC, 75.86%
AUC, 0.994
Accuracy, 98.7%
AUC, 0.994

AUC, 0.990-0.996
Accuracy, 80%

(Continues)
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TABLE 2 (Continued)
Application Reference Task

Pathology [51] Lung tumor classification: normal/
adenocarcinoma/squamous cell carcinoma

Pathology [52] Automated Gleason grading of prostate
adenocarcinoma

Radiology [37] Brain tumor classification:
normal/glioblastoma/sarcoma/metastatic
bronchogenic carcinoma

Radiology [38] Liver cancer detection

Radiology [39] Prostate lesion classification: benign/malignant

Radiology [40] Detection of synchronous peritoneal
carcinomatosis in colorectal cancer

Radiology [41] Detection of NPC using MRI

Radiology [53] Predicting grade of liver cancer

Endoscopy [42] Gastric lesion classification: normal/malignant

Endoscopy [43] Upper gastrointestinal cancer detection

Endoscopy [44] Polyps identification

Endoscopy [50] Polyps identification

Endoscopy [45] Invasive colorectal cancer diagnosis

Endoscopy [46] Diminutive colorectal polyps classification:
hyperplastic/neoplastic

Endoscopy [47] cT1b colorectal cancer diagnosis

Endoscopy [49] Nasopharyngeal lesion classification:

Prediction of mutation

Pathology

Pathology

Pathology
Pathology
Pathology
Pathology
Radiology
Radiology
Radiology
Predicting of prognosis
Pathology
Pathology
Pathology
Immunotherapy

Radiology

Radiology

Pathology

Pathology

[51]

[56]

[59]
[60]
[61]
[61]
[62]
[63]
[70]

[66]
[67]
[68]
[70]
[74]

[72]

[73]

benign/malignant

Predicting genetic mutations of lung cancer:
STK11, EGFR, FAT1, SETBP1, KRAS, and TP53

Predicting genetic mutations of lung cancer:
CTNNBI1, FMN2, TP53, and ZFX4

Predicting MSI status in colorectal cancer
Predicting MSI status in colorectal cancer
Predicting TMB status in gastric cancer
Predicting TMB status in colon cancer
Predicting EGFR status in NSCLC
Predicting EGFR status in NSCLC
Predicting TMB status in NSCLC

Predicting outcome of colorectal cancer
Predicting outcome of mesothelioma
Predicting outcome of NSCLC

Predicting response to immunotherapy in
advanced NSCLC using TMB

Predicting response to immunotherapy in NSCLC
using MSI

Predicting response to immunotherapy in
advanced melanoma

Predicting response to immunotherapy in
gastrointestinal cancer using MSI
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Performance
AUC, 0.97

Cohen’s quadratic kappa
statistic, 0.75

AUC, 0.984

Accuracy, 99.38%
AUC, 0.84
Accuracy, 94.11%

Accuracy, 97.77%
AUC, 0.83
Accuracy, 96.49%
Accuracy, 99.7%
Accuracy, 96%
AUC, 0.984
Accuracy, 94.1%
Accuracy, 90.1%

AUC, 0.871
Accuracy, 88%

AUC, 0.733-0.856

AUC>0.71

AUC, 0.93
AUC, 0.85
AUC, 0.75
AUC, 0.82
AUC, 0.81
AUC, 0.81
AUC, 0.81

AUC, 0.69
Concordance index, 0.643
AUC, 0.85

AUC, 0.81

AUC, 0.79

AUC, 0.80

AUC > 0.99

(Continues)
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TABLE 2 (Continued)
Application Reference Task Performance
Chemotherapy
Radiology [75] Predicting response to NAC in breast cancer AUC, 0.851
Radiology [76] Predicting response to NAC in breast cancer Accuracy, 88%
Radiology [77] Prediction response to NAC in rectal cancer AUC, 0.83
Radiology [78] Prediction response to NAC in NPC Concordance index, 0.719-0.757
Radiology [79] Prediction response to NAC in NPC Concordance index, 0.722
Radiotherapy
Radiotherapy [84] Segmentation of OAR in head and neck DSC, 37.4%-89.5%
Radiotherapy [85] Segmentation of OAR in NPC DSC, 86.1%
Radiotherapy [86] Segmentation of OAR in head and neck DSC, 74%
Radiotherapy [87] Segmentation of OAR in head and neck DSC, 60-83%
Radiotherapy [88] Segmentation of OAR in head and neck DSC, 53-90%
Radiotherapy [91] 3D liver segmentation DSC, 97.25%
Radiotherapy [92] Segmentation of CTV and OAR in rectal cancer CTV: DSC, 87.7%
OAR: DSC, 61.8-93.4%
Radiotherapy [93] Segmentation of OAR in esophageal cancer DSC, 84-97%
Radiotherapy [94] Contouring of GTV in NPC DSC, 79%
Radiotherapy [95] Segmentation of CTV and OAR in cervical cancer CTV: DSC, 86%
OAR: DSC, 82-91%
Radiotherapy [96] Contouring of GTV in colorectal carcinoma DSC, 75.5%
Radiotherapy [97] Contouring of CTV in NSCLC DSC, 75%
Radiotherapy [98] Contouring of CTV in breast cancer DSC, 91%
Radiotherapy [99] IMRT planning in NPC Conformity index, 1.18-1.42
Radiotherapy [102] Prediction of dose distribution of IMRT in NPC Dose difference, 4.7%
Radiotherapy [103] Prediction of three-dimensional dose distribution Dose difference, 2-4.2%
of helical tomotherapy
Radiotherapy [104] Prediction of dose distribution of IMRT in Dose difference, 1.26-5.07%
prostate cancer
Radiotherapy [105] Prediction of three-dimensional dose distribution Dose difference < 0.5%

Abbreviations: AUC, area under curve; NPC, nasopharyngeal carcinoma; MRI, magnetic resonance images; MSI, microsatellite instability; TMB, tumor mutation
burden; NSCLC, non-small cell lung cancer; NAC, neoadjuvant chemotherapy; DSC, Dice similarity coefficient; OAR, organs at risk; GTV, gross tumor volume;

CTV, clinical target volume; IMRT, intensity-modulated radiation therapy.

An emerging area for the early detection of cancers
is liquid biopsies for circulating tumor DNA (ctDNA) or
cell-free DNA (cfDNA) obtained via a simple blood test.
These are particularly important for cancer types that cur-
rently have no effective screening method. In a promis-
ing work, Cohen et al. [26] developed CancerSEEK for the
early detection and prediction of eight cancer types using
ctDNA. With CancerSEEK, samples are first classified as
cancer-positive using a logistic regression model applied
to 16 gene mutations and the expression levels of 8 plasma
proteins. The cancer type is then predicted using a random
forest classifier, with accuracies ranging from 39% to 84%.
Although liquid biopsies are promising for early cancer
detection, so far, they have been limited to traditional ML
algorithms [27, 28]. As data acquisition from liquid biop-

sies increases, we anticipate that DL models will eliminate
the need for manual selection and curation of discrimina-
tory features, as well as allowing for the combination of
multiple data types to enhance early cancer detection.

2.2 | Cancer diagnosis, classification, and
grading

CNN-based DL models that can accurately diagnose can-
cers, classify cancer subtypes, and identify cancer grades
using histopathology (e.g., whole slide imaging [WSI])
[29], radiology (e.g., CT and magnetic resonance imag-
ing [MRI]), and endoscopy images (e.g., esophagogastro-
duodenoscopy and colonoscopy) have been extensively
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reported, and most of them exhibit accuracies at least
equivalent to that of professionals.

For cancer diagnosis, CNN-based DL models have
exhibited exceptional accuracy in identifying malignant
tumors using histopathology slides [30-35]. In an inter-
national competition (CAMELYONI6) for diagnosing
breast cancer metastasis in lymph nodes using WSI with
hematoxylin-eosin (HE) staining, the best CNN algorithm
(a GoogLeNet architecture-based model) yielded an AUC
of 0.994, outperforming the best pathologist with an AUC
of 0.884 and in a more time-efficient manner [33]. DL
algorithms have also been adopted to predict the origin of
unknown primary cancers, which is extremely challenging
in cancer diagnosis [36].

The success of DL has also been consistently reported
in the diagnosis of malignant diseases using CT, MRI,
positron emission tomography-CT (PET-CT) scans [37-41],
and endoscopy [42-50]. Most recently, Yuan et al. [40] used
CT scans to develop a classifier using a three-dimensional
(3D) ResNet algorithm to predict occult peritoneal metas-
tasis in colorectal cancer with an AUC of 0.922, which
was substantially higher than that achieved via routine
contrast-enhanced CT diagnosis (AUC = 0.791). In another
work, Ke et al. [41] used MRI images from 4,100 patients
with nasopharyngeal carcinoma (NPC) to train and test a
self-constrained 3D DenseNet that could distinguish NPC
from benign nasopharyngeal hyperplasia with a reported
AUC 0of 0.95-0.97. As for endoscopy, in a multicenter study,
Luo et al. [43] developed a gastrointestinal Al diagnos-
tic system (GRAIDS) for the diagnosis of upper gastroin-
testinal cancers using a CNN-based model and tested it
in a prospective study involving six different tiered hospi-
tals. While the diagnostic accuracies varied from 0.915 to
0.977 among the six hospitals, they were similar to those of
expert endoscopists and superior to those of non-experts,
thus indicating the potential benefit in improving the diag-
nostic effectiveness of community-based hospitals. All in
all, such models, if their performance is confirmed in mul-
ticenter prospective studies, may play an important role in
making cancer diagnosis more accurate, especially in local
hospitals that lack experts.

Aside from dichotomous diagnosis, DL models are
used for more challenging cancer classifications and grad-
ing tasks. Coudray et al. [51] developed DeepPATH, an
Inception-v3 architecture-based model, to classify WSI for
lung tissues into three classes (normal, lung adenocarci-
noma, and lung squamous cell carcinoma) with a reported
AUC of 0.97. The CNN was also successfully trained to per-
form automated Gleason grading of prostate adenocarci-
noma, with a 75% agreement between the algorithm and
pathologists [52]. Cancer grading can also be done using
radiology images. Zhou et al. [53] developed a DL approach
(based on SENet and DenseNet) to predict liver cancer

grades (low versus high) using MRI images with a reported
AUC of 0.83. Overall, these studies show the promising
application of Al in cancer classification and grading, with
performances equal to trained experts.

From a technical and practical aspect, these DL-based
diagnostic tools integrate features for fine-tuning and
enhancing performance, which simplifies the pipelines of
conventional computer-aided diagnosis and reduces false
positive rates [54]. Although preclinical assessments of Al
tools have paved the way for clinical trials to improve the
accuracy and efficiency of cancer diagnoses, the robustness
and generalizability of DL models need to be improved
[55].

2.3 | Predicting gene mutations in cancer
DL algorithms have also been used to characterize the
underlying genetic and epigenetic heterogeneity using
histopathology images. Using HE-stained WSI of lung can-
cer, a CNN was trained to predict six different genetic
mutations with an AUC from 0.733 to 0.856 as measured
on a held-out testing cohort [51]. Using WSI, the CNN
model (Inception-V3) also identified common mutations
in liver cancer with AUCs >0.71 [56]. Using WSI, DL tools
have also been developed for the prediction of whole-
genome duplications, chromosome arm gains and losses,
focal amplifications and deletions, and gene variations for
pan-cancer [57, 58]. Expanded from predicting mutations
in individual genes, DL models have been used to predict
mutational footprints, such as microsatellite instability
(MSI) status and tumor mutational burden (TMB) status,
which are the most important biomarkers for responses
to checkpoint immunotherapy. Most recently, Yamashita
et al. [59] trained and tested MSINet, a transfer learning
model based on MobileNetV2 architecture, to classify MSI
status in HE-stained WSI in a colorectal cancer cohort of
100 primary tumors and reported an AUC of 0.93. Using
multiple instances of learning-based DL, Cao et al. [60]
also tried to classify MSI status using WSI in a colorectal
cancer cohort and achieved an AUC of 0.85. In a work to
classify TMB status using WSI, Wang et al. [61] compared
eight different DL models and reported GoogLeNet as the
best model for gastric tumors (AUC = 0.75) and VGG-19 as
the best for colon cancer (AUC = 0.82). The results indi-
cate that features from histopathology images can be used
to predict genetic mutations in cases in which obtaining
tumor specimens for mutation analysis are not possible.
Notably, it may be more cost-effective than direct sequenc-
ing.

In addition to histopathology images, identifying cancer
mutations using noninvasive radiology images such as
CT or MRI scans has been explored. For example, the
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prediction of EGFR mutation status in non-small cell
lung cancer (NSCLC) can be achieved using CT and
PET/CT scans using DL models both with AUCs >0.81
[62, 63]. In another work, Shboul et al. [64] introduced
a ML approach to predict O6-methylguanine-DNA
methyltransferase methylation, isocitrate dehydrogenase
mutation, 1p/19q co-deletion, alpha-thalassemia/mental
retardation syndrome X-linked mutation, and telomerase
reverse transcriptase mutation of low-grade gliomas with
radiomics, and achieved AUCs from 0.70 to 0.84. CT scans
have also been used to predict TMB status in NSCLC (AUC
= 0.81). The results were promising, but understanding
what features are being learned by the CNN models to
determine mutation status remains under researched.

3 | PATIENT PROGNOSIS, RESPONSE
TO THERAPY, AND PRECISION
MEDICINE

Precision medicine refers to the tailoring of treatment to
individual patients [65]. It aims to classify individuals into
subgroups with differences in their disease prognosis or
in their response to a specific treatment and thus make
therapeutic interventions for those who will benefit and
sparing expense and side effects for those who will not.
DL algorithms are used to automatically extract features
from medical data to build models that can accurately pre-
dict risk of tumor relapse and patients’ responses to treat-
ments [66-68]. Based on the prediction results, physicians
can provide more precise and suitable treatments.
Immunotherapy drugs have been approved for the treat-
ment of metastatic melanoma, lung cancer, and other
malignancies. However, more than 50%-80% of cancer
patients fail to respond to checkpoint inhibitor therapy.
Currently, response prediction for immunotherapies is
based on biomarkers of the immunogenic tumor microen-
vironment, such as programmed death-ligand 1 (PD-L1)
expression, TMB, MSI, and somatic copy number alter-
ations. However, these biomarker data were acquired via
a biopsy, which is invasive, difficult to perform longitudi-
nally, and limited to a single tumor region. Furthermore,
the predictive value of biomarkers may be limited. In the
KEYNOTE-189 clinical trial, immunotherapy with pem-
brolizumab combined with standard chemotherapy pro-
vided survival benefits for all patients regardless of their
PD-L1 expression [69]. To achieve the goal of precision
medicine, many researchers have established DL models
to predict patient biomarkers related to immunotherapy
using radiomics and pathomics data [70-73]. Johannet el
al. developed a pipeline that integrates DL on histology
specimens with clinical data to predict immunotherapy
response in advanced melanoma [72]. The results showed

that the classifier accurately stratified patients into respon-
ders and non-responders with an AUC of 0.80. Most excit-
ingly, Arbour et al. [74] developed a DL model that directly
predicts the best overall response and progression-free sur-
vival using radiology text reports for patients with NSCLC
treated with a programmed cell death protein-1 blockade.
These studies underscore the potential ability of Al to
identify individuals who may benefit from immunother-
apy without the aforementioned negatives of biopsies.

In addition to immunotherapy, other therapies (e.g.,
targeted therapy and neoadjuvant chemotherapy [NAC])
have achieved prominent clinical success in specific pop-
ulations, driving the need for accurate predictive assays to
inform patient selection. This requirement can be met by a
combination of big data and AI. Al predictive models can
identify imaging phenotypes that are associated with a tar-
geted mutation. This Al-based approach has the advantage
of identifying the mutation status repeatedly and nonin-
vasively. This approach was supported by a PET/CT-based
DL model for patients with NSCLC, which uses radiomic
features to discriminate EGFR-mutant types from wild-
type with an AUC of 0.81 [62]. Moreover, with a large
amount of radiomics data, DL algorithms have shown
power in estimating responses to NAC for patients with
breast cancer [75, 76], rectal cancer [77], and NPC [78, 79].
After NAC, about 35% of patients with locally advanced
breast cancer achieved a pathologic complete response
(pCR), which was associated with improved survival [80].
Whereas, a poor response to NAC was associated with
an adverse prognosis [81]. Therefore, the accurate predic-
tion of treatment response is warranted, which can avoid
unnecessary toxicity and delays to surgery. Using pretreat-
ment MRI from patients with locally advanced breast can-
cer, Ha et al. [76] trained a CNN to predict pCR, and no
response/progression after NAC, reaching an overall accu-
racy of 88%. In addition to predicting patient responses to
therapies, AI now offers additional avenues to adjust drug
dosage for single or combinational therapies for individual
patients in a dynamic manner using patient-specific data
collected over time [82].

4 | DEEP LEANING IN RADIOTHERAPY
Radiotherapy constitutes an integral modality in the treat-
ment of cancers with half of patients receiving it. The
image-, data-driven and quality assurance frameworks of
radiotherapy provide an excellent foundation for the devel-
opment of Al algorithms and their integration into radio-
therapy workflows. There has been an acute interest in
exploring Al to facilitate radiotherapy for target volume
and organs at risk (OAR) delineation and automated treat-
ment planning [83].
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Target volume and OAR delineation is a labor-intensive
process, and its accuracy depends heavily on the experi-
ence of the radiation oncologists. CNN-based semantic seg-
mentation has been consistently established as a state-of-
the-art tool in the automated delineation of OAR in head
and neck [84-88], thorax [89], abdomen [90, 91] and pelvic
regions [92]. OAR is usually delineated on CT images, and
the runtime for each patient lasts only several seconds.
From these published studies, the segmentation accuracies
of organs with large volumes, rigid and regular shapes were
rather high, such as those of the mandible (Dice similar-
ity coefficient [DSC] = 0.94), parotid (DSC = 0.84), kid-
ney (DSC = 0.96), and liver (DSC = 0.97), while for organs
with small volumes, movable and irregular shapes, the
segmentation accuracies decreased, such as those of the
optic nerve (DSC = 0.69), chiasm (DSC = 0.37), intestine
(DSC = 0.65), and esophagus (DSC = 0.83). Of note, pre-
liminary studies have shown that differences in dosimetry
parameters between automatic and manual delineations
were small, and automatic segmentations performed suf-
ficiently well for treatment planning purposes [87, 93].

Given the variety of shapes, locations, and internal mor-
phologies of tumors, automated contouring of tumor tar-
gets by DL is still a great challenge. Nonetheless, automatic
contouring speeds up the process and improves consis-
tency among radiation oncologists. Automated delineation
of the gross tumor volume (GTV) and clinical target vol-
ume (CTV) have been investigated in many cancers, such
as nasopharyngeal [94], cervical [95], colorectal [92, 96],
lung [97] and breast cancers [98]. Lin et al. [94] first con-
structed an automated contouring tool for NPC by apply-
ing a 3D CNN model to MRI. In this independent test, they
found acceptable concordance between the Al tool and
human experts, with an overall accuracy of 79%. Moreover,
in a multicenter test involving eight radiation oncologists
from seven hospitals, the Al tool outperformed half of the
physicians and was equal to the other four. With AT’s assis-
tance, substantial improvement in the contouring accu-
racy among five of the eight physicians as well as signif-
icant reductions in the interobserver variation (by 54.5%)
and contouring time (by 39.4%) were observed.

Another important application of Al in radiotherapy is
automated treatment planning. Radiotherapy planning is
a complex process that involves “trial-and-error” based on
physicists’ subjective priorities to achieve specific dosime-
try objectives. As a result, treatment planning quality
depends heavily on the experience of the clinical physi-
cists. While automated planning using knowledge-based
techniques, such as RapidPlan in Eclipse, have improved
the consistency of planning quality [99, 100], these meth-
ods are suboptimal since they cannot provide estimations
of patient-specific achievable dose distributions. Recently,
DL-based methods have become a promising approach

for individualized 3D dose prediction and optimization
[101-104]. Fan et al. [105] first developed an automated
treatment planning strategy based on ResNet to achieve an
accurate 3D dose prediction and voxel-by-voxel dose opti-
mization for head and neck cancers. The results showed no
significant difference between the predicted and real clin-
ical plans for most clinically relevant dosimetry indices.
More importantly, with this strategy, patients with differ-
ent prescription doses can be learned and predicted in a
single framework.

Other applications of AI in radiotherapy include
the prediction of radiation-induced toxicities [106-108],
image reconstruction [109-111], synthetic CT generation
[112-114], image registration [115-117], and intra- and inter-
fraction motion monitoring [118-120]. In summary, Al
has the potential to improve the accuracy, efficiency and
quality of radiotherapy. Furthermore, MRI-only radiother-
apy [121] and real-time adaptive radiotherapy [109] could
be achieved with the implementation of effective and
efficient automated segmentation, image processing, and
automated treatment planning tools based on DL, which
are significantly faster than standard approaches.

5 | DL IN CANCER RESEARCH

DL approaches have been applied in various aspects
of cancer research, including investigating biological
underpinnings, developing anti-cancer therapeutics, and
implementing randomized controlled trials (RCTs). To
uncover the biological mechanisms of cancer, studies have
used DL to analyze the relationship between genotypes
and phenotypes with a large number of achievements
already reported. In a recent study leveraging DL algo-
rithms, the role of F-box/WD repeat-containing protein 7
(Fbw?7) in cancer cell oxidative metabolism was discovered
via gene expression signatures from The Cancer Gene
Atlas dataset [122]. Watson for Genomics also recognized
genomic alterations with potential clinical effects that
were not identified by the conventional molecular tumor
boards across a spectrum of cancer types [123]. Identifica-
tion of these genetic variants not only pinpoints relevant
biological pathways but also suggests targets for drug
discovery. ML methods have also been employed to accel-
erate the early discovery of potential anti-cancer agents
[124-129]. Valeria et al. [129] reported the first perturbation
model combined with ML to enable the design and pre-
diction of dual inhibitors cyclin-dependent kinases 4 and
human epidermal growth factor receptor 2 with sensitivity
and specificity higher than 80%. Another key aspect of
drug discovery is the determination of compounds with
good on-target effects and minimal off-target effects. Zha-
voronkov et al. [130] developed a DL model and discovered
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powerful inhibitors of the discoidin domain receptor 1
(DDRI, a kinase target implicated in multiple cancers) in
just 21 days versus conventional timelines of approximately
one year. All in all, DL Al is accelerating drug discovery
and is already successfully predicting drug behavior.

The adoption of novel cancer treatments is dependent
on successful RCTs. However, successful recruitment of
appropriate patients into these trials is regarded as one of
the most challenging aspects. Matching complicated eli-
gibility criteria to potential subjects is a tedious, labor-
intensive, and difficult task [131]. To automate this, Has-
sanzadeh et al. [132] used natural language processing
and a Multi-Layer Perceptron model to extract meaningful
information from patient records to help collate evidence
for better decision making on the eligibility of patients
according to certain inclusion and exclusion criteria,. It
achieved an overall micro-F1 score of 84%. Selecting top-
enrolling investigators is also essential for the efficient
execution of RCTs. To facilitate the automation of selec-
tion, Gligorijevic et al. [133] proposed a DL approach to
learn from both investigator- and trial-related heteroge-
neous data sources and rank investigators based on their
expected enrollment performance in new RCTs. Here, DL
shows the potential to optimize clinical cancer trials.

6 | CHALLENGES AND FUTURE
IMPLICATIONS

While Alis widely investigated in oncology, studies need to
be performed to translate DL models into real-world appli-
cations. Barriers to improving doctors’ acceptance and per-
formance of clinically applied DL include the generaliz-
ability of its applications, the interpretability of algorithms,
data access, and medical ethics.

6.1 | Generalizability and real-world
application

Because of the great heterogeneity in medical data across
institutions, the performance of DL models tends to
decrease when applied at different hospitals, therefore,
external validation sets may be required to confirm their
performance [55]. Additionally, the extremely large num-
ber of parameters in DL results in a high likelihood of over-
fitting and limiting of the generalizability across different
populations [134]. More importantly, in clinical settings,
to make a precise decision, oncologists need to consider
a variety of data, including clinical manifestations, lab-
oratory examinations, imaging data, and epidemiological
histories. However, most recent studies have only adopted
one type of data (such as imaging) as the input model.

To mimic real clinical settings, a multimodal DL model
incorporating the aforementioned information plus imag-
ing data needs to be constructed in future studies.

6.2 | Interpretability: the black-box
problem

DL has been criticized for being a “black box” that does
not explain how the model generates outputs from given
inputs. The large number of parameters involved makes
it difficult for oncologists to understand how DL models
analyze data and make decisions. However, some efforts
have been made to make this black box more transpar-
ent [135, 136]. For example, the heat map-like class activa-
tion algorithm, visualizes which image regions are taken
into account with DL models when making decisions and
to what degree. These innovative studies render DL tools
more interpretable and applicable in clinical oncology set-
tings.

6.3 | Data access and medical ethics

DL studies not only face technological challenges but also
resource and ethical challenges. The power and believabil-
ity of DL relies on a large amount of training data. Lim-
ited data may cause overfitting, yielding an inferior per-
formance in an external test cohort [134]. Given the con-
cerns of protecting patient information, medical data are
often the property of individual institutions, and there is
a lack of data-sharing systems to link institutions. For-
tunately, this obstacle is beginning to be overcome, with
privacy-preserving distributed DL (DDL) and multicen-
ter data-sharing agreements [137-139]. DDL provides a
privacy-preserving solution to enable multiple parties to
jointly learn via a deep model without explicitly sharing
local datasets. The Cancer Imaging Archive, which col-
lects clinical images from different institutes and hospitals,
also provides a good example of data sharing and may pro-
mote radiomic studies [140]. In the future, an authorita-
tive framework should be developed by governments and
enterprises to realize secure data sharing. In addition, sev-
eral ethical issues need to be addressed prior to the clinical
implementation of DL tools. First, the degree of supervi-
sion required from physicians should be determined. Sec-
ond, the responsible party for incorrect decisions made by
DL tools should also be determined.

7 | CONCLUSIONS

DL is a newly developed Al method in oncology which
is rapidly progressing. With the growth of high-quality
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medical data and the development of algorithms, DL meth-
ods have great potential in improving the precision and
efficiency of cancer diagnosis and treatment. Moreover,
the positive attitude of the FDA towards Al medical devices
further increases the prospect of DL’s practical application
in oncology. For the realization of clinical implementation,
future researches should focus on the reproducibility and
interpretability to make DL methods more applicable.
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