
fcell-09-707938 July 16, 2021 Time: 11:42 # 1

ORIGINAL RESEARCH
published: 16 July 2021

doi: 10.3389/fcell.2021.707938

Edited by:
Liang Cheng,

Harbin Medical University, China

Reviewed by:
Leyi Wei,

Shandong University, China
Shihua Zhang,

Wuhan University of Science
and Technology, China

*Correspondence:
Yongchun Zuo

yczuo@imu.edu.cn

†These authors share first authorship

Specialty section:
This article was submitted to

Molecular Medicine,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 11 May 2021
Accepted: 10 June 2021
Published: 16 July 2021

Citation:
Zhou J, Bo S, Wang H, Zheng L,

Liang P and Zuo Y (2021)
Identification of Disease-Related

2-Oxoglutarate/Fe (II)-Dependent
Oxygenase Based on Reduced Amino

Acid Cluster Strategy.
Front. Cell Dev. Biol. 9:707938.
doi: 10.3389/fcell.2021.707938

Identification of Disease-Related
2-Oxoglutarate/Fe (II)-Dependent
Oxygenase Based on Reduced
Amino Acid Cluster Strategy
Jian Zhou1†, Suling Bo2†, Hao Wang1, Lei Zheng1, Pengfei Liang1 and Yongchun Zuo1*

1 State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner
Mongolia University, Hohhot, China, 2 College of Computer and Information, Inner Mongolia Medical University, Hohhot,
China

The 2-oxoglutarate/Fe (II)-dependent (2OG) oxygenase superfamily is mainly responsible
for protein modification, nucleic acid repair and/or modification, and fatty acid
metabolism and plays important roles in cancer, cardiovascular disease, and other
diseases. They are likely to become new targets for the treatment of cancer and other
diseases, so the accurate identification of 2OG oxygenases is of great significance.
Many computational methods have been proposed to predict functional proteins
to compensate for the time-consuming and expensive experimental identification.
However, machine learning has not been applied to the study of 2OG oxygenases.
In this study, we developed OGFE_RAAC, a prediction model to identify whether a
protein is a 2OG oxygenase. To improve the performance of OGFE_RAAC, 673 amino
acid reduction alphabets were used to determine the optimal feature representation
scheme by recoding the protein sequence. The 10-fold cross-validation test showed
that the accuracy of the model in identifying 2OG oxygenases is 91.04%. Besides, the
independent dataset results also proved that the model has excellent generalization
and robustness. It is expected to become an effective tool for the identification of
2OG oxygenases. With further research, we have also found that the function of 2OG
oxygenases may be related to their polarity and hydrophobicity, which will help the
follow-up study on the catalytic mechanism of 2OG oxygenases and the way they
interact with the substrate. Based on the model we built, a user-friendly web server
was established and can be friendly accessed at http://bioinfor.imu.edu.cn/ogferaac.

Keywords: 2-oxoglutarate/Fe (II)-dependent oxygenase, reduced amino acid cluster, machine learning, anova,
incremental feature selection, 10-fold cross-validation test

INTRODUCTION

2-Oxoglutarate/Fe (II)-dependent (2OG) oxygenases (EC:1.14.11), generally using nonheme iron
as an active-site cofactor, promote oxidative decarboxylation of the substrate to produce carbon
dioxide and succinic acid (Hausinger, 2004; Hewitson et al., 2005; Islam et al., 2018). 2OG
oxygenases, which can catalyze many different oxidation reactions, are a superfamily with members
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widely distributed in animals, plants, and microorganisms.
In animals, their catalytic range includes hydroxylation and
N-demethylation proceeding via hydroxylation; in plants and
microbes, they affect a wider range, including hydroxylation, ring
formations, cleavage, oxidation, rearrangements, desaturations,
and halogenations (Farrow and Facchini, 2014; Kawai et al.,
2014). The proteins of this superfamily can be divided into 2OG
oxygenase domain-containing oxygenases and JmjC domain-
containing oxygenases (Jia et al., 2017). Figure 1 is a schematic
diagram of the structure of 2OG oxygenases.

Due to the diversity of 2OG oxygenases and the wide range
of binding substrates, these oxygenases play an important role
in physiology and have high therapeutic value and therapeutic
potential as targets in cancer and many other diseases (Rose
et al., 2011). For example, the protein containing the JmjC
domain (JMJD6) is located in the nucleus that catalyzes lysine
hydroxylation and arginine demethylation of histone and non-
histone peptides (Chang et al., 2007; Liu et al., 2013). JMJD6
promotes cell proliferation and migration in vitro and accelerates
tumor growth in vivo, so it may become an attractive target
for a new generation of anticancer drugs (Lin et al., 2006; Lee
et al., 2012). Prolyl 4-hydroxylase (P4H) plays a vital role in the
synthesis of collagen and the regulation of oxygen homeostasis.
Collagen P4Hs are considered to be attractive targets for drug
inhibitors and involved in the treatment of fibrotic diseases and
cancer metastasis (Vasta and Raines, 2018). Hypoxia-inducible
transcription factor-prolyl 4-hydroxylase inhibitors are believed
to have beneficial effects in the treatment of diseases such
as myocardial infarction, stroke, peripheral vascular disease,
diabetes, and severe anemias (Myllyharju, 2008; Liao and
Zhang, 2020). ALKB homologs (ALKBH) homologs can regulate
the physiological and pathological processes of cardiovascular
diseases (CVDs), which have great potential in the development
of CVD drugs and are expected to become a potential target
for the treatment of CVD (Xiao et al., 2020). The change in
the catalytic activity or expression level of lysine demethylases
(KDMs) is closely related to many diseases, including cancer
genesis and progression, neurological disorders, inflammatory
and immune disorders, metabolic diseases, and regenerative
diseases. Modulators/inhibitors of KDMs may be used as
new treatments for cancer and other diseases (Arifuzzaman
et al., 2020). Therefore, it is particularly meaningful to predict
2OG oxygenases and find more potential 2OG oxygenases.
Since the identification of 2OG oxygenase is time-consuming
and expensive, machine learning is an effective and fast
method to predict it.

In the past, many machine learning methods for the prediction
of metal ion-binding proteins have achieved excellent results.
For example, Lin et al. (2006) applied the sequence information
used by support vector machine (SVM) to predict the metal
ion-binding protein and got a relatively marvelous prediction
result. Mohan et al. (2010) used a set of physicochemical
parameters of metal ion-binding proteins encoded by the
three genes CzcA, CzcB, and CzcD as the training set of the
supervised classifier, establishing a model to identify metal
ion-binding proteins from unknown proteins. Valasatava et al.
(2016) developed MetalPredator, a web server used to predict

iron–sulfur cluster-binding proteomes, and it featured an
excellent performance in terms of precision and recall. Many
studies have also achieved good results in the prediction of metal
ion-binding sites, including iron ion-binding sites (Liu and Hu,
2011; Liou et al., 2014), zinc ion-binding sites (Shu et al., 2008;
Chen et al., 2013; Yan et al., 2019), copper ion binding sites (Levy
et al., 2009; Brylinski and Skolnick, 2011). The above indicate
that machine learning is suitable for the application of metal ion-
binding proteins (Valasatava et al., 2016). Not only that, studies
have shown that using the reduced amino acid cluster (RAAC)
strategy to predict the types of proteins can reduce noise and
achieve higher accuracy (Zheng et al., 2019). In the prediction
of human and nonhuman enzymes (Wang H. et al., 2021),
ion channel-targeted conotoxins (Sun et al., 2020), plasmodium
secretory protein (Zhang et al., 2020), and defensin peptides
(Zuo et al., 2019), the method of reduced amino acid has shown
superior performance.

In this study, we established a prediction model for 2OG
oxygenases based on SVM, which can effectively identify 2OG
oxygenases. A new feature representation scheme (amino acid
reduction cluster) was involved in this work. The RAAC strategy
can greatly decrease the complexity of protein sequences and
extremely reduce the use of computer memory (Zuo et al.,
2017; Zheng et al., 2019). The workflow of constructing the
OGFE_RAAC is shown in Figure 2. Firstly, an objective
dataset was established, which contains 734 2OG oxygenases
and 385,381 non-2OG oxygenases from the InterPro database.
Subsequently, reduced amino acid composition combined with
K-mer strategy was used to represent sequence features, and
the optimal one was selected from 673 reduction schemes (Zuo
et al., 2015). At the same time, we obtained the best feature
combination through analysis of variance (ANOVA) combined
with incremental feature selection (IFS) and applied SVM to
establish the model. The results of 10-fold cross-validation and
independent test set showed that OGFE_RAAC could accurately
predict 2OG oxygenases.

MATERIALS AND METHODS

Dataset
The 2OG oxygenase superfamily can be classified into 2OG
oxygenase domain-containing oxygenases and JmjC domain-
containing oxygenases, so we collected all the verified 734
proteins of these two domains in the IPR number (IPR005123 and
IPR003347) of the InterPro public database as a positive sample.
Concurrently, 385381 protein data verified by SwissProt were
gathered as negative samples, which is the manual annotation
and review part of UniProt. Then, CD-HIT (Huang et al., 2010)
was used to remove sequences with a similarity of more than 50%
(Zou et al., 2020), and 480 samples are selected as the training set
(Fu et al., 2012). We chose 150 samples from the rest as the test
set, and the dataset was named 2OG-SwissProt. For the purpose
of getting a better model, we also used iron-binding protein
as a negative sample to construct a dataset. We acquired 593
iron-binding proteins (GO:0005506, 2OG oxygenase proteins
removed) from the InterPro public database and processed
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FIGURE 1 | Schematic diagram of the structure of 2-oxoglutarate/Fe (II)-dependent (2OG) oxygenase.

FIGURE 2 | The workflow of OGFE_RAAC predictor.

them in the same way as the 2OG-SwissProt dataset to obtain
471 training set samples and 159 test set samples; the dataset
was named 2OG-Fe.

For further research, we manually extracted the domain
sequences of 2OG oxygenase and iron-binding proteins. The
processing method is the same as the above; in order to
better verify the prediction results, we used CD-HIT processing
sequence similarity less than 50% as the training set and the
rest as the independent test set. Among them, 1,036 samples
constitute an independent test set, 621 positive samples and
415 negative samples; 283 samples constitute a training set, 113

positive samples and 170 negative samples. This dataset was
named 2OG-domain (Table 1).

Reduce Protein Sequence
Under normal circumstances, protein is composed of 20
natural amino acids. We combine amino acids with similar
characteristics based on the physicochemical properties and
atomic arrangement of amino acids. For instance, using fuzzy
clustering technology and matrices cluster amino acids and
interpret the sequence in a new encoding method (Georgiou
et al., 2009; Zuo and Li, 2009). The strategy of RAACs can
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TABLE 1 | Data composition of each dataset.

Dataset Group Training set Test set

2OG-SwissProt Positive 240 75

Negative 240 75

2OG-Fe Positive 240 75

Negative 231 84

2OG-domain Positive 113 621

Negative 170 415

effectively reduce the complexity of the sequence and improve
computational efficiency. In the study, we used 673 amino
acid reduction schemes generated by 74 types to predict 2OG
oxygenases, and each type has a reduced size of 2–19 (Zuo et al.,
2019; Zheng et al., 2020).

Extract Features Based on K-mer
The typical K-mer (N-peptide) composition can effectively dig
out the detailed information of the amino acid composition of
the sequence (Zhu et al., 2019; Jaillard et al., 2020). We use K-mer
(K = 1, 2, 3) to extract amino acid sequence information. Due
to the limited memory, the maximum K value is 3, and a total
of 20K features can be obtained according to the original amino
acid composition. The composition of K-mer (K = 2) can be
expressed as follows:

P = R1R2R3 · · ·RL−1RL (1)

F =
[
d1, d2, · · · d400

]T (2)

Here, Ri represents the i-th residue of the 2OG oxygenases. L
represents the total length of the amino acid sequence. di (i = 1,
2,..., 400) is the i-th dipeptide in the 400-amino acid combination,
and T means transposition operator. The di can be calculated as
follows:

di = ni
/∑400

i =1 ni (3)

Here, ni denotes the number of the i-th dipeptide. Combined with
RAAC strategy, the feature extraction method can be expressed as
follows:

F =
[
P1

1,1, P
2
1,2, . . . , P

k
i,j, . . . , P

N
T,C

]
(4)

where Pki,j denotes the method of the N-peptide with different
RAAC descriptors (N-peptide). N denotes the N-peptide. T
denotes the type of different amino acid alphabets, and C denotes
the cluster of the reduced amino acid alphabet. The parameters of
the above equation can be limited as follows:

1 ≤ k ≤ N,N = [1, 2, 3]

1 ≤ i ≤ T,T = [1, 2, . . . , 74]

1 ≤ j ≤ C,C = [2, 3, . . . , 19]

(5)

Support Vector Machine
Support vector machine is a machine learning model that
classifies data according to supervised learning methods
and has been widely used in bioinformatics (Beer, 2017;

Huang et al., 2018; Manavalan et al., 2018; Meng et al., 2020;
Tahir and Idris, 2020). There are four types of kernel function,
including linear functions, polynomial functions, S-shaped
functions, and radial basis functions (RBFs). In the past
predictions of proteins, the RBF kernel function had better
performance, and we have verified that the RBF kernel function
has better performance in our model through the calculation
and comparison of the four kernel functions. Accordingly, we
used the SVM package with RBF kernel for the classifier, which
can be obtained from https://www.csie.ntu.edu.tw/~cjlin/libsvm
(Chang and Lin, 2011). The libsvm package provides a grid
search program to optimize the parameters C and γ. The kernel
parameter γ and the regularization parameter C are used to
adjust the SVM model to obtain the best performance. The
selection ranges of C and γ are as follows:

2−5 <C<215 (6)

2−15<γ <23 (7)

Feature Screening
The initial features extracted by K-mer are exclusive features, not
the optimal combination of features (Zou et al., 2016; He et al.,
2020). ANOVA is a popular feature selection method that can
help us measure the weight value of each feature (Saeys et al.,
2007; Tang et al., 2018). Then, we used IFS to determine the
dimensionality of the best feature set according to the feature
weights obtained by the ANOVA. The ANOVA equations are as
follows:

F =
S2
x
S2
y

(8)

S2
x =

1
n− 1

n∑
i=1

(xi − x̄)2 (9)

S2
y =

1
m− 1

m∑
i=1

(
yi − ȳ

)2 (10)

where F is the variance value of the feature. S2
x is the

sample variance between groups. S2
y denotes the sample

variance within groups.

Performance Evaluation
In statistical prediction, the following three cross-validation
methods are often used to examine a predictor for its effectiveness
in practical application: independent dataset test, subsampling
(K-fold cross-validation) test, and jackknife test. However, among
the three cross-validation methods, the jackknife test is deemed
the least arbitrary that can always yield a unique result for
a given benchmark dataset and hence has been increasingly
used and widely recognized by investigators to examine the
accuracy of various predictors (Chou and Shen, 2008; Chou,
2011; Chou et al., 2012; Zhang et al., 2021). However, since
the current study would involve feature selection as described
above, to reduce the computational time, the 10-fold cross-
validation test and independent dataset test would be adopted
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as done by many investigators using SVM as the prediction
engine. The performance can be measured in term of Sensitivity
(Sn), Specificity (Sp), F1 score, Matthew’s correlation coefficient
(MCC), and Accuracy (Acc; Li et al., 2020; Shen and Zou, 2020;
Yang et al., 2021), which are expressed as follows:

Sn =
TP

TP + FN
(11)

Sp =
TN

TN + FP
(12)

F1 score =
2TP

2TP + FP + FN
(13)

Acc =
TP + TN

TP + FN + TN + FP
(14)

MCC =
TP × TN − FP × FN

√
(TP + FP) (TN + FN) (TP + FN) (TN + FP)

(15)

where TP, TN, FP, and FN represent true-positive, true-negative,
false-positive, and false-negative samples, respectively.

FIGURE 3 | Density distribution diagram of different K value accuracy rates. (A–C) are the density distribution diagrams of the 2OG-SwissProt set, 2OG-Fe set, and
2OG-domain set at different K values in 673 reduction schemes.
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RESULTS

Predictive Performance of Different
Reducing Amino Acid Cluster
To obtain the optimal amino acid reduction scheme and the
appropriate K value (K = 1, 2, 3), we calculated the accuracy
of the 673 reduction schemes mentioned in RAACBook (Zheng
et al., 2019) with the different K values. We found that all three
models showed the best performance at K = 3, and most of the
reduction schemes had higher accuracy when K = 3 (Figure 3).
We guessed that there would be more features when K = 3, and
they would better reflect the properties of the protein and get a
more accurate model.

After confirming that the model has better performance when
K = 3, we then selected the best scheme from 673 RAAC
schemes to construct the model. In the 2OG-SwissProt model, we
tested each size of each reduction type and compared different
reduction sizes of different reduction types (Figure 4A). We
found that when t = 33 (Table 2), s = 15 (t represents the
t-th reduction type in RAACBook; s represents the size of the
RAAC), the highest accuracy rate is 83.75% (Figure 4B). In the
prediction of the 2OG-Fe dataset, we were pleasantly surprised to
find that the highest accuracy rate also appears in the reduction
type 33, and the highest accuracy rate is 90.04% when s = 16
(Supplementary Figure 1B). There is also a very high accuracy
rate at s = 15, reaching 88.76% (Supplementary Figure 1A).
The reduction method of type 33 uses a database of aligned
protein structures to propose a new clustering method based

on the substitution scores, which aggregates 20 amino acids
in two groups, namely, the hydrophobic groups and the polar
groups (Li and Wang, 2007). Therefore, we speculated that
the function of 2OG oxygenases may be related to its polarity
and hydrophobicity.

To further prove that polarity and hydrophobicity may be
related to the function of 2OG oxygenases, we manually extracted
the 2OG oxygenase domain and JmjC domain sequences
and other iron-binding domain sequences for prediction.
Protein functions mainly through its domain region, and 2OG
oxygenases also bind Fe(II) and 2-oxoglutarate in their domain
position to perform their functions. Therefore, the region outside
the domain may be noise information for feature extraction, and
only using the domain sequence to extract features can better
reflect the function of 2OG oxygenases (Shen and Zou, 2020).
The result is the same as we expected, when t = 33 and s = 15,
the highest accuracy rate is obtained (Supplementary Figure 1B).
The same result is obtained with the complete sequence, which
further proves that the polarity and hydrophobicity may be
related to the function of 2OG oxygenases.

The functional domain of 2OG oxygenases contains Fe2+-
binding sites and α-ketoglutarate-binding sites, and their
amino acid composition is almost completely conserved. The
Fe2+-binding motif (HXD-H) and α-KG-binding motif (N-
Y-R-R) of the ALKBH family are entirely conserved in the
homologs (Bjornstad et al., 2011; Fedeles et al., 2015; Alemu
et al., 2016; Xu et al., 2021), and other 2OG oxygenases have
similar structures (Bleijlevens et al., 2008; Islam et al., 2018;

FIGURE 4 | Performance evaluation of different reduced amino acid clusters. (A) Heat map of accuracy distribution of different reduced amino acid clusters. (B) The
accuracy rate of the reduced amino acid cluster (t = 33, s = 15) with the highest accuracy rate reaches 83.75%. (C) The incremental feature selection (IFS) curve
shows that prediction accuracy is 91.46% when using 812 optimal features based on the tripeptide combination (t = 33, s = 15).
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TABLE 2 | Cluster size of reduced amino acid alphabet of type 33.

Size Reduced amino acid cluster

2 STANDGRQEKHPIVLMWYF-C

3 STANDGRQEKHP-IVLMWYF-C

4 STANDG-RQEKHP-IVLMWYF-C

5 STAND-G-RQEKHP-IVLMWYF-C

6 STAND-G-RQEK-HP-IVLMWYF-C

7 STA-ND-G-RQEK-HP-IVLMWYF-C

8 STA-ND-G-RQ-EK-HP-IVLMWYF-C

9 STA-ND-G-RQ-EK-HP-IVLM-WYF-C

10 ST-A-ND-G-RQ-EK-HP-IVLM-WYF-C

11 ST-A-ND-G-RQ-EK-H-P-IVLM-WYF-C

12 ST-A-N-D-G-RQ-EK-H-P-IVLM-WYF-C

13 ST-A-N-D-G-RQ-EK-H-P-IV-LM-WYF-C

14 S-T-A-N-D-G-RQ-EK-H-P-IV-LM-WYF-C

15 S-T-A-N-D-G-RQ-EK-H-P-IV-L-M-WYF-C

16 S-T-A-N-D-G-RQ-E-K-H-P-IV-L-M-WYF-C

17 S-T-A-N-D-G-RQ-E-K-H-P-IV-L-M-WY-F-C

18 S-T-A-N-D-G-R-Q-E-K-H-P-IV-L-M-WY-F-C

19 S-T-A-N-D-G-R-Q-E-K-H-P-I-V-L-M-WY-F-C

Wang et al., 2021). They all combine Fe2+ and α-ketoglutarate
through conserved polar amino acid regions, which may
be the reason why polarity is an essential feature of 2OG
oxygenase identification. In addition, in the best reduction

TABLE 3 | The results of each evaluation index of the three models.

Model Acc
(%)

Sn
(%)

SP
(%)

MCC
(%)

F1 score
(%)

AUC
(%)

2OG-SwissProt 91.04 93.33 88.75 82.34 91.26 97.15

2OG-Fe 97.23 97.92 96.53 94.48 97.31 99.57

2OG-domain 97.87 98.23 97.65 95.60 97.37 99.89

Acc, accuracy; AUC, area under the curve; MCC, Matthew’s correlation coefficient;
Sn, sensitivity; and Sp, specificity.

scheme, Phenylalanine (F), Tryptophan (W), and Tyrosine (Y)
are recombined into a new letter, and these three amino acids are
all aromatic amino acids. We speculate that the function of 2OG
oxygenases may be related to the hydrophobicity of aromatic
amino acids and the unique properties of its benzene ring.

Feature Selection
Although we can get more features when K = 3, not every
feature can be helpful to the prediction of 2OG oxygenases; some
features may even become noise information and affect the final
result. Therefore, we used ANOVA combined with IFS to select
the best feature combination. Through 10-fold cross-validation,
the 2OG-SwissProt model achieves an optimal performance of
91.46% with 812 feature combinations (Figure 4C); the 2OG-
Fe model achieves an optimal performance of 96.61% with 1,181
feature combinations (Supplementary Figure 1C); 2OG-domain

FIGURE 5 | Feature set t-SNE clustering scatter diagram and receiver operating characteristic (ROC) curve diagram. (A–C) are the t-SNE clustering analysis
diagrams of the feature set after unreduced, reduced, and feature screening, respectively. 0 and 1 represent positive samples and negative samples, respectively.
(D–F) are the ROC curves of the three models 2OG-SwissProt, 2OG-Fe, and 2OG-domain, respectively.
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FIGURE 6 | Home page and results page of OGFE-RAAC web server.

model also achieves an optimal performance of 96.07% with
350 feature combinations (Supplementary Figure 1C). For more
clearly showing that the filtered features can better reflect the
nature of 2OG oxygenases, we used t-Distributed Stochastic
Neighbor Embedding (t-SNE) to visualize the feature sets after
unreduced, reduced, and feature screening in a 2D feature space
(Figures 5A–C). Obviously, the results show that the feature
set clustering effect after feature screening is better, and it can
effectively separate 2OG oxygenases from non-2OG oxygenases.

Performance Evaluation
We evaluated our model by 10-fold cross-validation to verify
that our model is effective (Table 3). At the same time, we drew
the receiver operating characteristic (ROC) curve through the
10-fold cross-validation (Figures 5D–F).

In order to further evaluate our predictor, we used an
independent test set to test 2OG-SwissProt, 2OG-Fe, and 2OG-
domain models. The 2OG-SwissProt model accurately predicts
143 samples out of 150 test set samples, and the accuracy rate is
95.33%. The 2OG-Fe model accurately predicts 149 samples out
of 159 test set samples, with an accuracy rate of 93.71%. The 2OG-
domain model accurately predicts 963 samples out of 1,036 test
set samples, with an accuracy rate of 92.95%. These show that our
predictor is effective and robust.

Web Server Guidance
For the purpose of other researchers to use our model more
conveniently, an easy-to-use web server was established to
implement our predictor, which can be freely accessed at http:
//bioinfor.imu.edu.cn/ogferaac. When you want to use our tool,
you need to click the “Service” module and then import the
FASTA protein sequence into the input box or upload the
button to upload your protein data. Meanwhile, according
to the different sequences you provide, you can also choose
different modules (2OG-SwissProt, 2OG-Fe, and 2OG-domain)
for prediction. After submitting the task, the website will

provide the corresponding forecast report, which will display the
forecast results and probability of each sequence in the form of
tables and flowcharts (Figure 6).

DISCUSSION

At present, the research on 2OG oxygenases is more in-depth,
and its many functions (such as demethylation) occupy an
important position in the research of diseases (Liu et al., 2019; Ao
et al., 2021). Based on RAAC strategy and SVM, the prediction
model of 2OG oxygenases is constructed. t-SNE results show
that RAAC can effectively reduce protein complexity, extract
conservative features hidden in noise information, and improve
prediction accuracy. OGFE_RAAC has strong robustness and
generalization to accurately predict 2OG oxygenases. We
anticipate that OGFE_RAAC can accurately and rapidly identify
2OG oxygenases based on peptide sequence and promote the
development of related drug research. Not only that, we also
found that the function of 2OG oxygenases may be related to
its hydrophobicity and polarity during the prediction process,
which also provides a new research idea for the future study
of 2OG oxygenases.
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