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Abstract: Ulcerative colitis is a type of non-specific inflammatory bowel disease with unclear etiology.
It is considered a progressive disease with risks of bowel motility disorders, anorectal dysfunction,
and even colorectal cancer. Commonly used diagnostic markers have poor specificity and cannot
predict the development of ulcerative colitis. In this study, 77 serum samples (31 patients, 46 healthy
controls) were analyzed using high performance liquid chromatography-quadrupole time-of-flight
mass spectrometry and 31 metabolites with significant level changes were found, revealing the
relationship of ulcerative colitis to disturbed glutathione metabolism and caffeine metabolism. In
addition, pyroglutamic acid, a biomarker of cervical cancer and gastric cancer, was identified with
elevated levels in the serum of ulcerative colitis patients. The role of pyroglutamic acid was further
analyzed, and the results indicated its positive correlation with the upregulation of inflammatory
factors and increased levels of phosphorylated histone H2AX (γH2AX) in IEC-6 cells, which are
related to DNA damage. All these results suggest that pyroglutamic acid is not only a biomarker for
distinguishing ulcerative colitis status, but that it is also a potential effective metabolite that promotes
the transformation of ulcerative colitis to colorectal cancer.

Keywords: pyroglutamic acid; ulcerative colitis; biomarker; inflammation; DNA damage

1. Introduction

Ulcerative colitis (UC) is a chronic inflammatory disorder of the colonic mucosa, which
is initiated in the rectum, that causes superficial damage to the bowel wall and extends
proximally to the colon [1–3]. The most common clinical symptoms are bloody diarrhea,
and the clinical course is alternated by periods of exacerbation and remission [4,5]. UC
is now considered a progressive disease with risks of bowel motility disorders, anorectal
dysfunction, and even colorectal cancer (CRC) [6]. The overall risk of colorectal cancer is
0.1% in the first decade followed by 2.9%, 6.7%, and 10.0% by the second, third, and fourth
decades after UC symptom onset [7,8]. Patients with longer durations of UC should be
especially vigilant about the increased risk of CRC.

At present, there is no suitable biomarker to distinguish UC status or predict the
progress of the disease. In the development of sensitive and convenient tools for diagnosis
and monitoring, various biomarkers have been identified, such as fecal calprotectin or
lactoferrin [9,10]. However, these biomarkers are not found exclusively in UC patients, and
can also be elevated in other inflammatory intestinal disorders, such as gastrointestinal
malignancies, nonsteroidal anti-inflammatory drug (NSAID) enteropathy, and diverticuli-
tis [11,12].
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Metabolomics is a new biological system research method developed after genomics
and proteomics. Metabolomics technology combines the acquisition of multiparameter
metabolic data with multivariate pattern recognition analysis. Through the analysis of
all the small molecular substances in the biological liquid and tissue, a comprehensive
exploration of metabolic changes and metabolomic networks of human diseases can be
revealed [13,14]. Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry
are commonly used as analytical platforms. Unlike targeted metabolomics, which only
focuses on specific substances, untargeted metabolomics collects as much information as
possible and has a wider coverage of substances. Disturbances found in local and systemic
metabolism can not only provide biomarkers for the clinical diagnosis of disease but may
also be new targets for the treatment of disease [15–18].

In this study, we performed an untargeted metabolomic profiling of serum samples of
UC patients and healthy controls using HPLC-Q-TOF/MS. Our aim was (1) to investigate
possible differences in metabolite levels between UC patients and healthy controls, (2)
to screen potential diagnostic biomarkers for UC, and (3) to validate the potential pro-
inflammatory and DNA damage activity of these biomarkers. This study presents potential
effective biomarkers for clinical diagnosis and progression prediction of UC and provides
targets for its clinical treatment.

2. Materials and Methods
2.1. Population and Study Design

Patients with UC were recruited at the Affiliated Hospital of Nanjing University of
Chinese Medicine. Clinical doctors confirmed UC diagnosis based on the results of a
medical history, physical examination, colonoscopy, and histopathology. Patients of both
sexes, aged between 18 and 65 years, diagnosed with ulcerative colitis, and who agreed to
participate in this study were recruited. Controls were matched by age and gender with
the UC patients.

Patients with other diseases that affect metabolic spectra and physiological indicators
were excluded. The detailed exclusion criteria were: (1) patients with bacillary dysen-
tery, amebic dysentery, chronic schistosomiasis, intestinal tuberculosis, infectious colitis,
ischemic enteritis, or radiation enteritis; (2) patients with severe complications such as
local stenosis, intestinal obstruction, intestinal perforation, toxic megacolon, massive hem-
orrhage, colon cancer, or rectal cancer; (3) patients with other primary and secondary
infectious diseases, such as cholecystitis and pneumonia; (4) patients with other serious
cardiovascular, liver, gallbladder, lung, kidney, or blood system diseases.

Thus, a total of 77 adult individuals, including 31 UC patients and 46 healthy controls,
participated in this study. The participants were asked to complete a questionnaire on
their medical history and Mayo scores and signed an informed consent form. The clinical
and demographic characteristics of the study population are presented in Table S1. Serum
samples collected from all participants were stored at −80 ◦C until analysis.

2.2. Preparation of the Samples for Metabolomics Extraction

Serum samples were obtained from whole blood, which were collected in 2.4 mL
clotting activator vacuum system tubes. The tubes were stored in the vertical position at
room temperature for 60 min to permit the formation of a clot. At the end of the clotting
period, blood samples were centrifuged in a horizontal rotor for 10 min at 1300 g at room
temperature. Then, serum fractions were collected in Eppendorf tubes and stored at −80
◦C until the day of analysis.

An aliquot of 50 µL was precipitated by adding 150 µL of methanol (1:3, v/v), which
was mixed for 60 s. Precipitated protein was subsequently removed by centrifugation
(12,000 rpm, 10 min) at 4 ◦C. Then, the supernatant was transferred to a tube and dried
under a gentle stream of nitrogen at room temperature. Finally, the supernatant was
reconstituted with 50 µL methanol and filtered through a 0.22 µm nylon filter into glass
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vials for further analysis. Quality control (QC) samples were prepared by mixing an equal
volume of all samples.

2.3. HPLC-Q-TOF MS Analysis

Metabolite separation was performed using an Agilent Technologies 6530 Accurate-
Mass Q-TOF LC/MS system (Santa Clara, CA, USA). The mobile phase consisted of water
and 0.1% formic acid (eluent A) and acetonitrile (eluent B). Serum analyses were archived
on an Agilent Zorbax extend C18 column (150 × 4.6 mm i.d., 5 µm). The flow rate was
1.0 mL/min with solvent A (water with 0.1% formic acid) and solvent B (acetonitrile).
The chromatographic gradient was started at 5% phase B for the first minute, followed
by an increase of phase B to 95% (from 0 to 50 min), and was then kept at 95% for 10 min
(from 50 to 60 min). The gradient returned to initial conditions (5% phase B) in 0.5 min,
which were maintained for 10 min. The injection volume of all samples was 10 µL. A
calibrating solution containing reference masses at m/z 121.0509 (protonated purine) and
m/z 922.0098 (protonated hexakis [1H,1H,3H-tetrafluoropropoxy]) in positive ion mode
was continuously introduced. Mass spectrometry was performed with an electrospray
ionization ion source in the positive (ESI+) ion mode. The MS parameters were set as
follows: fragmental voltage at 120 V, nebulizer gas at 35 psig, capillary voltage at 4000 V,
drying gas flow rate at 9 L/min, and temperature at 325 ◦C. The data were collected in
centroid and profile mode with a mass range of 50–1500 m/z using the high-resolution
mode (4 GHz).

2.4. Method Assessment

The repeatability and robustness of the current experiment were tested using pooled
quality control samples (QC), which were randomly injected throughout the sequence
list. An unsupervised PCA analysis showed good repeatability and robustness of the
analytical method (Figure S1). We also evaluated the total ion chromatograms (TICs) of
the QC samples (Figure S2), which showed that the response intensity and retention time
of each chromatographic peak overlapped. Three different ions in the TICs of the QC
samples were extracted for the assessment of method validation. Method repeatability
RSD% values of retention times and peak areas of three different ions were calculated from
tested QC samples, as shown in Table 1. These data demonstrated a high reproducibility of
the method and the stability of the instrument during the experiment.

Table 1. The relative standard deviation (RSD%) of retention time and peak area in QC samples.

m/z RSD of Retention Time (%) RSD of Peak Area (%)

496.1399 0.0088 7.8288
524.3700 0.0829 5.5716
100.0762 0.0698 4.4323

2.5. Data Processing and Statistical Analysis

The raw data acquired from Q-TOF LC/MS ESI+ analysis were transformed to data
format (.mzdata) files using MassHunter Workstation Software (Version B.06.00, Agilent
Technologies, Santa Clara, CA, USA). We used R Foundation for statistical computing, data
pretreatment procedures such as nonlinear retention time alignment, peak discrimination,
filtering, alignment, and matching. The ion features present in less than 80% of samples
were screened out.

The intensities of each peak detected were generated by virtue of the retention times
and the m/z data pairs for each ion. After being log-transformed, Pareto-scaled, and
normalized to peak intensity, the processed data were imported into SIMCA-P 14.1 (Umet-
rics, Umeå, Sweden) and MetaboAnalyst (https://www.metaboanalyst.ca/) (accessed
on 19 June 2021), where they were subjected to multivariate data analyses, including
principal component analysis (PCA) and orthogonal partial least-squares discriminant

https://www.metaboanalyst.ca/


Metabolites 2022, 12, 997 4 of 13

analysis (OPLS-DA). False discovery rate adjusted p-values < 0.05 and variable impor-
tance in the projection (VIP) values > 1.0 were used to screen for the significantly different
metabolites. The online databases HMDB (http://www.hmdb.ca/) (accessed on 6 August
2021), METLIN (http://metlin.scripps.edu/) (accessed on 15 August 2021), and MassBank
(http://www.massbank.jp/) (accessed on 22 August 2021) were used to identify the po-
tential metabolites by matching with the structure messages of metabolites. They were
selected when the difference between observed and theoretical mass was below 10 ppm.
After the m/z values and isotopic ions were matched, the second-order fragment ions were
analyzed to identify metabolites using MassBank.

2.6. Cell Culture

IEC-6 rat epithelial cells were purchased from ATCC and cultured in DMEM containing
10% v/v fetal bovine serum (FBS) at 37 ◦C in a humidified atmosphere containing 5% CO2.
For qPCR, Western blot, and comet assay experiments, IEC-6 cells were plated at 4 ×
106/well in 6-well tissue culture plates, while for immunofluorescence experiments, IEC-6
cells were plated on coverslips in 24-well plates at 1 × 105/well. Both of these were allowed
to adhere overnight and were then cultured with 10, 100, and 1000 µM pyroglutamic acid
for 24 h.

2.7. Analysis of mRNA Levels by Quantitative Real-Time PCR (qPCR)

The total RNA was extracted using TRIzol reagent (Invitrogen Life Technologies,
Carlsbad, CA, USA). The RNA concentration was determined using a spectrophotometer at
260 nm and 280 nm. Equal amounts of RNA (1 µg) were reverse transcribed into cDNA, and
the cDNAs were used as templates for PCR amplification. A QuantStudio 3 Real-Time PCR
System and fast gene-expression method were used with the following cycling conditions:
95 ◦C for 5 min, followed by 45 cycles at 95 ◦C for 10 s, 57 ◦C for 20 s, and 72 ◦C for 20 s.
Then, melt curve analysis was performed by raising the temperature from 61 ◦C to 95 ◦C at
a rate of 0.15 ◦C/s. β-actin was used as an internal control to normalize the variability in
expression levels. The 2−∆∆CT (cycle threshold) method was used to calculate the results
and the mRNA expression levels are presented as a fold-change compared to control, which
was set as 1. The specific primer sequences are shown in Table S2.

2.8. Western Blot Analysis

The IEC-6 cells were collected with cold PBS and extracted using RIPA buffer contain-
ing PMSF and phosphatase inhibitors. The protein concentrations were quantified with a
BCA assay kit according to the manufacturer’s instructions. Equal protein amounts were
electrophoresed on SDS-PAGE gels, transferred to a polyvinylidene fluoride membrane,
and blocked with 5% milk. After incubation with antibodies, immunoreactivity was de-
tected using ECL reagents (PerkinElmer, Waltham, MA, USA). The data were analyzed
with the associated Image Lab, with n = 3 in each group.

2.9. Immunofluorescence Detection of γH2AX

The IEC-6 cells were washed with PBS twice and then blocked with 10% normal
donkey serum containing 0.3% Triton-X-100. After incubation with the Phospho-Histone
H2AX (Ser139) rabbit monoclonal antibody overnight at 4 ◦C, the cells were washed with
PBS and incubated in the secondary Alexa Fluor 488 goat anti-rabbit antibody for 2 h at
room temperature. Before taking images, cells were washed again with PBS and mounted
with DAPI for 10 min. Fluorescent images were observed with a confocal laser scanning
microscope (CLSM, LSM 700, Zeiss, Oberkochen, Germany) and processed using the ZEN
imaging software.

2.10. Comet Assay

The comet assay (single cell gel electrophoresis) was performed with the Trevigen
Comet AssayTM kit (Trevigen) according to the manufacturer’s protocol. Briefly, IEC-6 cells

http://www.hmdb.ca/
http://metlin.scripps.edu/
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were collected in PBS to a concentration of 1 × 105 cells/mL, mixed with 37 ◦C 1% LMA
garose (low-melting agarose) and loaded on 2-well CometSlides. CometSlides were placed
in the pre-cold lysis solution at 4 ◦C for 60 min, and then incubated in alkaline unwinding
solution at room temperature for 20 min in the dark. CometSlides were transferred to a
pre-cold fresh alkaline electrophoresis solution and subjected to electrophoresis using the
CometAssay Electrophoresis System II (Trevigen) for 30 min (21 V). Slides were washed
twice in dH2O for 5 min and 70% ethanol for 5 min. DNA was stained with 50 µL DAPI
in a light-protected setting for 30 min and visualized using the confocal laser scanning
microscope (CLSM, Carl Zeiss LSM 700).

2.11. Statistical Analysis

Metabolites were considered statistically significant when the p-value was <0.05 and
VIP > 1. The MetaboAnalyst online software was used for multivariate analysis. For
multivariate analysis, the following parameters were used: remove features with >80%
missing values, exclude variables with missing values, mean intensity value, normalization
by median, log data transformation, and Pareto data scaling. All values in the text and
figures were expressed as mean ± SEM. Statistical analysis was performed using Prism
v8.0 (GraphPad Software, La Jolla, CA, USA). A two-tailed Student’s t-test for comparison
between two groups was used: * p < 0.05, ** p < 0.01, *** p < 0.001, ns not significant
vs. control group. p-values less than 0.05 and 0.01 were regarded as significant and very
significant, respectively.

3. Results
3.1. Basic Characteristics of the Participants

In this study, 77 participants (31 with UC and 46 healthy) were recruited to discover
and evaluate their biomarkers. The demographic and general clinical characteristics of
participants are summarized in Table S1.

3.2. Multivariate Statistical Analysis of Potential Biomarkers for UC

All observations acquired from the serum were analyzed using SIMCA-P software for
multivariate statistical analysis. Principal component analysis (PCA) was used to perform
unsupervised data analysis on the UC and control groups in order to reflect the inter-group
and intra-group variability as a whole. As shown in Figure 1A, the two groups could be
easily distinguished from each other, which showed that the difference of metabolic spectra
between two groups was remarkable. Orthogonal partial least-squares discrimination
analysis (OPLS-DA) is a supervised discriminant analysis used to predict the category
of a sample. It can be seen from Figure 1B that there is an obvious trend of separation
among the comparison groups (R2Y = 0.985, Q2 = 0.897). The variable importance for the
projection (VIP) was calculated to measure the influence intensity and explanatory ability
of the expression pattern of each metabolite on the classification and discrimination of
each sample to assist in the screening of marker metabolites. After excluding exogenous
metabolites and standardizing the data on the MetaboAnalyst 5.0 website, metabolites with
VIP values over 1 and p-values acquired through the two-tailed Student’s t-test lower than
0.05 were considered as potential biomarkers, as listed in Table 2. A hierarchical clustering
heatmap was used to present the data more intuitively (Figure 2).
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Figure 1. PCA, OPLS-DA score plots, and S-plots of healthy and UC groups based on HPLC-Q-TOF
serum analysis. (A) PCA score plots of healthy and UC group. (B) OPLS-DA score plots of healthy
and UC group. Blue represents the healthy group and green represents the UC group. (C) S-plot of
healthy and UC group. (D) Volcano plot of healthy and UC group.

Table 2. Key differential metabolites between the healthy and UC groups.

Metabolites m/z Rt (min) FC p-Value VIP Metabolic Pathways Enzymes Genes

3-Furoic acid 113.0181 2.0264 1.23 7.70 × 10−4 3.77

Pyroglutamic acid 130.0465 2.0868 1.27 8.09 × 10−3 3.40 Glutathione metabolism,
glutathione synthetase QPCT, OPLAH

(S)-2-Methylmalate 149.0444 12.8028 0.65 3.56 × 10−2 1.99 Fatty acid metabolism,
lipid metabolism

3-Hydroxyanthranilic acid 154.0442 2.0607 12.09 1.93 × 10−4 2.77 Tryptophan metabolism KYNU, HAAO,
CAT

Glycylvaline 175.1094 2.1603 1.48 4.45 × 10−3 1.61

Paraxanthine 181.0705 2.0425 1.40 4.93 × 10−5 1.33 Caffeine metabolism NAT1, NAT2,
XDH

Leucodopachrome 196.0561 8.1400 2.74 1.10 × 10−6 7.26 Tyrosine metabolism

L-Tryptophan 205.0974 5.7118 0.83 1.45 × 10−3 9.65 Tryptophan metabolism DDC, IDO1,
TPH1

3-(Dimethylamino) propyl
benzoate 208.1290 4.8659 6.81 2.255 × 10−3 1.82

Glycyl-Phenylalanine 223.1056 5.2276 1.27 1.74 × 10−2 1.22
Leucylleucine 245.1841 7.8416 0.66 3.56 × 10−3 2.36

Glutamylvaline 247.1279 3.5562 0.37 2.39 × 10−12 3.35
gamma-Glutamylleucine 261.1455 6.2629 0.57 8.60 × 10−10 2.86

Oleamide 282.2768 25.5358 1.76 1.20 × 10−4 1.05 Fatty acid metabolism,
lipid metabolism

FAAH,
PLA2G2A

L-Octanoylcarnitine 288.2164 15.4359 0.69 2.51 × 10−2 1.68

Mitochondrial
beta-oxidation of

short-chain saturated fatty
acids

CROT

Methyl linolenate 293.2493 42.8410 0.70 1.99 × 10−8 4.07

17-Hydroxylinolenic acid 295.2280 36.7773 0.11 1.04 × 10−8 1.60 Fatty acid metabolism,
lipid metabolism

3-Dehydrosphinganine 300.2854 25.5358 1.78 6.96 × 10−4 2.16 Sphingolipid metabolism GBGT1,
PIGL, SPTLC1

Phenylalanyl
phenylalanine 313.1578 10.2882 0.70 9.95 × 10−3 6.74

Decanoylcarnitine 316.2458 19.5269 0.65 3.45 × 10−2 2.21 Fatty acid metabolism,
lipid metabolism

Phytosphingosine 318.3016 21.1592 1.33 7.22 × 10−3 4.95 Sphingolipid metabolism GBGT1, PIGL,
PIGQ

Glycocholic acid 448.3052 23.5106 0.16 5.79 × 10−6 1.08 Bile acid biosynthesis BAAT, GLYAT,
GLYATL3
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Table 2. Cont.

Metabolites m/z Rt (min) FC p-Value VIP Metabolic Pathways Enzymes Genes

Glycochenodeoxycholate 450.3251 25.9395 0.13 1.34 × 10−5 2.44 Bile acid biosynthesis BAAT, GLYAT,
GLYATL3

LysoPC(15:0/0:0) 482.3287 31.1631 0.68 2.90 × 10−4 2.16
Glycerophospholipid

metabolism, lipid
metabolism

LYPLA1,
PLA2G15

LysoPC(16:1(9Z)/0:0) 494.3247 30.8185 0.49 7.76 × 10−4 1.28
Glycerophospholipid

metabolism, lipid
metabolism

LYPLA1,
PLA2G15

LysoPE(20:0) 516.3382 16.7751 0.76 3.98 × 10−3 2.81 Fatty acid metabolism,
lipid metabolism ENPP2

LysoPC(18:1(9Z)/0:0) 522.3610 35.3163 0.30 4.35 × 10−6 5.12 Fatty acid metabolism,
lipid metabolism

LYPLA1,
PLA2G15

LysoPE(22:6(4Z,7Z,10Z,13Z,
16Z,19Z)/0:0) 526.2905 31.5744 1.36 2.40 × 10−3 1.91

Glycerophospholipid
metabolism, lipid

metabolism
ENPP2

LysoPE(22:0/0:0) 560.3676 17.1108 0.75 2.84 × 10−3 3.11
Glycerophospholipid

metabolism, lipid
metabolism

ENPP2

PC(18:1(9Z)/16:1(9Z)) 780.5490 51.6295 1.48 1.33 × 10−2 4.85 Phosphatidylcholine
biosynthesis

LYPLA1,
PLA2G15

PC(18:3(6Z,9Z,12Z)/18:1(9Z)) 782.5640 51.6295 1.23 3.16 × 10−2 2.69 Phosphatidylcholine
biosynthesis LYPLA1,PLA2G15

Figure 2. Heatmap of the 31 differential endogenous serum metabolites in the healthy and UC
groups. Red represents the metabolites in high abundance and blue represents the metabolites in
low abundance.

3.3. Enrichment Analysis of Metabolic Pathway and Regulatory Enzymes

To reveal the pathways of metabolites and their metabolic processes, significant
metabolites were introduced into MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/)
(accessed on 2 September 2021) for pathway enrichment analysis. As shown in Figure 3A,B,
the most affected pathways in patients with UC were glutathione metabolism, caffeine
metabolism, tryptophan metabolism, mitochondrial beta-oxidation of short-chain saturated
fatty acids, bile acid biosynthesis, sphingolipid metabolism, and tyrosine metabolism. Fur-
thermore, we analyzed the pathway and enrichment analysis of related regulatory enzymes
through STRING (https://string-db.org/) (accessed on 28 September 2021) and Metascape
(https://www.metascape.org/) (accessed on 30 September 2021). The results of the protein
interaction network and GO enrichment analyses showed that the function of regulatory en-
zymes mainly included tryptophan metabolism, monocarboxylic acid metabolic processes,
nucleotide metabolic processes, and membrane lipid metabolic processes.

https://www.metaboanalyst.ca/
https://string-db.org/
https://www.metascape.org/
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3.4. Validation of Potential Pro-Inflammatory and DNA Damage Activity of Pyroglutamic Acid

Among the differential markers we screened, pyroglutamic acid attracted our attention
as it has been reported to be closely related to the development of a variety of tumors. As
shown in Figure S3, its receiver operating characteristic (ROC) area under the curve (AUC)
is 0.67, which means that pyroglutamic acid could be used as a biomarker for UC. As
shown in Figure S4A, the statistics on the relative abundance of pyroglutamate found that
74.2% (23/31) of UC patients had values higher than the 95% confidence interval of healthy
controls, and 32.3% (10/31) were more than 1.5-times higher than the 95% confidence
interval. Using the modified Mayo score to classify UC patients into mild and moderate,
we found that the relative abundance of pyroglutamic acid was not correlated with the
severity of UC, and there was no significant difference between the relative abundance
of mild and moderate UC patients (Figure S4B). Compared with UC patients diagnosed
for less than 1 year, patients who had been diagnosed for 1–5 years or more than 5 years
had higher pyroglutamic acid levels (Figure S4C). Thus, the pyroglutamic acid level was
significantly upregulated with the duration of the disease. To explore whether pyroglutamic
acid has the ability to promote the transformation of inflammation to intestinal cancer,
intestinal epithelial IEC-6 cells were used to verify its potential pro-inflammatory and
carcinogenic effects.
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First, the mRNA levels of TNF-α, IL-1β, and IL-6 were detected, as these have been
reported to be closely related to UC. Our results revealed that 10 µM pyroglutamic acid
treatment for 24 h could significantly upregulate the IL-6 mRNA level in IEC-6 cells
(Figure 4A,C). To explore the carcinogenic activity, we tested the effect of pyroglutamic
acid on DNA damage. Pyroglutamic acid increased phosphorylation of histone H2AX
(γH2AX), a surrogate marker for DNA damage in IEC-6 cells compared with untreated
cells (Figure 4H). The immunofluorescence detection of γH2AX showed that 10 µM pyrog-
lutamic acid could increase the number of γH2AX foci (Figure 4D,E). Moreover, measuring
DNA damage via the comet assay showed that 100 µM pyroglutamic acid could increase
the percentage of DNA in the tail (Figure 4F,G). These results all revealed that pyroglutamic
acid could increase DNA damage and that it shows potential carcinogenic activity.

Figure 4. Pyroglutamic acid could promote inflammation and increase DNA damage in IEC-6
cells. (A) The mRNA levels of IL-6 detected by QPCR. (B) The mRNA levels of TNF-α detected
by QPCR. (C) The mRNA levels of IL-1β detected by QPCR. (D) Representative images of γH2AX
immunofluorescence staining. Image sizes are annotated by the scale bar in the lower right corner of
the respective image. (E) Immunofluorescence histograms showing γH2AX foci per cell. (F,G) Comet
assay and histograms showing %DNA in the tail. (H) Western blot of γH2AX. Data are presented as
the means ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, ns not significant vs. control group.

4. Discussion

Ulcerative colitis is a chronic, relapsing illness affecting millions of patients worldwide.
However, the etiology and exact pathophysiology of UC remain unknown. A delayed
diagnosis imposes serious clinical implications [19]. In this study, changes in overall serum
metabolism were revealed by comparing ulcerative colitis to healthy controls. A total of 31
metabolites significantly varied between the two groups, including indoles, sphingomyelin,
bile acids, and amino acids.

In this study, several metabolites of the indole family and pathway were altered in
patents with UC, such as leucodopachrome and L-tryptophan. Indole derivatives are
important ligands for the aryl hydrocarbon receptor (AhR). AhR is involved in intestinal
mucosal homeostasis by acting on innate and adaptive immune cells, as well as epithelial
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renewal and mucosal barrier function [20,21]. Tryptophan plays a central role in AhR
activation and can be metabolized by the intestinal flora, which is essential for maintaining
the immune balance of the mammalian intestinal tract [22,23]. Tryptophan added in food
could reduce DSS-induced colitis through aryl hydrocarbon receptors in mice [24,25]. At
the same time, it is also a biomarker for colon cancer [22]. We found that tryptophan was
significantly reduced in the serum of patients, which may be related to intestinal dysbiosis
in UC patients.

Sphingolipids such as 3-dehydrosphinganine and phytosphingosine showed increased
concentrations in this study. The role of sphingomyelin components in UC is not fully
understood. Increased sphingomyelin concentrations in both animal models of colitis and
patients with IBD suggest that sphingomyelin has a part in chronic intestinal inflamma-
tion [26–28].

We also found that bile acids were altered in UC patients, such as glycocholic and
glycochenodeoxycholate. Bile acids have many physiological roles, including glucose
regulation and intestinal motility. The processes by which bile acids exert their multiple
roles are complex and dependent on the host and gut bacteria [29–31]. The genes required
to convert primary bile acids into secondary bile acids were reduced in UC patients, as well
as secondary bile acid-producing bacteria. Secondary bile acid supplementation alleviated
intestinal inflammation through the TGR5 bile acid receptor in a mouse model of colitis [32].
A detrimental feedback loop could be created where inflammation results in reduced bile
absorption, and therefore increased bile in the lumen, which in turn causes increased
inflammation.

Our study indicated that multiple amino acids were increased in the serum of UC
patients, such as glycylvaline. The high number of amino acids in active UC is likely due to
malabsorption [33]. These results suggest that amino acid balance should be stressed as an
important area for patients with an active disease as well as those in remission [34].

Another amino acid involved in glutathione metabolism, pyroglutamic acid, attracted
our attention. Pyroglutamic acid, also known as 5-oxo-proline, is the cyclic lactam in
glutamic acid [35,36]. Glutathione metabolism participates in redox reactions and energy
metabolism. Reactive oxygen species have been shown to contribute to tissue damage in
patients with ulcerative colitis and Crohn’s disease [37,38]. In this study, pyroglutamic
acid has a high contribution rate to the metabolomic pilot of UC, and it was found to
be significantly upregulated in the serum of UC patients for the first time. Pyroglutamic
acid has been reported to be upregulated in the stool of IBS patients, which is related to
Lactobacillus [39]. One study showed that, compared with a control group, the level of
pyroglutamic acid is significantly higher in UC-model rats [40]. More importantly, it is also
a biomarker for a variety of cancers. The levels of pyroglutamic acid in the serum of patients
with cervical cancer, gastric cancer, and breast cancer are significantly increased [41–45].
In our study, the statistics on the relative abundance of pyroglutamate showed that 74.2%
(23/31) of UC patients had values higher than the 95% confidence interval of healthy
controls, and 32.3% (10/31) had values more than 1.5-times higher than the 95% confidence
interval. Compared with UC patients diagnosed for less than 1 year, patients who had been
diagnosed for 1–5 years or more than 5 years had higher pyroglutamic acid levels, which
means that pyroglutamic acid is correlated with the duration of the disease. This suggests
that pyroglutamic acid could not only be a biomarker for distinguishing UC status, but that
it is also an active metabolite that promotes the transformation of UC to CRC. However,
the effects of pyroglutamic acid in vivo and in vitro have not been well studied.

Pyroglutamic acid is naturally present in mammalian tissues and fluids, and the
content in the serum of a healthy person could reach the micromolar level [46]. Our
results showed that 10 µM of pyroglutamic acid could upregulate the level of inflammatory
factors in IEC-6 cells and cause the upregulation of phosphorylation of H2AX, an early
indicator of DNA damage [47]. DNA damage blocks the cell cycle and quickly activates the
repair mechanism to prevent errors from being passed on to future generations. However,
repeated damage repair increases the probability of DNA mutations, causing genome
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instability, and the accumulation of mutations increases the possibility of cancer [48–52].
In order to find out whether the upregulation of pyroglutamic acid in the disease state is
related to the intestinal flora, we cultured patients’ intestinal flora to detect the relative
content of pyroglutamic acid and found that the flora does not metabolize pyroglutamate
acid. This result suggests that the upregulation of pyroglutamic acid may be related to its
metabolic enzymes, such as QPCT and OPLAH, which needs to be further verified in vivo
and in vitro.

5. Conclusions

In summary, this study analyzed the metabolic profiles of UC samples and found po-
tential biomarkers. Our results have revealed that pyroglutamic acid is a unique metabolite
that was significantly increased in the serum of UC patients. Moreover, the role of pyroglu-
tamic acid in UC was further analyzed and it was found that it upregulates inflammatory
factors and increases DNA damage. This study contributes to a better understanding of
this potential mechanism and proposes effective markers for the clinical diagnosis and
treatment of UC.
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