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Abstract

Objective

Most small for gestational age pregnancies are unrecognised before birth, resulting in sub-

stantial avoidable perinatal mortality and morbidity. Our objective was to develop multivari-

able prediction models for small for gestational age combining clinical risk factors and

biomarkers at 15±1 weeks’ with ultrasound parameters at 20±1 weeks’ gestation.

Methods

Data from 5606 participants in the Screening for Pregnancy Endpoints (SCOPE) cohort

study were divided into Training (n = 3735) and Validation datasets (n = 1871). The primary

outcomes were All-SGA (small for gestational age with birthweight <10th customised cen-

tile), Normotensive-SGA (small for gestational age with a normotensive mother) and Hyper-

tensive-SGA (small for gestational age with an hypertensive mother). The comparison

group comprised women without the respective small for gestational age phenotype. Multi-

variable analysis was performed using stepwise logistic regression beginning with clinical

variables, and subsequent additions of biomarker and then ultrasound (biometry and Dopp-

ler) variables. Model performance was assessed in Training and Validation datasets by cal-

culating area under the curve.
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Results

633 (11.2%) infants were All-SGA, 465(8.2%) Normotensive-SGA and 168 (3%) Hyperten-

sive-SGA. Area under the curve (95% Confidence Intervals) for All-SGA using 15±1 weeks’

clinical variables, 15±1 weeks’ clinical+ biomarker variables and clinical + biomarkers +

biometry /Doppler at 20±1 weeks’ were: 0.63 (0.59–0.67), 0.64 (0.60–0.68) and 0.69 (0.66–

0.73) respectively in the Validation dataset; Normotensive-SGA results were similar: 0.61

(0.57–0.66), 0.61 (0.56–0.66) and 0.68 (0.64–0.73) with small increases in performance in

the Training datasets. Area under the curve (95% Confidence Intervals) for Hypertensive-

SGA were: 0.76 (0.70–0.82), 0.80 (0.75–0.86) and 0.84 (0.78–0.89) with minimal change in

the Training datasets.

Conclusion

Models for prediction of small for gestational age, which combine biomarkers, clinical and

ultrasound data from a cohort of low-risk nulliparous women achieved modest performance.

Incorporation of biomarkers into the models resulted in no improvement in performance of

prediction of All-SGA and Normotensive-SGA but a small improvement in prediction of

Hypertensive-SGA. Our models currently have insufficient reliability for application in clinical

practice however, they have potential utility in two-staged screening tests which include

third trimester biomarkers and or fetal biometry.

Introduction

Approximately 40% of non-anomalous singleton stillbirths are small for gestational age (SGA)

[1, 2] and live born SGA infants have increased risk of long-term adverse outcomes.[3–5] Pla-

cental insufficiency is a major contributor to the pathophysiology in SGA pregnancies.[6]

A limitation of antenatal care is that the majority of SGA pregnancies are not identified

before birth.[7–9] SGA infants recognized before birth and delivered in a timely fashion have a

four-fold reduction in composite severe morbidity/ mortality.[10] Reliable early pregnancy

risk prediction, therefore has potential to reduce morbidity and mortality. As we have previ-

ously reported,[11] SGA infants can be broadly classified into two categories with distinct

maternal phenotypes: SGA with a normotensive mother (Normotensive-SGA) and SGA where

the mother has gestational hypertension, preeclampsia or chronic hypertension (Hyperten-

sive-SGA).[7] We have previously reported that Normotensive- SGA comprise approximately

three quarters of SGA infants and that risk factors for Normotensive-SGA and Hypertensive-

SGA differ, suggesting they are distinct conditions from the prediction perspective.[12] We

have recently published risk prediction models for these SGA sub-groups, derived from partic-

ipants in the Screening for Pregnancy Endpoints (SCOPE) study, combining early pregnancy

clinical variables with ultrasound parameters from the 20±1 weeks’ anatomy scan. Only mod-

est predictive performance was achieved.[11] Abnormal placentation may be detected by

altered biomarker concentrations in early pregnancy.[13–16] A recent systematic review of

first trimester biomarkers to predict SGA reported that biomarkers alone had low predictive

accuracy but speculated that performance would improve with addition of clinical characteris-

tics and uterine artery Doppler.[17] An increase in predictive performance for SGA has been
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reported, after addition of first trimester biomarkers and uterine artery Doppler to clinical risk

factors.[18]

Our primary objective was to develop multivariable prediction models for the respective

SGA phenotypes, by combining biomarkers with clinical risk factors measured at 15±1 weeks’

and with uterine artery Doppler indices and fetal biometry at 20±1 weeks’ gestation. Since cus-

tomized birthweight centiles may better identify small vulnerable babies with placental dys-

function, we used customized centiles to define SGA.[19–21]

We hypothesised that addition of 15±1 weeks’ biomarker data to models comprising clini-

cal and ultrasound variables would result in significant improvements in prediction of SGA

pregnancies.

Methods

The participants were healthy nulliparous women with singleton pregnancies recruited to the

SCOPE study between November 2004 and February 2011 in Auckland, New Zealand, Ade-

laide, Australia, Manchester, Leeds and London, United Kingdom and Cork, Ireland. SCOPE

(www.scopestudy.net) is a prospective, multi-centre cohort study with the main aim of devel-

oping screening tests to predict preeclampsia, SGA infants and spontaneous preterm birth.

Ethical approval was obtained from institutional ethics committees of each participating center

and all women provided written informed consent [New Zealand AKX/02/00/364–23 April

2003; Australia REC 1712/5/2008–2 November 2005; London and Manchester 06/MRE01/98–

19 January 2007; Leeds 06/MRE01/98–5 November 2007 and Cork ECM5 (10) 05/02/08–6

February 2008]. Detailed methods have previously been described.[7, 22]

Exclusion criteria included 1) an elevated risk of preeclampsia, small for gestational age

(SGA) or spontaneous preterm birth due to underlying medical conditions (known chronic

hypertension, and/or pre-existing diabetes, renal disease, systemic lupus erythematosus, or

anti-phospholipid syndrome), previous cervical knife cone biopsy,�3 terminations or�3

miscarriages or current ruptured membranes; 2) known major fetal anomaly or abnormal kar-

yotype or 3) interventions (such as low dose aspirin) that might modify pregnancy outcome.

[23] Women were recruited at 15±1 weeks’ gestation. Of the 8531 women invited to participate

5989 (70%) agreed and were interviewed and examined by a research midwife at 15±1 and 20

±1 weeks’ and underwent ultrasound examination at 20±1 weeks’. Detailed clinical data were

collected at each time point. The estimated date of delivery was calculated as follows: if the

woman had a certain last menstrual period (LMP) date, the estimated date of delivery was only

adjusted if either 1) a scan performed at<16 weeks’ gestation found a difference of�7 days

between the scan gestation and that calculated by the LMP or 2) on 20±1 week scan a differ-

ence of�10 days was found between the scan gestation and that calculated from the LMP. If

her LMP date was uncertain, then scan dates were used to calculate the estimated date of deliv-

ery. At the interview, data were entered into a secure internet-accessed, auditable database

(MedSciNet AB, Sweden).

Ultrasound examination at 20±1 weeks’ was performed by trained sonographers and

included fetal biometry and Doppler studies of the umbilical and uterine arteries. Fetal mea-

surements were adjusted for gestational age by calculating the multiple of the median for

each gestational week. Mean uterine resistance index (RI) was calculated from the left and

right uterine RI. If only a left or right uterine RI was available, this was used as ‘mean RI’

(n = 98). Women without fetal biometry or Doppler studies were excluded from the analysis

of ultrasound factors. Participants were followed prospectively, with pregnancy outcome

data and infant measurements recorded by research midwives, usually within 72 hours of

birth.
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Outcome measures

All-SGA was defined as birthweight <10th customised centile, adjusted for maternal height,

booking weight, ethnicity, delivery gestation and infant sex.[24] Normotensive-SGA was

defined as birth of an SGA infant where the mother did not develop hypertension, and Hyper-
tensive-SGA defined as birth of an SGA infant where the mother had developed gestational

hypertension or preeclampsia and/or had exhibited mild chronic hypertension.7

Definitions

Gestational hypertension: systolic BP�140 mmHg and/or diastolic BP�90mmHg on at least 2

occasions 4 hours apart after 20 weeks’, before the onset of labour. Preeclampsia: gestational

hypertension or postpartum hypertension (as defined above, but developing for the first time

after delivery) in association with proteinuria (24 hour urinary protein� 300 mg, or spot

urine protein: creatinine ratio� 30 mg/mmol, or urine dipstick protein� 2+) or any multi-

system complication of preeclampsia.[23, 25] Mild chronic hypertension: systolic BP of 140–

159 mmHg and/or diastolic BP 90–99 mmHg, on more than one reading, first identified at the

15±1 or 20±1 weeks’ SCOPE visit. No participants had recognised or treated hypertension

before pregnancy. Non-SGA referred to all women who did not have SGA babies. This group

included pregnancies with other complications such as spontaneous preterm birth or pre-

eclampsia without SGA.

Datasets

To allow for model generalization, data was partitioned into a Training set for model fitting

and a Validation set for empirical validation. A 2:1 ratio was achieved by randomly splitting

the total dataset stratified by geographical areas of Australasia and Europe. The datasets were

checked for major discrepancies in SCOPE centre and rates of SGA.

Clinical and ultrasound variables

Details of clinical and ultrasound variable selection and the variable reduction process have

previously been reported.[11] Details of clinical variables used in the SGA models are available

as supplementary material (Table A in S1 Appendix).

Biomarkers

Fifty three biomarkers were selected based on either à priori knowledge of a biological role in:

i) placentation, ii) angiogenesis or inflammation, iii) an association with preeclampsia, or iv)

involvement in glucose or lipid metabolism. A full list of all but seven of the biomarkers, details

of ELISA methodologies and biomarker data transformation methodology has previously been

published.[26] The additional seven biomarkers included adiponectin, total cholesterol, HDL-

cholesterol, insulin, LDL-cholesterol, human placental growth hormone, and triglycerides.

Details of these biomarkers and ELISA methodologies are included as supplementary material

(S1 Appendix and Table B in S1 Appendix).

Statistical analysis

SAS (version 9.3) Cary, N.C. was used for statistical analyses. The comparison group for All-

SGA was Not-SGA, for ‘Normotensive-SGA’ was ‘Not Normotensive-SGA’ (all women who

did not have ‘Normotensive-SGA’ including those with ‘Hypertensive-SGA’), and for ‘Hyper-

tensive-SGA’ the comparison group was ‘Not Hypertensive-SGA’ (all women who did not

have ‘Hypertensive—SGA’ including those with ‘Normotensive-SGA’). Comparison of

Prediction of SGA
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population characteristics and pregnancy outcomes was performed using Student’s t-test, anal-

ysis of variance (ANOVA), the Wilcoxon Rank Sum test or the χ2 test, as appropriate for data

type. Comparisons of biomarker distributions were performed using t-tests on the log-trans-

formed data, with p-values adjusted to control the False Discovery Rate.[27] Single variable

logistic regression was then applied to each log-transformed biomarker, along with calculation

of the Area under the Receiver Operating Characteristic curve (AUC).

Multivariable modelling

Single variable logistic regression for each SGA endpoint was used in the Training cohort to

select biomarkers for potential inclusion in multivariable predictive models. A significance

threshold for the adjusted p-values of 0.05 was used for variable selection. Distinct models

were constructed per endpoint (All-SGA, Normotensive-SGA and Hypertensive-SGA) as fol-

lows: (1) biomarkers only measured at 15±1 weeks’ (2) clinical risk factors at 15±1 weeks’ (3)

combination of biomarkers and clinical risk factors at 15±1 weeks’ (4) combinations of clinical

risk factors (15±1 weeks’), biomarkers (15±1 weeks’) and ultrasound variables (20±1 weeks’).

The solely biomarker and clinical risk factor logistic regression models were constructed

using backwards stepwise variable selection, starting from a model containing all available bio-

marker or clinical variables, respectively. Only biomarkers included in the ‘biomarker only’

model for the SGA endpoint were available for the combined logistic regression models. Simi-

larly, only variables that remained in the multivariable logistic regression model using ‘clinical

risk factors only’ for the SGA endpoint were available to the ‘combined biomarker and clinical

risk factor’ models. Again, logistic regression models were constructed using backwards step-

wise variable selection. Model performance was assessed in the Training and Validation data-

sets via calculation of AUC for each model, along with sensitivity, positive and negative

predictive value, and positive and negative likelihood ratios at a 5% false positive rate (95%

specificity).

Results

Consistent with our previous report, [11] 5690 healthy nulliparous women were recruited

between November 2004 and February 2011 in Auckland, New Zealand, Adelaide, Australia,

London, Leeds and Manchester, United Kingdom and Cork, Ireland and follow up was com-

plete in 98.9% of participants. Our final study population with SGA data available was 5606.

(Fig 1).

The data were divided into a Training set for model fitting (n = 3735) and a Validation set

(n = 1871) (Fig 1). Of the 422 (11%) infants in the Training database who were SGA by cus-

tomized centiles (All-SGA), 313 (8%) were born to normotensive mothers (Normotensive-

SGA) and 109 (3%) to hypertensive mothers (Hypertensive-SGA). In the Validation database,

211 (11%) infants were SGA of whom 152 (8%) were Normotensive-SGA and 59 (3%) Hyper-

tensive-SGA. Comparing Training and Validation sets, amongst the Hypertensive-SGA preg-

nancies, 44 (40%) and 26 (44%) women respectively had preeclampsia; 63 (58%), and 33 (56%)

had gestational hypertension; 2 (2%) and none had mild chronic hypertension alone.

The baseline characteristics and pregnancy outcomes of the women who had SGA infants

are compared with those with non-SGA infants in Table 1. Women with SGA infants were less

likely to be primigravid, more likely to be single, less likely to be employed, more likely to have

lower socioeconomic status, twice as likely to smoke and less likely to have a normal BMI than

women with non-SGA pregnancies. They also reported lower mean birthweight and had

higher systolic and diastolic blood pressures at 15±1 weeks’. They had a threefold increase in

preterm delivery and higher rates of perinatal death than mothers of non-SGA infants.

Prediction of SGA
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Mean plasma biomarker concentrations (measured at 15±1 weeks’), results of univariable

and multivariable analyses and AUCs for those biomarkers significantly associated with SGA,

and the sub-phenotypes of SGA, are shown in Table 2. For All-SGA, eight biomarkers were

associated with SGA after standard univariable analysis, with five remaining associated after

Fig 1. Flow chart of study population.

doi:10.1371/journal.pone.0169311.g001
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controlling for the False Discovery Rate. The AUCs for these individual biomarkers was poor.

After multivariable analysis, using Wilcoxon Rank Sum test, with p-values adjusted to control

the False Discovery Rate, only two remained significantly associated with All-SGA in the

reduced model: pregnancy-associated plasma protein A (PAPP-A) and vascular endothelial

growth factor receptor-1 (VEGFR1) with AUC 0.60 (0.57–0.63).

Table 1. Study Population Characteristics at 15 ±1 Weeks’ and Pregnancy Outcome in the Total SGA Cohort (N = 5606).

Non-SGA All-SGA p-value

N = 4973 N = 633

Maternal Characteristics

Ethnicity 0.54

• Caucasian 4481 (90) 564 (89)

• Maori or Pacific Islander* 100 (2) 13 (2)

• Indian 115 (2) 19 (3)

• Asian 152 (3) 16 (3)

• Other† 125 (3) 21 (3)

Primigravid 3853 (78) 466 (74) 0.03

Single 458 (9) 79 (13) 0.009

No paid employment 708 (14) 118 (19) 0.003

<12 years education 1858 (37) 258 (41) 0.10

Smoking status at 15 wks <0.0001

• Non smoker 3821 (77) 428 (68)

• Ceased smoking before15wks 669 (13) 84 (13)

• Current smoker 483 (10) 121 (19)

BMI category 0.002

• <20.0 352 (7) 50 (8)

• 20.0–24.9 2518 (51) 276 (44)

• 25.0–29.9 1386 (28) 186 (29)

•�30 717 (14) 121 (19)

Maternal Characteristics

BMI (kg/m2) 25.2 (4.8) 25.9 (5.5) 0.004

Maternal age (y) 28.7 (5.5) 28.6 (5.8) .67

Socio-economic index 42 (17) 40 (16) .006

Maternal birthweight (g) 3157 (908) 2960 (946) <.0001

Systolic BP (mmHg) 107 (10) 108 (11) <.0001

Diastolic BP (mmHg) 65 (8) 66 (9) .0002

Pregnancy Outcome

Birthweight (g) 3504 (505) 2609 (578) <.0001

Gestational age at delivery (wks) 39.8 (1.9) 38.8 (3.5) <.0001

Total preterm births (<37wks) 257 (5) 94 (15) ‡ <.0001

Admitted to neonatal unit 504 (10) 143 (23) <.0001

Perinatal deaths§ 16 (0.3) 12 (2) <.0001

Hypertensive Pregnancy¶ 592 (12) 168 (27) <.0001

Results expressed as N (%) or mean (SD) as appropriate;

* includes 71 Maori and 42 Pacific Islanders;
† includes 23 Australian Aborigines.
‡ 41 (8.8%) of Normotensive-SGA and 53 (31.5%) of Hypertensive-SGA
§ Rate/1000 births
¶ Hypertensive pregnancy defined as preeclampsia, gestational hypertension or mild chronic hypertension

doi:10.1371/journal.pone.0169311.t001
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For Normotensive-SGA, Caspase-3 remained significant in the multivariable model

together with PAPP-A and VEGFR1 with an AUC of 0.60 (0.57–0.63). For Hypertensive-SGA,

PAPP-A, PlGF and Triglycerides were significantly discriminatory in univariable analysis after

adjustment for False Discovery Rate. All remained significant after multivariable analysis, with

an AUC of 0.66 (0.60–0.71).

The addition of biomarker data to clinical risk factors led to a small increment in AUC for

All-SGA (2% in Training and 1% in Validation datasets) with a further modest increase with

addition of ultrasound characteristics (6% and 5% increment for Training and Validation

datasets respectively) with a final AUC for the Training dataset of 0.74 (0.71–0.76) and Valida-

tion dataset of 0.69 (0.66–0.73). Small incremental increases in AUC occurred in the Normo-

tensive-SGA and Hypertensive-SGA prediction models with the addition of biomarker and

ultrasound variables to clinical data. Final AUCs (which included ultrasound variables) were

similar for All-SGA and Normotensive-SGA with final AUCs for Hypertensive-SGA approxi-

mately 10% higher (Table 3).

Table 2. Univariable Analysis and AUC of Individual Biomarkers Measured at 15 ± 1 Weeks’ Gestation Comparing SGA Groups with Respective

Controls.

Biomarker Controls SGA Group p-value* q-value† Univariable AUC (95% CI) Reduced

Multivariable Model

p-value

ALL-SGA

Cystatin C, mg/mL 1873 (1501–2343) 1888 (1500–2461) .01 .08 0.52 (0.49–0.55)

MIF, ng/mL 9.2 (8.0–11.6) 9.0 (7.7–10.9) .002 .02 0.54 (0.51–0.57)

PAI-2‡, ng/mL 1.0 (0.8–1.3) 0.95 (0.7–1.2) .003 .02 0.55 (0.52–0.58)

PAPP-A‡, ng/mL 1.0 (0.6–1.8) 0.8 (0.5–1.5) <.001 .002 0.58 (0.55–0.61) 0.004

PlGF‡, ng/mL 1.0 (0.6–1.7) 0.95 (0.5–1.7) .009 .06 0.54 (0.51–0.57)

VEGFR1, ng/mL 0.34 (0.21–0.54) 0.28 (0.18–0.45) <.001 .002 0.58 (0.55–0.61) 0.021

Insulin, ng/mL 16.5 (9.7–27.7) 15.1 (8.7–25.5) .009 .06 0.53 (0.50–0.56)

Triglycerides‡, mg/dL 0.99 (0.8–1.2) 1.02 (0.8–1.3) <.001 .002 0.52 (0.49–0.55)

AUC = 0.59 (0.56–0.62)

NORMOTENSIVE-SGA

Caspase 3, ng/mL 2.4 (1.4–4.2) 2.0 (1.2–3.4) .001 .023 0.56 (0.53–0.59) 0.045

MIF, ng/mL 9.2 (7.9–11.6) 9.0 (7-7-10.9) .004 .06 0.54 (50.0–0.57)

PAPP-A‡, ng/mL 1.0 (0.6–1.8) 0.8 (0.5–1.6) .0001 .003 0.57 (0.53–0.60) 0.032

VEGFR1, ng/mL 0.27 (0.18–0.54) 0.34 (0.21–0.42) <.0001 .003 0.59 (0.55–0.62) 0.008

AUC = 0.60 (0.57–0.63)

HYPERTENSIVE-SGA

PAPP-A‡, ng/mL 1.0 (0.6–1.8) 0.7 (0.4–1.5) .001 .006 0.59 (0.53–0.65) 0.025

PlGF‡, ng/mL 1.0 (0.6–1.7) 0.7 (0.3–1.3) <.0001 .002 0.60 (0.54–0.66) 0.001

Triglycerides‡, mg/dL 1.0 (0.8–1.3) 1.1 (0.9–1.5) <.0001 .002 0.61 (0.55–0.67) 0.0001

AUC = 0.66 (0.60–0.71)

AUC, area under the receiver operating curve; CI, confidence interval; MIF, macrophage migration inhibitory factor; PAI-2, plasminogen activator inhibitor 2;

PAPP-A, pregnancy-associated plasma protein A; PlGF, placental growth factor; VEGFR, vascular endothelial growth factor receptor;

Biomarker concentrations are shown as median (interquartile range);

* Based on Analysis of Log Transformed Data
† Based on False Discovery Rate
‡ Based on MoM Data

doi:10.1371/journal.pone.0169311.t002
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Table 4 summarizes the screening test characteristics of the final models combining clinical,

biomarker and ultrasound variables in the Validation and Training datasets for the SGA

groups at a 5% false positive rate.

Discussion

We present a series of models, developed in a large, well-phenotyped international pregnancy

cohort of low-risk nulliparous women, which combine biomarkers, clinical and ultrasound

data to predict the risk of SGA and its different phenotypes. We have previously performed a

detailed analysis of early pregnancy clinical risk factors combined with ultrasound parameters

at 20±1 weeks’ gestation in this cohort that resulted in modest performance for the prediction

of SGA (AUC of 0.69 for All-SGA).[11] We hypothesized that early pregnancy prediction of

SGA would be improved by addition of biomarkers, in line with previous studies.[18] However,

despite the selection of the biomarkers for known associations, no single biomarker, or combi-

nation of biomarkers, substantially improved the performance of the clinical/ultrasound-based

Table 3. AUCs from Multivariable Models to Predict SGA, Normotensive-SGA and Hypertensive-SGA.

All-SGA Normotensive-SGA Hypertensive-SGA

AUC (95% CI) AUC (95% CI) AUC (95% CI)

Variables in Model Training Validation Training Validation Training Validation

15 week Clinical* 0.66 (0.64–0.69) 0.63 (0.59–0.67) 0.66 (0.63–0.70) 0.61 (0.57–0.66) 0.76 0.72–0.81) 0.76 (0.70–0.82)

15 week Clinical* +Biomarkers† 0.68 (0.65–0.71) 0.64 (0.60–0.68) 0.69 (0.66–0.72) 0.61 (0.56–0.66) 0.78 (0.73–0.82) 0.80 (0.75–0.86)

15 week Clinical* +Biomarkers†

+20 week Ultrasound‡ 0.74 (0.71–0.76) 0.69 (0.66–0.73) 0.73 (0.70–0.76) 0.68 (0.64–0.73) 0.82 (0.78–0.86) 0.84 (0.78–0.89)

AUC, area under the receiver operating curve; CI, confidence interval;

* Clinical: All-SGA (family history of coronary heart disease, maternal birthweight, >12 months to conceive, attending university, smoking, proteinuria,

vigorous exercise, diastolic BP�80mmHg, recreational walking, Rhesus negative blood group, random glucose); Normotensive-SGA: (maternal

birthweight, attending university, smoking, vigorous exercise, recreational walking, Rhesus negative blood group, random glucose): Hypertensive-SGA:

(>12 months to conceive, family history of metabolic syndrome, family history of coronary heart disease, low fruit consumption, binge drinking, maternal

birthweight, body mass index, systolic blood pressure�120mmHg, diastolic BP�80mmHg) (12)
† Biomarkers: All-SGA (PAPP-A, pregnancy-associated plasma protein A; PlGF, placental growth factor); Normotensive-SGA: (Caspase 3; PAPP-A;

VEGFR1, vascular endothelial growth factor receptor); Hypertensive-SGA: (PAPP-A; PlGF; Triglycerides)
‡ Ultrasound: All-SGA and Normotensive-SGA: (head and abdominal circumference, uterine resistance index); Hypertensive-SGA: (uterine resistance

index)

doi:10.1371/journal.pone.0169311.t003

Table 4. Screening Test Characteristics, at 95% Specificity, for All-SGA, Normotensive-SGA and Hypertensive-SGA of the Multivariable Models

Based on Combining Clinical Risk Factors, Biomarkers and Ultrasound Data.

Clinical

Group

Pretest

Prevalence

Sensitivity Positive Predictive

Value

Negative Predictive

Value

PositiveLikelihood

Ratio

Negative Likelihood

Ratio

All-SGA

Training 11.3% 21 (17, 25) 35 (29, 41) 91 (90, 92) 4.20 (3.29, 5.36) 0.83 (0.79, 0.87)

Validation 19 (14, 25) 32 (23, 40) 91 (89, 92) 3.86 (2.69, 5.53) 0.85 (0.79, 0.91)

Normotensive-SGA

Training 8.4% 21 (17, 26) 28 (22, 34) 93 (92, 94) 4.22 (3.24, 5.52) 0.83 (0.78, 0.88)

Validation 16 (9, 22) 20 (13, 28) 93 (92, 94) 3.09 (1.98, 4.83) 0.89 (0.83, 0.96)

Hypertensive-SGA

Training 2.9% 28 (19, 38) 13 (8, 18) 98 (98, 99) 7.02 (5.20, 9.49) 0.68 (0.59, 0.79)

Validation 42 (29, 55) 20 (13, 27) 98 (97, 99) 8.38 (5.81, 12.11) 0.61 (0.49, 0.76)

doi:10.1371/journal.pone.0169311.t004
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risk model. As the phenotypes of SGA have low prevalence (from 2%-14% of the antenatal pop-

ulation), a clinically useful test generally needs to have a high positive LR (> 10) and low nega-

tive LR (< 0.10).[28] The performance of our models for the prediction of All-SGA and its

phenotypes in healthy nulliparous women, by these stringent criteria, is insufficient for applica-

tion in clinical practice.

Interesting insights were provided into possible biological determinants of the different

SGA phenotypes. PAPP-A, a reduction in which was common to all models, is a syncytiotro-

phoblast-derived metalloprotease, which binds to and cleaves insulin-like growth factor bind-

ing proteins IGFBP- 3 and IGFBP-4.[29] These binding proteins, and cleavage products, have

reduced affinity for the IGFs, thereby increasing biologically available IGFs. This increases pla-

cental growth and function, which enhances nutrient transport to the fetus.[30, 31] Low

PAPP-A, results in less bioavailable IGFs and decreased growth.[32] Our findings are consis-

tent with several large population-based screening studies [33–35] and a recent meta-analysis.

[17]

The majority of SGA infants (73.8%) were born to mothers who remained normotensive in

pregnancy and hence there is substantial overlap between All-SGA and Normotensive-SGA

clinical risk predictors [11] which is mirrored by the biomarker data. In addition to PAPP-A,

raised VEGFR1 was common to All-SGA and Normotensive-SGA. VEGF is involved in vascu-

logenesis and angiogenesis in early placental development,[36] and has both membrane

bound and circulating soluble forms (soluble fms-like tyrosine kinase-1 or sFlt-1). sFlt-1 binds

and reduces free levels of VEGF, thereby blunting the pro-angiogenic effect reducing fetal

growth.

The performance of each of our models, though comparable with reports by others,[37]

was insufficient to warrant introduction into clinical practice. Additional information in later

gestation may be necessary to improve prediction of risk for SGA. Arguably, the clinical need

for an accurate screening test is greatest in Normotensive-SGA; unlike Hypertensive-SGA,

these pregnancies often lack overt clinical signs to alert the clinician to the at-risk fetus.

Hypertensive-SGA comprised of 96/168 (57%) mothers with gestational hypertension and

70/168 (42%) with preeclampsia.[25] The group with gestational hypertension and SGA would

now meet the updated criteria for definition of preeclampsia.[38] Overall, 31.5% of women

with Hypertensive-SGA were delivered at< 37 weeks highlighting the combination of fetal

and maternal manifestations of defective early placentation. In line with this, a reduction in

placental growth factor (PlGF) was common to models for preeclampsia and Hypertensive-

SGA.[26] PlGF, a member of the VEGF family, is an angiogenic, pro-inflammatory factor pro-

duced by trophoblast cells, with a central role in the regulation of VEGF–dependent angiogen-

esis.[39] Consistent with our results, recent evidence suggests that low PlGF has potential to be

incorporated in screening for early-onset disease, which is often accompanied by uteroplacen-

tal dysfunction and SGA.[14, 26] Another interesting finding was the role of Caspase-3, impor-

tant in apoptosis, in normotensive-SGA and not found in Hypertensive-SGA. Apoptosis is

important in remodeling of developing tissue, including the placenta as well as pathological

conditions.[40, 41] Its role in the etiology of placental development and disease needs to be

explored.

Strengths of the study include the unique composition of the SCOPE cohort, which aimed

to predict late pregnancy complications in low-risk nulliparous women who comprise approx-

imately 40% of births in many Western countries.[42–45] The biobank was prospectively

collected and curated using a rigorous protocol and pre-specified clinical phenotyping. Stron-

ger prediction of SGA has been reported in some previous studies,[18,46] but these were typi-

cally conducted in heterogeneous populations including women with underlying medical

Prediction of SGA
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conditions [18] or where the control population comprised women with uncomplicated preg-

nancies.[46] In both scenarios, screening performance can be overestimated.

Limitations include the ethnic homogeneity, more than 90% of participants being Cauca-

sian. The low incidence of SGA subtypes (e.g. Hypertensive-SGA) may have led to models

being over-fitted. Moreover, SCOPE’s primary aim [26] was to screen and select biomarkers

for prediction of preeclampsia, and prediction of SGA was a planned secondary analysis.

Other biomarkers for future consideration might include glycogen phosphorylase isoenzyme

BB [47] or beta-hCG.[34,48] Metabolomic analyses warrant further investigation as we

recently demonstrated in a case-control study that 19 metabolites combined to give an AUC

for SGA of 0.9.[49] Finally, the SCOPE study was designed to generate early pregnancy screen-

ing tests and did not include a third-trimester blood sample or ultrasound scan. For early preg-

nancy prediction of SGA, our models are inadequate for clinical use. However, PlGF (and

possibly other biomarkers) may have greater utility closer to disease onset [50–52] and there is

potential for evaluation of a two-stage test with those who screen positive in early pregnancy

receiving low dose aspirin [53] and late pregnancy screening with PlGF and/or a growth scan

at 36 weeks.[54] Sovio et al [54] reported that 57% of SGA infants were identified by ultra-

sound performed in a research setting at 36 weeks of gestation whereas scanning earlier in the

third trimester is less reliable for detection of SGA.[55] An algorithm whereby women who

have moderate or high risk screening for SGA at 19–24 weeks are selectively offered further

third trimester scanning at 32 and or 36 weeks has been proposed and now requires valida-

tion.[56]

Conclusions

Modest prediction of SGA was obtained by combining early pregnancy clinical risk factors,

biomarkers and biometry and Doppler data from the 20-weeks’ anatomy scan in healthy nul-

liparous women. Addition of biomarker data to our previous clinical and ultrasound models

did not improve performance. There is an urgent need to develop reliable tools for prediction

of SGA, especially the majority group of Normotensive-SGA, who are usually not detected

until after birth. Such tools could reduce perinatal morbidity and mortality. This paper gives

new insights into the potential molecular mechanisms of placental and hypertensive disease in

pregnancy.
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