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Abstract: The study focuses on the identification of extreme mechanical properties of 3D
lattice metamaterials based on regular tensegrity modules: 4-strut simplex, 3-strut simplex,
expanded octahedron, truncated tetrahedron and X-module. The basis of the analysis is a continuum
model which is used to find the equivalent elasticity matrices of the unit cells. For each examined
tensegrity module a line of extreme properties is determined, which indicates the occurrence of the
soft mode of deformation. Moreover, the eigenvectors corresponding to soft and stiff deformation
modes are calculated and presented graphically. The obtained results are promising from the point of
view of future creation of tensegrity lattices and metamaterials with extreme mechanical properties.
One of the analysed materials is identified as quasi bimode, two as quasi trimodes, another one as a
trimode and one more as a unimode.
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1. Introduction

The idea of extreme materials was developed in 1995 by Milton and Cherkayev [1]. The term
extreme implies that the material is extremely stiff under certain stresses or extremely compliant in
other orthogonal cases of stresses. Some of extreme materials exhibit unusual mechanical properties,
such as for example a negative Poisson’s ratio. Extreme material properties may be examined
by analysing the elasticity tensor, which can be diagonalized using the orthogonal transformation.
After diagonalization, a set of eigenvalues is obtained, with orthogonal eigenvectors that describe
deformation forms of the analysed material. The number of eigenvalues that are close to zero indicates
the type of extreme material, which can be: nullmode, unimode, bimode, trimode, quadramode,
pentamode or hexamode [1,2].

Analysis of extreme mechanical properties of tensegrity systems remains a compelling challenge
in the field of mechanics of space latices or engineering metamaterials [3,4]. The concept of tensegrity
metamaterials was introduced in [5], where the dynamic properties of the set of tensegrity prisms are
analysed, and then developed in [6–8]. Self-similar tensegrity masts of order 1 and higher are discussed
in [9]. The work [10] focuses on the morphological optimization of tensegrity-like metamaterials with
a novel model of an infinite slab. In [11], the authors describe extreme softening/stiffening response
of axially loaded tensegrity prisms exhibiting the geometrically nonlinear behaviour. They focus on
the design and manufacture of tensegrity lattices and innovative metamaterials. The papers [12,13]
propose three-dimensional tensegrity lattices constructed from basic tensegrity octahedron modules
used as unit cells. Another interesting approach is presented in [14,15], where tensegrity cell mechanical
metamaterial with metal rubber is proposed. In [16] the authors develop an orthotropic metamaterial
built from tensegrity unit cells. They prove that the proposed mechanical metamaterial has a negative
Poisson’s ratio and some properties which can be regarded as smart [17–19]. To summarize, it can be
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noticed from the literature study that there has been a significant development of tensegrity latices
and metamaterials in recent years.

Identification of mechanical properties of tensegrity metamaterials can be performed using a
continuum model [20,21]. It is based on the equivalence of the strain energy defined within the
3D theory of elasticity and the strain energy in a discrete formulation. Such an approach includes
nonlinearities corresponding to the equations of equilibrium in actual configuration of the structure
with self-stress. The paper [21] focuses on the evaluation of equivalent mechanical properties of various
tensegrity modules using the continuum model. It is explained there how to build the continuum model
for tensegrities and how to determine technical coefficients with the presented approach. Using the
adopted model, mechanical characteristics are determined and graphs of identified mechanical
coefficients for five typical tensegrity modules are presented.

A similar approach is used in the paper [22], which is dedicated to the evaluation of extreme
properties of cellular metamaterials based on the simplex tensegrity pattern. Supercells constructed
from simplex modules with various geometrical proportions are analyzed. The concept of extreme
properties is described in short and the continuum model described in [20,21] is applied to identify
mechanical properties of the considered structures. The eigensolution of the equivalent elasticity
matrices of the continuum model is used to define six representative deformation modes.

In the analyses presented in this manuscript the continuum model, which was proposed in [20,21]
and used in [22], is applied as a method of analysis that allows us to determine technical coefficients
and estimate elastic properties of the structures. However, the continuum model itself is used here
only as a tool and is described in short in Section 2. The novelty of this study is a methodical search of
material structures with extreme mechanical features. Five regular tensegrity modules are considered:
4-strut simplex, 3-strut simplex, octahedron, tetrahedron and X-module. It is proved that the analyzed
systems can be regarded as extreme and the parameters for which it occurs are given. It is not a
trivial task, and in fact very few structures have extreme properties—for example in trusses without
infinitesimal modes no extreme features can be identified. The original results presented in this
paper, which include determination of the parameters that assure occurrence of extreme properties
and identification of stiff and soft modes, are based on the previously published results [21] on the
continuum description of tensegrity modules. The author decided to repeat some of the formulas
presented in [21] to make this work clear and enable the readers to repeat or verify the original results
of this study.

The applied continuum model can be used for the analysis of both tensegrity unit cells and
lattice structures or materials composed of these cells. As it is proved in the next section of this paper,
under certain assumptions (compliance of infinitesimal mechanisms) the properties of the cellular
metamaterial are the same as the properties of its single cell. Therefore, in order to identify extreme
mechanical properties of 3D lattice metamaterials, the author examines single tensegrity modules that
can be applied as unit cells in mechanical metamaterials. As the results obtained for single modules
correspond to the properties of materials constructed from them, the conclusions can be drawn in
regard to whole lattice metamaterials.

2. Equivalent Mechanical Properties of Tensegrity Structures

The continuum model proposed in [20] and analysed in [21] is based on the equivalence of the
strain energy of an unsupported tensegrity structure defined with the use of the finite element method
(FEM) [23–26] and the strain energy of a solid determined using the symmetric linear 3D elasticity
theory (LTE) [27]. The strain energy of a tensegrity truss according to FEM is dependent on the global
linear stiffness matrix KL and the global geometric stiffness matrix KG = S0Kg. The self-equilibrated
set of normal forces of the structure with the multiplier S0 is represented by the second of the
above matrices. The well known finite element formulation is based on a local approximation of
the displacement field of a separate finite element with the use of shape functions. For the two-node
truss finite elements the shape functions are formally exact and no approximation error is generated.



Materials 2020, 13, 4845 3 of 17

The global stiffness matrix and geometric stiffness matrix are obtained with the use of local matrices
after the standard process of globalization [23,26]. The global matrices required for the analysis can be
also obtained in an algebraic way [28–31]. The algebraic formulation is global from the beginning of
the analysis with no approximation and is based on creation of a compatibility matrix as a relation
between extensions of truss members and global displacements of the structure. Elastic and geometric
data of the structure are represented with a separate diagonal matrix. The two formulations lead to
the same results (linear stiffness matrix [28–30] and geometric stiffness matrix [31]), however the FEM
formalism is recommended for the 3D models [30] as it is simpler to algorithmize and program.

The technique used in the continuum model (for details see [20,21] and papers cited therein)
leads to the equivalent symmetric elasticity matrix E = [Ei,j], i, j = 1, ..., 6, according to the LTE theory.
Description and detailed discussion of the equivalent mechanical properties of tensegrity modules
based on the continuum model is published in [21]. The applied model is non-linear in the sense of
equilibrium equations considered in actual configuration. Validation of the model for structures with
self-stress is presented in the annex to [22].

The applied continuum model can be used for the analysis of simple unit cells as well as more
complicated lattice structures or materials composed of such cells. It is proved below that depending
on the arrangement of single cells in the material, the properties of the material remain the same or
become different from the features of the single module.

In the case of a 4-strut simplex, the modules can be connected in accordance with their infinitesimal
mechanisms or not. In Figure 1 two configurations of a 4-module supercell based on the 4-strut simplex
module are presented:

• Configuration A (Figure 1a)—an anisotropic layout with four modules rotated clockwise;
• Configuration B (Figure 1b)—an orthotropic layout with two modules rotated clockwise and two

counterclockwise to obtain a symmetry.

The presented supercells consist of four tensegrity modules connected in nodes of their upper and
lower bases. The single unit cell is a 4-strut simplex inscribed into a cube of edge length a and therefore,
the volume of the supercell in the formula for the strain energy of a solid determined according to LTE
(see [22] for details) should be taken as 4a3.

(a) (b)

Figure 1. Two configurations of a 4-unit supercell: (a) A—anisotropic configuration. (b) B—orthotropic
configuration. Struts are marked with thick yellow lines and cables with thin blue ones.
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The elastic matrix E obtained from the continuum model for the anisotropic configuration A has
a form

EA =



e11 e12 e13 e14 0 0
e11 e13 −e14 0 0

e33 0 0 0
e12 0 0

e13 0
sym. e13


,

e11 =
2EA

a2 (0.314815 + 1.39827 · k − 0.0794978 · σ),

e12 =
EA
a2 (0.296296 + 0.707107 · k − 0.0134742 · σ),

e13 =
EA
a2 (0.740741 + 0.357771 · k + 0.17247 · σ),

e14 =
EA
a2 (−0.222222 − 0.0808452 · σ),

e33 =
2EA

a2 (0.592593 + 1.43108 · k − 0.17247 · σ),

(1)

where:
k = (EA)cable/(EA)strut, (EA)strut = EA, σ = S0/EA,
S0—multiplier of self-stress forces,
E—elastic modulus of the strut material,
A—cross-section of the strut.

The same matrix determined for the orthotropic configuration B takes a form

EB =



e11 e12 e13 0 0 0
e11 e13 0 0 0

e33 0 0 0
e12 0 0

e13 0
sym. e13


,

e11 =
2EA

a2 (0.314815 + 1.13709 · k − 0.0794978 · σ),

e12 =
EA
a2 (0.296296 + 0.707107 · k − 0.0134742 · σ),

e13 =
EA
a2 (0.740741 + 0.268328 · k + 0.17247 · σ),

e33 =
2EA

a2 (0.592593 + 1.07331 · k − 0.17247 · σ).

(2)

It can be noticed that matrix EA (Equation (1)) is identical to the elastic matrix obtained for the
4-strut simplex module (see Section 4). Matrix EB (Equation (2)), on the other hand, differs from the
the elastic matrix of the unit cell. It can therefore be concluded that depending on the arrangement of
single cells in the material, the properties of the material remain the same or become different from the
features of the single module.
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In the present paper it is assumed that the materials are constructed similarly to the configuration
A of the supercell—all modules should be arranged in accordance with their infinitesimal mechanisms
to form a structure that has identical properties as its unit cells analysed separately. The formation of
a material with a kinematic compatibility between the infinitesimal mechanisms of its unit cells is a
complicated problem that has already been addressed by Motro [32]. Examples of such configurations
of the 3-strut simplex and expanded octahedron patterns are shown in Figure 2. In the truncated
tetrahedron and X modules the task becomes even more complicated and can be a subject of
further investigation. It may lead to both modular systems and new tensegrities, for example with
additional cables.

(a) (b)

Figure 2. Material patterns: (a) 3-strut simplex pattern. (b) Expanded octahedron pattern. Struts are
marked with thick yellow lines and cables with thin blue ones.

3. Extreme Material

The idea of extreme materials was introduced in [1]. Extreme means: extremely stiff under
certain stresses or extremely compliant in other orthogonal cases of stresses. Some of extreme
materials exhibit unusual mechanical properties, such as a negative Poisson’s ratio. Extreme material
features can be identified by examining the elasticity tensor, which is positive definite and shows
certain symmetries. The mentioned tensor can be diagonalized using the orthogonal transformation.
The diagonal representation of the tensor noted in the Voight’s form—as a square 6 × 6 matrix E—is
a set of eigenvalues λi > 0 (i = 1, 2, ..., 6). The corresponding orthogonal eigenvectors wi describe
deformation forms of the analysed material. The number of eigenvalues that are close to zero indicates
the type of extreme material, which can be classified as: nullmode, unimode, bimode, trimode,
quadramode, pentamode or hexamode [1,2]. In the analyses presented in this study it is assumed,
that the eigenvalue is close to zero if it is smaller than the maximum eigenvalue by at least four orders
of magnitude. Traditional materials are usually nullmode. The proposed classification can be used for
the determination of material properties as long as the elastic matrix E is known.

In the present paper the authors use the continuum model [20–22], to determine the elastic matrix
E and thus, to examine the possibility of occurrence of extreme properties. As it was proved in the
previous section, properties of the cellular metamaterials considered in this paper are the same as
the properties of their single cells. Therefore, in order to identify extreme mechanical properties of
proposed 3D lattice metamaterials, the authors examine single tensegrity modules. In individual
tensegrity modules there are two parameters k and σ (described in detail in the previous section),
which can be used to control the properties of the matrix E while searching for soft- and stiff modes. If a
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material is constructed in such a way that there maintains a compliance of infinitesimal mechanisms
on the micro- (Figure 3a) or medium-scale (Figure 3b), then the features of the equivalent matrix E
remain the same as for the single module (Figure 3c).

(a) (b) (c)

Figure 3. 3D lattice metamaterial based on the tensegrity pattern: (a) Micro-scale—material.
(b) Medium-scale—an 8-module supercell. (c) Macro-scale—a unit cell. Struts are marked with yellow
color and cables with thin blue lines.

In the next section a methodical search of materials with extreme mechanical properties is
presented. Five regular tensegrity modules are considered: 4-strut simplex, 3-strut simplex, octahedron,
tetrahedron and X-module. The proposed tool is general and can be used to analyse the features of
materials and structures with any arrangement of modules. However, this requires constructing a
continuum model for each analysed system. Examples of such analyses can be found in [22].

4. Extreme Properties of Regular Tensegrity Modules

In this section, a study of extreme properties of five regular tensegrity modules inscribed into a
cube of edge length a is presented. The analyses are based on the control of two parameters k and σ

(defined in Section 2) that can be adjusted in search of extreme properties of metamaterials.
The following features are described for each module:

• Equivalent elasticity matrix;
• Extreme properties:

– The line on the plane k, σ on which the smallest eigenvalue of the elasticity matrix is close to
zero—the line indicates the possible occurrence of the soft mode of deformation (the arrow
shows the half-plane for which the matrix E is positive definite);

– An example of the distribution of eigenvalues for k = 0.1, scaled so that the volumes of all
modules are identical and equal to the volume of the 4-strut simplex module, assuming the
same material of cables and struts—the applied scaling allowed the authors to compare the
stiff modes between the modules;

– Eigenvectors corresponding to individual eigenvalues of the matrix E—the eigenvectors
corresponding to soft and stiff deformation modes are presented in the drawings.

In the drawings presented in this section, struts are marked with thicker lines and cables with
thinner ones.

4.1. 4-Strut Simplex

The analysed 4-strut simplex module (S4) is presented in Figure 4.
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Figure 4. Geometry of the 4-strut simplex module.

The elastic matrix obtained from the continuum model has a form:

ES4 =



e11 e12 e13 e14 0 0
e11 e13 −e14 0 0

e33 0 0 0
e12 0 0

e13 0
sym. e13


,

e11 =
2EA

a2 (0.314815 + 1.39827 · k − 0.0794978 · σ),

e12 =
EA
a2 (0.296296 + 0.707107 · k − 0.0134742 · σ),

e13 =
EA
a2 (0.740741 + 0.357771 · k + 0.17247 · σ),

e14 =
EA
a2 (−0.222222 − 0.0808452 · σ),

e33 =
2EA

a2 (0.592593 + 1.43108 · k − 0.17247 · σ).

(3)

The elastic matrix indicates that the 4-strut simplex is an anisotropic module. Extreme properties
of the module are presented in Figure 5.

(a) (b)

Figure 5. Extreme properties of the 4-strut simplex: (a) Line of extreme properties σ = 0.012 + 5.34 · k.
(b) Distribution of eigenvalues for k = 0.1, σ = 0.546 (multiplier EA/a2).
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The module can be identified as quasi bimode since one eigenvalue is close to zero and the second
is much smaller than the other four. One positive eigenvalue is dominant over the others.

Analysis of the graphs (Figure 5) leads to the conclusion that the material based on the 4-strut
simplex modules, arranged in accordance with their infinitesimal mechanisms, would have one
stiff, two soft (one purely soft with the corresponding eigenvalue less than 0.01% of λmax,S4 and one
quasi-soft with the eigenvalue less than 1.3% of λmax,S4) and three medium (eigenvalues around 32%
and 35% of λmax,S4) modes of deformation. Moreover, realization of such a material is possible with
the currently available materials.

The soft mode (Figure 6a) of the 4-strut simplex (S4), represented by the eigenvector w6,S4,
is volumetric with various signs, and the extension in x3 direction exceeds by 35% the contraction in
other directions. The stiff mode (Figure 6b), represented by the eigenvector w1,S4, is volumetric with
the uniform sign, and the extension in x3 direction is 47% bigger than in others.

(a) (b)

w6,S4 = [−0.736684 − 0.736684 1 0 0 0]T w1,S4 = [0.678717 0.678717 1 0 0 0]T

Figure 6. Deformation modes of the 4-strut simplex: (a) Soft mode. (b) Stiff mode.

4.2. 3-Strut Simplex

The analysed 3-strut simplex module (S3) is presented in Figure 7.

Figure 7. Geometry of the 3-strut simplex module.



Materials 2020, 13, 4845 9 of 17

The elastic matrix obtained from the continuum model has a form:

ES3 =



3e12 e12 e13 0 e15 e16

3e12 e13 0 −e15 −e16

e33 0 0 0
e12 e16 −e15

e13 0
sym. e13


,

e12 =
EA
a2 (0.0957031 + 0.595459 · k − 0.0400226 · σ),

e13 =
EA
a2 (0.492188 + 0.142302 · k + 0.16009 · σ),

e15 =
EA
a2 (0.182677 + 0.0770235 · σ),

e16 =
EA
a2 (−0.117187 − 0.0237171 · k − 0.0415049 · σ),

e33 =
2EA

a2 (0.632813 + 1.28072 · k − 0.16009 · σ).

(4)

Similarly to the previous module, the elastic matrix indicates that the 3-strut simplex is anisotropic.
Extreme properties of the module are presented in Figure 8.

(a) (b)

Figure 8. Extreme properties of the 3-strut simplex: (a) Line of extreme properties σ = 0.023 + 5.4 · k.
(b) Distribution of eigenvalues for k = 0.1, σ = 0.563 (multiplier EA/a2).

The module can be identified as quasi trimode since one eigenvalue is close to zero and two others
are much smaller than the other three. One positive eigenvalue is dominant over the others.

Analysis of the graphs (Figure 8) leads to the conclusion that the material based on the 3-strut
simplex modules, arranged in accordance with their infinitesimal mechanisms, would have one stiff,
three soft (one purely soft with the corresponding eigenvalue less than 0.01% of λmax,S3 and two
quasi-soft with eigenvalues less than 1% of λmax,S3) and two medium (eigenvalues around 38% and
45% of λmax,S3) modes of deformation. Moreover, realization of such a material is possible with the
currently available materials.

The soft mode (Figure 9a) of the 3-strut simplex (S3), represented by the eigenvector w6,S3,
is volumetric with various signs, and the contraction in x3 direction is 11% lower than the extension in
other directions. The stiff mode (Figure 9b), represented by the eigenvector w1,S3, is volumetric with
the uniform sign, and the extension in x3 direction is 125% bigger than in others.
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(a) (b)

w6,S3 = [1 1 − 0.889519 0 0 0]T w1,S3 = [0.444759 0.444759 1 0 0 0]T

Figure 9. Deformation modes of the 3-strut simplex: (a) Soft mode. (b) Stiff mode.

4.3. Expanded Octahedron

The analysed expanded octahedron module (O) is presented in Figure 10.

Figure 10. Geometry of the expanded octahedron module, with adopted parameters: l/L =

0.65, m/M = 0.30, n/N = 0.56.

The elastic matrix obtained from the continuum model has a form:

EO =



e11 e12 e13 0 0 0
e22 e23 0 0 0

e33 0 0 0
e12 0 0

e13 0
sym. e23


,

e11 =
2EA

a2 (1 + 1.52325 · k + 0.129225 · σ),

e12 =
EA
a2 (0.845615 · k − 0.105243 · σ),

e13 =
EA
a2 (1.26604 · k − 0.153207 · σ),

e22 =
2EA

a2 (1 + 1.35912 · k + 0.137028 · σ),

e23 =
EA
a2 (1.51283 · k − 0.168813 · σ),

e33 =
2EA

a2 (1 + 0.921194 · k + 0.16101 · σ).

(5)
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In this case, the elastic matrix indicates that the expanded octahedron is an orthotropic module.
Extreme properties of the module are presented in Figure 11.

(a) (b)

Figure 11. Extreme properties of the expanded octahedron: (a) Line of extreme properties σ = 8.03 · k.
(b) Distribution of eigenvalues for k = 0.1, σ = 0.803 (multiplier EA/a2).

The module can be identified as quasi trimode since one eigenvalue is close to zero and two others
are much smaller than the other three. Three positive eigenvalues have similar values.

Analysis of the graphs (Figure 11) leads to the conclusion that the material based on the expanded
octahedron modules, arranged in accordance with their infinitesimal mechanisms, would have three
stiff and three soft (one purely soft with the corresponding eigenvalue less than 0.01% of λmax,O

and two quasi-soft with eigenvalues less than 0.7% of λmax,O) modes of deformation. Moreover,
realization of such a material is possible with the currently available materials.

The soft mode (Figure 12a) of the expanded octahedron (O), represented by the eigenvector w6,O,
is a shear deformation in x1 − x2 plane. The stiff mode (Figure 12b), represented by the eigenvector
w1,O, is volumetric with the dominant extension in x1 direction.

(a) (b)

w6,O = [0 0 0 1 0 0]T w1,O = [1 0.0506881 0.0628794 0 0 0]T

Figure 12. Deformation modes of the expanded octahedron: (a) Soft mode. (b) Stiff mode.

4.4. Truncated Tetrahedron

The analysed truncated tetrahedron module (T) is presented in Figure 13.
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Figure 13. Geometry of the truncated tetrahedron module.

The elastic matrix obtained from the continuum model has a form:

ET =



e11 e12 e12 0 0 0
e11 e12 0 0 0

e11 0 0 0
e12 0 0

e12 0
sym. e12


,

e11 =
2EA

a2 (0.836131 + 0.728014 · k + 0.0709611 · σ),

e12 =
EA
a2 (0.232405 + 0.696312 · k − 0.0709611 · σ).

(6)

Similarly to the previous module, the truncated tetrahedron is orthotropic. Extreme properties of
the module are presented in Figure 14.

(a) (b)

Figure 14. Extreme properties of the truncated tetrahedron: (a) Line of extreme properties σ = 3.275+9.81 · k.
(b) Distribution of eigenvalues for k = 0.1, σ = 4.256 (multiplier EA/a2).

The module is trimode. Three positive eigenvalues are equal. Unfortunately, the values of σ are
unreal as far as the currently available technology is concerned.

Analysis of the graphs (Figure 14) leads to the conclusion that the material based on the truncated
tetrahedron modules, arranged in accordance with their infinitesimal mechanisms, would have
three stiff and three purely soft (corresponding eigenvalues are less than 0.01% of λmax,T) modes
of deformation. It is the most extreme material from all analysed examples. However, realization of
such a material is not possible with the currently available materials.
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The soft mode (Figure 15a) of the truncated tetrahedron (T), represented by the eigenvector w6,T,
is a shear deformation in x2 − x3 plane. The stiff mode (Figure 15b), represented by the eigenvector
w1,T, is volumetric with the uniform extension in all directions.

(a) (b)

w6,T = [0 0 0 0 0 1]T w1,T = [1 1 1 0 0 0]T

Figure 15. Deformation modes of the truncated tetrahedron: (a) Soft mode. (b) Stiff mode.

4.5. X-Module

The analysed X-module (X) is presented in Figure 16.

Figure 16. Geometry of the X-module.

The elastic matrix obtained from the continuum model has a form:

EX =



e11 e12 e13 0 e15 0
e22 e23 0 −e23 0

e33 0 e15 0
e12 0 −e23

e13 0
sym. e23


,

e11 =
2EA

a2 (0.0441942 + 0.110947 · k − 0.00988212 · σ),

e12 =
EA
a2 (0.0883883 + 0.0340207 · k + 0.0395285 · σ),

e13 =
EA
a2 (0.0968935 · k − 0.0197642 · σ),

e15 =
EA
a2 (−0.00850517 · k),

e22 =
2EA

a2 (0.0441942 + 0.193041 · k − 0.0197642 · σ),

e23 =
EA
a2 (0.0340207 · k),

e33 =
2EA

a2 (0.0625 + 0.0484468 · k + 0.00988212 · σ).

(7)
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The elastic matrix indicates that the X-module is anisotropic. Extreme properties of the module
are presented in Figure 17.

(a) (b)

Figure 17. Extreme properties of the X-module: (a) Line of extreme properties σ = 0.001 + 3.69 · k.
(b) Distribution of eigenvalues for k = 0.1, σ = 0.370 (multiplier EA/a2).

The module can be identified as unimode since one eigenvalue is close to zero, despite two
eigenvalues smaller than the other three. There is no dominant positive eigenvalue.

Analysis of the graphs (Figure 17) leads to the conclusion that the material based on the X-modules,
arranged in accordance with their infinitesimal mechanisms, would have one stiff, one purely soft
(corresponding eigenvalue is less than 0.01% of λmax,X) and four medium (two stiffer with the
eigenvalues around 49% and 66% of λmax,X and two softer with around 1.6% of λmax,X) modes of
deformation. Moreover, realization of such a material is possible with the currently available materials.

The soft mode (Figure 18a) of the X-module (X), represented by the eigenvector w6,X, is a
combination of a shear deformation in x1 − x3 plane and a volumetric deformation with the dominant
extension in x1 and x2 directions. The stiff mode (Figure 18b), represented by the eigenvector w1,X,
is a combination of a volumetric deformation with the dominant extension in x1 and x2 directions
supplemented with a small extension in x3 direction and a small shear deformation in x1 − x3 plane.

(a)

w6,X = [−0.956738 0.936366 − 0.0004316 0 1 0]T

(b)

w1,X = [0.957577 1 0.0784373 0 − 0.0201818 0]T

Figure 18. Deformation modes of the X-module: (a) Soft mode. (b) Stiff mode.
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4.6. Comparison of the Modules

Figure 19 depicts lines of extreme mechanical properties obtained for four out of five analysed
tensegrity modules. As explained earlier, the line determined for the truncated tetrahedron goes
beyond the range of achievable values of the parameter σ.

Figure 19. Lines of extreme properties for selected tensegrity modules.

The biggest area where the elastic matrix E is positive definite is observed for the expanded
octahedron and the smallest—for the X-module. The areas for both simplex modules are similar.
From the point of view of commonly produced materials, the most real values of the parameters k and
σ can be obtained for the X-module.

The eigenvalues for stiff modes that accompany the identified soft modes (Figures 5b, 8b, 11b, 14b
and 17b) are on the same level for four modules: 4-strut simplex, 3-strut simplex, expanded octahedron
and truncated tetrahedron, and much smaller for the X-module.

Soft deformation modes are volumetric with various signs for the 4-strut simplex, 3-strut simplex
and expanded octahedron modules, but shear dominated for the truncated tetrahedron and the
X-module. Stiff modes of deformation are more or less uniform volumetric for the 4-strut simplex,
3-strut simplex and truncated tetrahedron modules, volumetric in two directions for the X-module
and volumetric in one direction for the expanded octahedron.

5. Conclusions

The main focus of the present paper is put on the identification of extreme mechanical properties
of five regular tensegrity modules. The considered structures are assumed to be used as unit cells in 3D
lattice metamaterials. The following tensegrity modules are analysed: 4-strut simplex, 3-strut simplex,
expanded octahedron, truncated tetrahedron and X-module. It is shown that the material, in which all
modules are arranged in accordance with their infinitesimal mechanisms, has the same mechanical
properties as its unit cell and therefore, single tensegrity modules can be examined instead of more
complicated multi-module systems.

Extreme features of the proposed metamaterials are identified with the use of the continuum
model, which enables the authors to find the equivalent elasticity matrices of the examined structures.
Analysis of these matrices leads to the determination of eigenvalues and corresponding eigenvectors
which, on the other hand, enable the identification of soft and stiff deformation modes.

For each analysed module and thus for the metamaterial based on this module, a line of extreme
mechanical properties is determined. It is a line on the plane k, σ, on which the smallest eigenvalue of
the elasticity matrix is close to zero and which defines the possibility of the soft mode of deformation.
Additionally, soft and stiff deformation modes are presented analytically and graphically for each
unit cell.

The analyses indicate that both simplex modules are similar from the point of view of their extreme
properties. They have one stiff, one purely soft, some quasi-soft and some medium deformation modes.
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The area where the elastic matrix is positive definite is almost the same for both modules. The 3-strut
simplex has less struts and cables, but on the other hand, the 4-strut module can be used to create more
regular rectangular patterns. The truncated tetrahedron module shows the most extreme properties,
as it has three purely stiff and three purely soft deformation modes. However, it could not be created
with the currently available materials. The expanded octahedron has three stiff, one purely soft and
two quasi-soft modes of deformation and moreover, the biggest area of positive definiteness of the
elastic matrix. The X-module has one stiff and one soft mode and the smallest area for which the elastic
matrix is positive definite, but in the same time, it is quite simple to create, it has small amount of
elements and may be formed in very regular patterns.

The obtained results are promising from the point of view of future creation of tensegrity lattices
and metamaterials with extreme mechanical properties. A metamaterial based on the 4-strut simplex
module is identified as quasi bimode, 3-strut simplex and expanded octahedron as a quasi trimode,
truncated tetrahedron as a trimode and X-module as a unimode. However, the truncated tetrahedron
module cannot be considered as a potential unit cell of the metamaterial, because the parameters k
and σ, for which the soft mode is obtained are not achievable with the current technology. From the
practical point of view, taking into account the available technology, a metamaterial based on the
X-module has the greatest potential.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Milton, G.; Cherkaev, A. Which Elasticity Tensors are Realizable? J. Eng. Mater. Technol. 1995, 117, 483–493.
[CrossRef]

2. Kadic, M.; Bückmann, T.; Stenger, N.; Thiel, M.; Wegener, M. On the practicability of pentamode mechanical
metamaterials. Appl. Phys. Lett. 2012, 101, 191901. [CrossRef]

3. Cui, T.; Smith, D.; Liu, R. Metamaterials: Theory, Design, and Applications; Springer: New York, NY, USA;
Dordrecht, The Netherlands; Heidelberg, Germany; London, UK, 2010; pp. 1–367.

4. Singh, G.; Ni, R.; Marwaha, A. A Review of Metamaterials and its Applications. Int. J. Eng. Trends Technol.
2015, 19, 305–310. [CrossRef]

5. Fraternali, F.; Carpentieri, G.; Amendola, A.; Skelton, R.; Nesterenko, V. Multiscale tunability of solitary
wave dynamics in tensegrity metamaterials. Appl. Phys. Lett. 2014, 105, 201903. [CrossRef]

6. Fabbrocino, F.; Carpentieri, G.; Amendola, A.; Penna, R.; Fraternali, F. Accurate numerical methods
for studying the nonlinear wave-dynamics of tensegrity metamaterials. Eccomas Procedia Compdyn 2017,
3911–3922. [CrossRef]

7. Amendola, A.; Krushynska, A.; Daraio, C.; Pugno, N.; Fraternali, F. Tuning frequency band gaps of tensegrity
mass-spring chains with local and global prestress. Int. J. Solids Struct. 2018, 155, 47–56. [CrossRef]

8. Wang, Y.; Liu, X.; Zhu, R.; Hu, G. Wave propagation in tunable lightweight tensegrity metastructure. Sci. Rep.
2018, 8, 11482. [CrossRef] [PubMed]

9. De Tommasi, D.; Marano, G.; Puglisi, G.; Trentadue, F. Optimal complexity and fractal limits of self-similar
tensegrities. Proc. R. Soc. A 2015, 471, 20150250. [CrossRef]

10. De Tommasi, D.; Marano, G.; Puglisi, G.; Trentadue, F. Morphological optimization of tensegrity-type
metamaterials. Compos. Part B 2016, 115, 182–187. [CrossRef]

11. Fraternali, F.; Carpentieri, G.; Amendola, A. On the mechanical modeling of the extreme softening/stiffening
response of axially loaded tensegrity prisms. J. Mech. Phys. Solids 2015, 74, 136–157. [CrossRef]

12. Rimoli, J.; Pal, R.K. Mechanical response of 3-dimensional tensegrity lattices. Compos. Part B 2017, 115, 30–42.
[CrossRef]

13. Salahshoor, H.; Pal, R.K.; Rimoli, J. Material symmetry phase transitions in three-dimensional tensegrity
metamaterials. J. Mech. Phys. Solids 2018, 119, 382–399. [CrossRef]

14. Zhang, Q.; Zhang, D.; Dobah, Y.; Scarpa, F.; Fraternali, F.; Skelton, R. Tensegrity cell mechanical metamaterial
with metal rubber. Appl. Phys. Lett. 2018, 113, 031906. [CrossRef]

http://dx.doi.org/10.1115/1.2804743
http://dx.doi.org/10.1063/1.4709436
http://dx.doi.org/10.14445/22315381/IJETT-V19P254
http://dx.doi.org/10.1063/1.4902071
http://dx.doi.org/10.7712/120117.5693.17765
http://dx.doi.org/10.1016/j.ijsolstr.2018.07.002
http://dx.doi.org/10.1038/s41598-018-29816-6
http://www.ncbi.nlm.nih.gov/pubmed/30065300
http://dx.doi.org/10.1098/rspa.2015.0250
http://dx.doi.org/10.1016/j.compositesb.2016.10.017
http://dx.doi.org/10.1016/j.jmps.2014.10.010
http://dx.doi.org/10.1016/j.compositesb.2016.10.046
http://dx.doi.org/10.1016/j.jmps.2018.07.011
http://dx.doi.org/10.1063/1.5040850


Materials 2020, 13, 4845 17 of 17

15. Ma, Y.; Zhang, Q.; Dobah, Y.; Scarpa, F.; Fraternali, F.; Skelton, R.; Zhang, D.; Hong, J. Meta-tensegrity:
Design of a tensegrity prism with metal rubber. Compos. Struct. 2018, 206, 644–657. [CrossRef]

16. Al Sabouni-Zawadzka, A.; Gilewski, W. Smart Metamaterial Based on the Simplex Tensegrity Pattern.
Materials 2018, 11, 673. [CrossRef] [PubMed]

17. Akhras, G. Smart Materials and Smart Systems for the Future. Can. Mil. J. 2000, 1, 25–32.
18. Gilewski, W.; Al Sabouni-Zawadzka, A. On possible applications of smart structures controlled by self-stress.

Arch. Civ. Mech. Eng. 2015, 15, 469–478. [CrossRef]
19. Al Sabouni-Zawadzka, A.; Gilewski, W. Inherent Properties of Smart Tensegrity Structures. Appl. Sci. 2018,

8, 787. [CrossRef]
20. Gilewski, W.; Kasprzak, A. 3D Continuum Models of Tensegrity Modules with the Effect of Self-Stress; WCCM XI,

ECCM V; International Center for Numerical Methods in Engineering (CIMNE): Barcelona, Spain, 2014.
21. Gilewski, W.; Al Sabouni-Zawadzka, A. Equivalent mechanical properties of tensegrity truss structures with

self-stress included. Eur. J. Mech. A Solids 2020, 83, 103998. [CrossRef]
22. Al Sabouni-Zawadzka, A.; Gilewski, W. Soft and Stiff Simplex Tensegrity Lattices as Extreme Smart

Metamaterials. Materials 2019, 12, 187. [CrossRef]
23. Bathe, K. Finite Element Procedures in Engineering Analysis; Prentice-Hall: New York, NY, USA, 1996.
24. Crisfield, M. Non-Linear Finite Element Analysis of Solids and Structures; Essentials; Wiley: Chichester, UK,

2003; Volume 1.
25. Hughes, T. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis; Dover Publications:

Mineola, NY, USA, 2000; Volume 78.
26. Zienkiewicz, O.; Taylor, R.; Zhu, J. The Finite Element Method: Its Basis and Fundamentals; Butterworth and

Heinemann: Oxford, UK, 2005; Volume I.
27. Green, A.; Zerna, W. Theoretical Elasticity; Oxford University Press: Oxford, UK, 1968.
28. Pellegrino, S.; Calladine, C. Matrix analysis of statically and kinematically indeterminate frameworks. Int. J.

Solids Struct. 1986, 22, 409–428. [CrossRef]
29. Lewinski, T. On algebraic equations of elastic trusses, frames and grillages. Journ. Theoret Appl. Mech. 2001,

39, 307–322.
30. Pelczynski, J.; Gilewski, W. Algebraic Formulation for Moderately Thick Elastic Frames, Beams, Trusses, and

Grillages within Timoshenko Theory. Math. Probl. Eng. 2019, 2019, 7545473. [CrossRef]
31. Pelczynski, J.; Gilewski, W. An extension of algebraic equations of elastic trusses with self-equilibrated

system of forces. In Proceedings of the ECCM VI7th European Conference on Computational Fluid Dynamics,
Glasgow, UK, 11–15 June 2018.

32. Motro, R. Tensegrity: Structural Systems for the Future; Kogan Page Science: London, UK, 2003.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.compstruct.2018.08.067
http://dx.doi.org/10.3390/ma11050673
http://www.ncbi.nlm.nih.gov/pubmed/29701648
http://dx.doi.org/10.1016/j.acme.2014.08.006
http://dx.doi.org/10.3390/app8050787
http://dx.doi.org/10.1016/j.euromechsol.2020.103998
http://dx.doi.org/10.3390/ma12010187
http://dx.doi.org/10.1016/0020-7683(86)90014-4
http://dx.doi.org/10.1155/2019/7545473
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Equivalent Mechanical Properties of Tensegrity Structures
	Extreme Material
	Extreme Properties of Regular Tensegrity Modules
	4-Strut Simplex
	3-Strut Simplex
	Expanded Octahedron
	Truncated Tetrahedron
	X-Module
	Comparison of the Modules

	Conclusions
	References

