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To determine whether spatiotemporal information could 
help predict multidrug resistance at the time of tuberculosis 
diagnosis, we investigated tuberculosis patients who 
underwent drug susceptibility testing in Lima, Peru, during 
2005–2007. We found that crude representation of spatial 
location at the level of the health center improved prediction 
of multidrug resistance.

In many locations where risk for tuberculosis (TB) is high, 
access to drug-susceptibility testing (DST) is limited. 

The detection of drug resistance in these instances usually 
requires the use of culture-based DST, but laboratory 
capacity in these areas is in short supply. As a result, 
DST is rationed, with patients at highest risk for drug 
resistance receiving priority. New rapid tests for resistance 
that circumvent some constraints are being implemented, 
and universal DST might eventually be available (1); 
however, most clinicians in high-risk areas will not have 
access to these tools for at least several years. Accordingly, 
improved prediction of risk for multidrug-resistant (MDR) 
TB, defi ned as resistance to at least isoniazid and rifampin, 
might reduce delay to appropriate diagnosis, improve 
treatment outcomes, and decrease the risk for MDR TB 
transmission.

Demographic and clinical characteristics that have 
been associated with increased risk for MDR TB among 
patients with incident TB are young age, previous TB 
treatment, and known contact with MDR TB (2,3). In the 

context of limited access to DST, these risk factors are often 
incorporated into diagnostic algorithms to help justify use of 
DST. We hypothesized that information about the location 
and time at which cases were detected might also improve 
prediction of MDR TB (3–5). We analyzed programmatic 
data collected in Lima, Peru, about TB patients who were 
receiving DST to assess whether predictive models that 
include information about time and location could improve 
prediction of risk for MDR TB.

The Study
We selected our study population from among all 

11,711 patients with reported cases of TB in 2 of Lima’s 
4 health districts, Lima Ciudad and contiguous catchment 
areas of Lima Este, during January 1, 2005–December 31, 
2007. Demographic and clinical information about these 
patients was collected from routine TB program data. The 
home addresses of the patients were geocoded by using 
high-resolution maps created in Google Earth (Google Inc., 
Mountain View, CA, USA). In Peru, only a subset of TB 
patients determined to be at high risk for MDR TB receive 
sputum culture and DST; consistent with local guidelines, 
these patients are those who had previous TB treatment, 
known household contact with MDR TB patients, or lack 
of response to fi rst-line TB treatment (6). We limited our 
analyses to patients who underwent DST and who had a 
defi nitive positive or negative result (n = 1,116); 346 of 
these patients had MDR TB (Figure 1). Additional study 
details are provided in Lin et al. (7).

To identify risk factors for MDR TB, we constructed 
a logistic regression model that included age, sex, sputum 
smear test result, previous TB treatment, known household 
contact with MDR TB patients, and HIV infection status as 
potential predictors. Univariable analyses showed that age 
at diagnosis, history of TB treatment, and sputum smear–
negative disease were signifi cantly associated with risk for 
MDR TB (Table). In the multivariable adjusted analysis, 
age at diagnosis, history of TB treatment, sputum smear–
negative disease, and HIV-positive status were found to be 
independent predictors of MDR TB (Table).

To determine whether spatiotemporal information 
improved prediction of MDR TB, we further constructed 
3 spatial regression models: 1) a health center model that 
combined demographic and clinical factors with health 
center information, modeled as random intercepts (8); 2) 
a spatial model that combined demographic and clinical 
factors with individual-level spatial information (i.e., 
patient residence), modeled as a smooth term using thin-
plate regression splines (9); and 3) a spatiotemporal model 
that combined demographic and clinical factors with 
individual-level spatiotemporal information (i.e., patient 
residence and date of TB diagnosis), modeled as a smooth 
term using thin-plate regression splines (10). We compared 
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model performance of the 3 spatial models against a 
nonspatial model, which comprised only demographic and 
clinical factors.

To evaluate the accuracy of the models, we held out 
the last 50% of cases according to diagnosis date and used 
the fi rst 50% of cases to fi t the models. We then made 
predictions on the held-out cases by using the fi tted models; 
receiver operating characteristic (ROC) analysis was used 
to estimate the area under the curve (AUC) for the held-
out cases under each of the 4 models. We also computed 
the logistic regression likelihood (Bernoulli density) of the 
held-out data; the model with the largest logistic regression 
likelihood was judged to be most accurate (11).

The ROC analysis suggested that the addition of 
spatial information improved the performance of the 
nonspatial model (Figure 2). The AUC for the nonspatial 
model was 0.64 (95% CI 0.59–0.69, compared with 0.67 
(95% CI 0.63–0.72) for the health center model (p = 0.02 
for comparison with the nonspatial model); 0.67 (95% CI 

0.62–0.72) for the spatial model (p = 0.06 for comparison 
with the nonspatial model); and 0.66 (95% CI 0.61–0.71) 
for the spatiotemporal model (p = 0.36 for comparison 
with the nonspatial model). The logarithm of logistic 
regression likelihood for the spatial model (−328.1) and the 
health center model (−327.0) were greater than that of the 
nonspatial model (−335.1), which suggests that the use of 
spatial information improved predictive power.

Conclusions
In locations where capacity is not available to provide 

DST for all patients with incident TB, improved methods to 
predict MDR TB at the time of diagnosis would be valuable. 
We found that information about location (represented 
as either the health center of diagnosis or the patient’s 
residence location) improved prediction of MDR TB 
among those who received DST. Whereas the improvement 
in the models was either statistically signifi cant (comparing 
health center and nonspatial models) or trending toward 
signifi cance (comparing spatial and nonspatial models), 
the absolute differences in the AUCs from spatial and 
nonspatial models were modest. Despite the minor 
improvements, spatial and temporal information may be 
useful for targeting testing when access is limited. From 
a practical standpoint, these results suggest that adopting 
more lenient criteria for ordering DST for TB patients at 
individual health centers where risk for MDR TB is highest 
may be a rational approach while resources are limited.

Models with simple representations of space (i.e., 
identifi cation of location only at the level of the health 
center) outperformed models that captured spatial risk in 
fi ner spatial resolution. This fi nding is consistent with an 
earlier analysis in which we found relative aggregation of 
new MDR TB at a spatial scale of 4–7 km (7). Together, 
these results suggest dispersed spatial risk for resistance in 
the study area, which indicates that, from a public health 
perspective, policies prioritizing the use of DST for patients 
originating from large administrative areas may be helpful.

Because we could include only patients who received 
DST, we can make inference only among this subgroup 
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Figure 1. Spatial distribution of drug-sensitive (black triangles) and 
drug-resistant (red triangles) tuberculosis among patients who 
received drug susceptibility testing, Lima Ciudad and Lima Este, 
Peru, 2005–2007. A small random error was added to the spatial 
coordinates for each patient to protect confi dentiality.

Table. Risk for MDR TB among TB patients who received DST, by demographic and clinical characteristics, Lima Ciudad and Lima 
Este, Peru, 2005–2007* 
Characteristic Univariate OR† (95% CI) p value Multivariate OR† (95% CI)‡ p value 
Age, per 10-y increase 0.89 (0.81–0.99) 0.034 0.90 (0.81–1.00) 0.046 
Male sex 1.09 (0.81–1.46) 0.58 1.05 (0.78–1.43) 0.74 
Negative sputum smear test results 2.05 (1.37–3.08) <0.001 2.11 (1.40–3.19) <0.001 
HIV infection 0.59 (0.31–1.13) 0.11 0.52 (0.27–1.00) 0.049 
History of TB treatment 2.38 (1.78–3.18) <0.001 2.41 (1.80–3.23) <0.001 
Known household contact with persons with 
MDR TB 

1.18 (0.89–1.57) 0.25 1.08 (0.81–1.44) 0.59 

*MDR, multidrug resistant; TB, tuberculosis; DST, drug-susceptibility testing; OR, odds ratio. 
†ORs represent risk for MDR TB conditional on receiving DST. For example, even if household contact with persons with MDR TB is marginally 
associated with increased risk for MDR TB, the observed association would likely be attenuated when the analysis is restricted to those who received 
DST because household contact with persons with MDR TB is an accepted criterion for ordering DST. 
‡Adjusted for all other variables listed. 
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of patients. However, if use of DST were randomized 
throughout the study area (as earlier analysis suggests 
[7]), inference from this subgroup should be generalizable 
to all patients with incident TB. Use of historical data 
for spatial prediction relies on the assumption that the 
spatial patterns remain constant or change in a predictable 
manner. Temporal changes in spatial distribution of MDR 
TB would have reduced the predictive ability of the 
models, yet we found that spatial information improved 
our predictions. Further research is warranted to test this 
approach in settings where the spatial pattern of TB differs 
from that of Lima, preferably by using datasets in which 
DST has been conducted for all TB patients to prevent 
potential sampling bias.
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Figure 2. Receiver operating characteristic curves for the 4 
prediction models for multidrug-resistant tuberculosis among 
patients who received drug susceptibility testing, Lima Ciudad and 
Lima Este, Peru, 2005–2007.


