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Abstract: Molecular techniques to detect organisms in aquatic ecosystems are being gradually
considered as an attractive alternative to standard laboratory methods. They offer faster and more
accurate means of detecting and monitoring species, with respect to their traditional homologues
based on culture and microscopic counting. Molecular techniques are particularly attractive when
multiple species need to be detected and/or are in very low abundance. This paper reviews molecular
techniques based on whole cells, such as microscope-based enumeration and Fluorescence In-Situ
Hybridization (FISH) and molecular cell-free formats, such as sandwich hybridization assay (SHA),
biosensors, microarrays, quantitative polymerase chain reaction (qPCR) and real time PCR (RT-PCR).
Those that combine one or several laboratory functions into a single integrated system (lab-on-a-chip)
and techniques that generate a much higher throughput data, such as next-generation systems (NGS),
were also reviewed. We also included some other approaches that enhance the performance of
molecular techniques. For instance, nano-bioengineered probes and platforms, pre-concentration
and magnetic separation systems, and solid-phase hybridization offer highly pre-concentration
capabilities. Isothermal amplification and hybridization chain reaction (HCR) improve hybridization
and amplification techniques. Finally, we presented a study case of field remote sensing of harmful
algal blooms (HABs), the only example of real time monitoring, and close the discussion with future
directions and concluding remarks.

Keywords: molecular techniques; aquatic ecosystems; harmful algae bloom; FISH; sandwich
hybridization assay; PCR; lab-on-a-chip; next generation system; isothermal amplification;
hybridization chain reaction

1. Introduction

Molecular methods used to detect organisms are faster and more accurate than traditional
methods, involving culture methods or microscopy. They are the preferred method of detection
not only because of the increasing realization of the abundance of cryptic species that cannot be
differentiated by any morphological means and the large number of micro-organisms that cannot
be grown under laboratory conditions and thus go undetected but also because of the extensive
training required to distinguish morphologically similar species. Molecular techniques are now used
for identifying all organisms from vertebrates to viruses in a wide variety of programs [1].

The most efficient and effective way to characterize complex microbial samples is to use the
small-subunit (SSU) and large sub-unit (LSU) ribosomal RNA (rRNA) genes [2], which have become
the gold standards because a broader view of community structure and composition can be obtained
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by direct cloning and sequencing of these genes from natural samples [3]. Such methods have led to
the discovery of an enormous amount of hidden biodiversity [4]. Probes (barcodes) can be designed
from the RNA databases from Domain or other higher taxa down to a species [5–7]. The rRNA
databases continue to increase in size and scope because these genes are routinely used for species
identification. Species-specific probes designed from these genes can be applied for the analysis of
any community and they can be detected using whole cell methods in which the cell remains intact
(e.g., FISH) and thus also the morphology, or using cell free methods in which total nucleic acids are
extracted and probes applied directly to the nucleic acid target (e.g., SHA, microarrays and biosensors).
For some groups, such as the marine phytoplankton, detailed protocols can be found in the UNESCO
manual for quantitative phytoplankton analysis edited by Karlsen et al. [8] and for microarrays in
Lewis et al. [9]. One limitation of all of the methods presented below is if they are used to detect the
species, they may not be able to predict if it is harmful. Whereas eukaryotic algae normally have toxic
and non-toxic species, bacteria and cyanobacteria have toxic and non-toxic strains of the same species,
species detection methods are not so useful. Some of the methods described can be applied to detect
toxin genes in addition to identifying the species, which will identify the potential of the water body
being investigated to become toxic.

2. Molecular—Whole Cell Methods

Fluorescence In-Situ Hybridization (FISH) refers to the application of an oligonucleotide probe
bound to a fluorescent marker that penetrates a cell and hybridizes to the ribosomes inside the cell.
The entire cell fluoresces a bright color because of the high target number of ribosomes in the cells of
interest. The cell stays intact and co-occurring species can be discriminated when counterstained with
an overall DNA stain, e.g., DAPI. Using this method any target organism can be easily identified at the
light miccroscope level using fluorescent microscopy or by flow cytometry. Amann [10] was the first to
show the detection of different species and even closely related, morphologically similar species or
strains can be separated. This method when applied to plant material is challenging because plant
material contains chlorophyll that naturally fluoresces. Fluoresceinisothiocyanate (FITC), one of the
most commonly used fluorochromes as a marker on the probes (barcodes) fluoresces green, can be
easily distinguished from the orange auto-fluorescence of the cell’s chlorophyll, whereas the red
fluorescence of CY5-labeled probes can be more difficult to distinguish from the chlorophyll orange
fluorescence, unless stronger bleaching compounds, dimethylformamide, are used to remove the
chlorophyll [11]. FISH has been successfully applied for the detection of Harmful Algae as well as
other algal groups [6,11–17] and to a wide variety of bacteria [10].

In the marine phytoplankton, many different types of cell walls and membranes occur, which
creates a challenge to develop a FISH protocol capable of fixing all kinds of algal cells. Many naked
cells rupture with some fixatives [18]. The saline ethanol method originally developed by Scholin
and co-workers [19–21] used probes with more than two mismatches between target and non-target
sequences. The saline ethanol fixative also extracts the chlorophyll from the cells and bleaches
them, thus permitting better visualization of probe signals [19–21]. Groben and Medlin [10] found
Scholin’s conditions not to be sufficiently stringent for a wide range of species and insufficient to
distinguish single base mismatches between target and non-target. They developed a protocol that
could be used with the widest range of phytoplankton cells from the most delicate to the most rigid
while maintaining the stringency needed to discriminate single base mismatches. Formamide was
added to the hybridization buffer and in the last washing step, the salt concentration was reduced to
make the hybridization more stringent. Formamide concentrations, used to reduce the hybridization
temperature to one that does not destroy the cell’s integrity, must be empirically determined for each
probe. Sodium dodecylsulfate (SDS), commonly used in hybridization buffers, lyses the membranes of
more fragile, naked cells. IGEPAL-CA630 (or the chemically identical NONIDET-P40) maintains cell
stability permitting efficient probe penetration.
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After FISH hybridization the search for cells and their enumeration with epifluorescence
microscopy can be time consuming and susceptible to human error because of the variability in
RNA content, which can cause weak signals or because cells are hidden under debris. Therefore,
if many samples are to be analyzed, automated counting is preferred and flow cytometry (FCM) is
a suitable alternative. Both liquid and solid phase cytometers (LFC/SPC) are available tools.

As cells in suspension pass through a narrow laser in single file, LFC measures the size of and
counts them by their optical characteristics [22]. Cell identification and counting can be enhanced with
the addition of FISH probes for greater differentiation of phytoplankton populations [23]. FISH for
LFC has to be performed in suspension, which involves the cells being fixed in a tube, then centrifuged,
then resuspended, repeatedly, for the various stages of the FISH protocol, which can result in high
cell loss during these stages. If the tubes are treated with surfactants, then this problem can be
remedied [24].

Often the fluorescence signal of FITC-labeled bound probe can be too low for detection because
of high auto-fluorescence of the chlorophyll in pigmented cells and because of low target number from
a pico-sized cell or from a senescent cell (especially prokaryotic cells), and therefore a lower cellular
ribosome content. Poor accessibility of the probe target sites in the rRNA molecule because of its secondary
structure formation or because ribosomal proteins, which can block or cover probe-binding sites probe
penetration [25], can be additional reasons for a low fluorescence yield. In these cases, an amplification
of the fluorescent signal is required, such as the tyramide signal amplification (TSA) or the catalyzed
reporter deposition (CARD) method, which is an enzyme catalyzed enhancement method of fluorescence
signals. Horseradish peroxidase (HRP), linked to the 5′-end of an oligonucleotide probe and in the
presence of small amounts of hydrogen peroxide converts its labeled substrate, tyramide, into short-lived,
extremely reactive intermediates, which can be fluorescently detected [26–28]. These activated tyramides
rapidly bind covalently to electron rich regions of adjacent proteins, such as tyrosines, only at or
adjacent to the probe target sites where the HRP-labeled oligonucleotide probe is bound to its
target [26–28]. Thus, the labeled tyramides are deposited multiple times at the hybridization site
to achieve an enhanced signal [28] (Figure 1).
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FISH hybridization, which is an enzymatic reaction, must be performed between 35 and 37 °C. The 
tyramide signal amplification system has been successfully used to detect bacteria [27], 
cyanobacteria [26,29] picoplankton cells by fluorescent microscopy [30] and in flow cytometry [24], 
and bacteria associated with microalgae [31,32]. 
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Figure 1. A comparison of FISH and Card FISH using the toxic dinoflagellate Azadinium spp. (A) FISH
with a FITC label; (B) no probe control; (C) Card FISH FITC enhancement label.

An FITC, Cy5, or Alexa fluorochrome can be bound to the tyramide, thus providing a series
of labels with different excitation and emission wavelength [23]. Far greater fluorescence intensity,
up to 20 times, can be obtained from this indirect labeling method than with a direct label [26].
Species in low abundance or senescent cells in a sample can easily be detected. Higher formamide
concentrations must be used with the target probe to ensure probe specificity because the CARD FISH
hybridization, which is an enzymatic reaction, must be performed between 35 and 37 ◦C. The tyramide
signal amplification system has been successfully used to detect bacteria [27], cyanobacteria [26,29]
picoplankton cells by fluorescent microscopy [30] and in flow cytometry [24], and bacteria associated
with microalgae [31,32].
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In contrast to LFC where the cells in liquid suspension are moved in single file through
a stationary laser for excitation, in SPC, the laser is moved over immobilized cells on a membrane
support [33]. The ChemScan system (Chemunex, Ivry, France) is a SPC for the detection and
enumeration of fluorescently labeled microorganisms on filter membranes [34,35]. The ChemScan
was initially developed for the fast detection of microorganisms in filterable products in industrial
and environmental Microbiology, and has been optimized for Microbiological applications with
standardized protocols [33]. It has recently been used for the detection of fluorescently labeled toxic
microalgae with antibodies [36] and by FISH probes [37,38] and bacteria with FISH probes [39]. SPC is
the only method with a detection limit of one cell per sample [40]. It has the advantage of combining
LFC and image analysis [41] to allow a rapid enumeration of thousands of cells with similar accuracy
to LFC [42]. CARD FISH is required for the ChemScan because normal FISH is not sensitive enough
for the laser detection [37]. The only disadvantage of SPC counting is that it cannot distinguish long
filamentous cells. It performs best with round and spherical cells. A validation of the positive counted
cells is recommended, as the filter is transfered to a fluorescent microscope and each positive signal is
verified before total automation can be reliable.

All FISH methods are limited by the number of species that can be detected under each detection
method and within one experiment. Presently only two different kinds of fluorochromes, FITC and
CY5, are routinely used for detection. LFC and SFC are also expensive tools for routine monitoring
as is the synthesis of HRP-labeled probes. Monoclonal antibodies (MAbs) and polyclonal antibodies
can detect cultured and field-collected cells and target to cell surface antigens [43]. Immunomagnetic
beads coupled to both MAbs and polyclonal antibodies can achieve separation of target cells from
mixed assemblages [44]. MAbs typically require development of hybridoma cell lines produced
by fusing myeloma cells with spleen cells of mice that are immunized with the target antigen and
are considerably more difficult and technically demanding to produce than polyclonal antibodies.
MAbs are unlimited in supply because the hybridomas are immortal. No cell permeabilization is
required as in FISH methods, and the fluorescence intensity is usually far greater than that of DNA
probes and less affected by the cell’s physiological state [45].

3. Molecular—Cell-Free Format

All cell morphology is lost, if total nucleic acids are extracted from samples. Also free DNA from
dead cells is extracted at the same time. Cell numbers from whole cell methods are often lower than
those inferred from cell free methods and low rRNA content and free DNA have been cited as the
cause of such discrepancies [46]. However, despite these discrepancies, several methods have been
used that rely on high quality DNA or RNA extracted from environmental samples and have been
successfully used to detect organisms from many different water types.

3.1. Sandwich Hybridization Assay (SHA)

In this assay, a capture and a signal probe bind the target DNA or RNA in the so-called sandwich
hybridization (Figure 2). Thus two hybridization events are involved. In the first event the immobilized
capture probe binds to the target sequence binds event, and in the second hybridization event,
a signal probe linked to a recorder molecule [47,48], such as a fluorochrome or digoxigenin (DIG)
binds to the first complex to facilitate its detection. To detect the target species, only one of the two
probes need be specific. A capture probe can be immobilized on either a membrane, an electrode or
a microtiter plate [49–52]. In the case of DIG, an antiDIG antibody is used for coupling a horseradish
peroxidase (HRP) enzyme to the signal probe to form the final complex for signal amplification.
HRP converts inactive substrates to a product that can be detected electrochemically or colorimetrically.
The colorimetric SHA offers the cheapest and fastest way to test the specificity of the signal and capture
probes [53].

SHAs have the advantage of being ultra-sensitive. This format maximizes discrimination of target
from non-target sequences. Purification of target molecules (e.g., RNA) is not required [21]. The SHA
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method has been widely used for the detection of toxic algae [21,50,54] and has been formatted for
an automated Universal Assay Processor (Saigene Biotech, Inc., Denver, CO, USA) that provides users
with flexibility and control over various assay parameters (e.g., sequence, duration, and temperature
of individual steps [55].

3.2. Biosensors

Biosensers are simple, fast and can be manufactured into compact, inexpensive devices [49–55].
They can overcome limitations caused by traditional detection and subsequent quantification. Among
the detection methods applicable to biosensors, electrochemical detection enjoys from high sensitivity
and selectivity and rapid response. Therefore, it has low power requirements, which makes this method
more versatile and amenable for monitoring in outside settings. Electrochemical sensors can detect
nucleic acids directly in complex environemental samples, which gives them a valuable advantage
over other molecular methods, such as PCR, which requires target purification and amplification [56]
and is sensitive to enzyme inhibitors. Biosensors are powerful tools for species detection. Among
them, those based on the combination of the SHA method with electrochemical detection of bound
nucleic acid target molecules have proven to be the most successful [49–52]. Diercks et al. [53]
demonstrated that this detection system could be adapted into a multiprobe biosensor for its use in
a semi-automated device for the simultaneous detection of 14 target species of toxic algae. All steps
needed to elucidate the different steps of the biosensor fabrication process from the electrochemical
point of view, proof of concept with different algal species, and the evaluation of the influence
of the transducer platform geometry and material in the biosensor analytical performance [49,50].
All components of the electrochemical biosensor SHA assay have been optimized with calibration
curves for 14 toxic algal species [52].
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Figure 2. Scheme of a SHA hybridization. Capture probe is immobilized onto a carbon electrode,
which then captures the target RNA, which binds to the signal probe with the DIG label to initiate the
electro-chemical reaction.

Fiber-optic genosensors for toxic dinoflagellates have been introduced as another type of biosensor
that [57,58] employs a SHA detection system. The capture probes are placed on microspheres at the
end of each optical fiber to capture the rRNA of the HAB species. After hybridization, the microarray
is dipped into formamide to denature the capture RNA and its signal probe for its reuse. It could
detect as few as five cells in a mixed phytoplankton sample.

The biosensor SHA assay can also be used with colorimeter detection. With a different
substrate, the anti-digoxigenin antibody conjugated to HRP can produce a colored product whose
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intensity can be measured in a spectrophotometer or photographed by a camera, thus becoming
a chemiluminescent biosensor.

3.3. Microarrays

A microarray consists of DNA sequences (barcodes) that are applied to the surface of a glass
slide with special surface properties in an ordered array similar to a dot blot [59–62] (Figure 3).
Thus, the ability to detect potentially thousands of targets in one hybridization experiment makes the
microarray detection system one of the most powerful molecular tools available today, when targets
are known. Microarray production, nucleic acid isolation and preparation, hybridization, and data
analysis are the required steps in a microarray experiment. The target nucleic acids are labeled with
a fluorescent dye, which can be incorporated directly to the nucleic acid or via indirect labeling of
other substances [61–63]. Then the labeled targets are hybridized to the probes on the microarray.
The laser in a microarray scanner scans the slides and the hybridization pattern captured via fluorescent
excitation indicates which species are present [60]. DNA microarrays, or phylochips as they have been
termed, have been used to identify phytoplankton [63], toxic algae [64–77], bacteria [78–84], and eggs
and larvae from fish species [85]. Phylochip®, a universal microarray for all prokaryotic organisms
is commercially available and circumvents the long analysis time to perform community analysis
for the prokaryotes using other molecular tools. Microarray analysis of environmental samples has
now received an ISO number (ISO 16578, 2013(en)) and thus is now a fully accredited method for
determining the concentration of DNA in any environmental sample.

The EU project, MIDTAL [86], was devoted to the construction of a universal microarray for
the detection of toxic algae. The MIDTAL project produced a standardized method of hybridization,
analysis and calibration [9] to convert the signal to cell numbers for the monitoring of toxic algae.
This is essential for monitoring because nearly all decisions on fisheries closure are based on cell
numbers that trigger toxicity testing. This microarray was field tested for 2 years in five EU countries
that regularly monitor for toxic algae showing good correlations with standard cell counting methods.
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A subsequent EU project, µAQUA, was devoted to the construction of a universal microarray
for the detection of freshwater pathogens and to development of novel tools for toxin detection by
cyanobacteria. This project was field tested also for two years in 8 EU countries and the results from
some of these studies have been published [87,88]. Among the novel tools developed for toxin detection,
a toxin array was dedicated to the detection of the messenger RNA from cyanobacterial toxin genes
being expressed. This microarray incorporated a reverse transcriptase elongation of the probe (barcode)
used to capture the messenger RNA expressed from the toxin genes and this elongation incorporated
fluorescent nucleotides which functioned to boost the signal on the microarray several times above
the background level [89]. Thus, the messenger RNA that was being expressed in very low quantities,
that was below the detection level of standard HPLC methods, could now be detected. This method
could serve as an early warning system showing the potential of any water body to become toxic.

A different type of multiplex system, the Luminex system, uses principles of either quantitative
fluorescent microscopy or fluorescent flow cytometry to enable simultaneous identification.
Each unique population of coded beads is dyed internally with a different ratio of two fluorophores
and covalently functionalized with a species-specific capture probe that binds biotinylated target
DNA. Hybridization of the target is detected using a reporter molecule (e.g., phycoerythrin coupled to
streptavidin). Multiplexed, bead-based arrays that employ flow cytometric detection of color-coded
fluorescent bead populations have been developed as a microarray for toxic algal species [90,91].
Luminex-based detection strategies are still considered preliminary research and development efforts.

3.4. qPCR

One of the most powerful technologies in molecular biology is the polymerase chain reaction
(PCR) [92]. There is no information about the quantity of starting material in the samples analyzed if
traditional qualitative “endpoint” PCR is used. However, in qPCR, information about the quantity of
starting material can be calculated because by using fluorescent markers that are incorporated into
each PCR product as amplification proceeds, data can be collected over each PCR cycle. The change
in fluorescence that is measured as PCR labeled amplicons are accumulated in each cycle is directly
proportional to the amount of starting material (Figure 4). These data are monitored with an integrated
detection system during the linear exponential phase of the PCR [92]. Closely related species or
populations can be distinguished because qPCR can distinguish base pair differences. External
standards for quantifying the amplified DNA must be measured if environmental samples are to be
analyzed. This could be a dilution of plasmids or DNA derived from laboratory cultures with a known
analyze concentration of the target template. A standard curve must be made for each target species
to infer its concentrations in an unknown sample because of differences in DNA content per cell [93].
Copy number of the rDNA genes may vary among different strains of an organism/species and should
be considered in calculating the starting concentration of any target [94]. Copy number can be inferred
from qPCR experiments.

In the SYBR Green approach, the fluorescent dye, SYBR Green, binds to the minor groove of
double stranded DNA (dsDNA). The increase in fluorescent emission is proportional to an increase in
the PCR-amplified dsDNA during each cycle. In the method, primer-dimers are counted as amplified
DNA because of the unspecific binding of SYBR Green to all dsDNAs generated during the PCR cycles.
Thus to avoid primer-dimer artifacts, critical primer design is needed. They can be identified by their
lower melting temperature compared to that of the target amplicon and are revealed by performing
melting curve analyses [95].
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In the TaqMan, molecular beacon and hybridization probe assays, a specific fluorigenic
oligonucleotide probe is used with specific or non-specific primers. When the specific probe binds to
its target, there is a transfer of energy from an excited fluorophore, the donor, to another fluorophore,
the acceptor [96]. This enhanced fluorescence is termed fluorescence resonance energy transfer (FRET).
A rapid and quantitative enumeration of several organisms within one sample (multiplex PCR) can
be achieved through the use of specific primers and oligonucleotide probes, labeled with unique
fluorescent dyes with different excitation wavelength. The number of detectable target genes in one
sample is limited by the number of available fluorescence reporter dyes for the separate probes. A limit
of six species to be detected in one sample is a general rule. Multiplex qPCR experiments require
elaborate adaptations and have to be carefully optimized [97].

Digital (d)PCR is another method that is gaining popularity [98]. A sample is dispersed as an
emulsion into micro-well plates so that a single droplet contains ≤1 template molecules. There are
thousands of droplets in each well. One sample will be partitioned into the droplets available.
Sample partitioning permits an estimation of the number of template molecules by assuming that the
population of molecules follows a Poisson distribution. Thus, each part will contain either “0” or “1”
molecules, or a negative or positive reaction, respectively. Genomic DNA is fragmented using DNaseI
to produce 2–4 kb fragments as template. The template mixture is partitioned into droplets and paired
with primer pair droplets, both of which enter a microfluidic chip at a rate of about 3000 droplets
per second. The primer pair droplets are smaller than the template droplets and move through the
channels faster until they contact the preceding template droplet. Field-induced coalescence of these
droplet pairs results in the two droplets merging into a single PCR droplet, which is collected and
processed as an emulsion PCR reaction [99]. After PCR amplification, nucleic acids may be quantified
by counting the wells that contain PCR end-products as positive reactions. To improve the diversity of
the assay, different primer combinations can be allocated into the different wells of the plate. There are
currently about six different platforms for digital PCR but basically fall into two categories: chip-based
and droplet based [100]. The microfluidic-chip-based dPCR can have up to several hundred partitions
per panel, whereas droplet-based dPCR usually has approximately 20,000 partitioned droplets and
can have up to 10,000,000 per reaction. The total number of analyzed partitions and partition volume
depends on which dPCR platform used for the measurement. Te et al. compared qPCR and dPCR to
estimate the simultaneous quantification of Microcystis and Cylindrospermopsis [101]. The former was
found easier to use but the latter was more sensitive and thus more accurate.

Different DNA extractions are known to yield different amounts depending on the extraction
method used. Also humic substances are known to inhibit PCR reactions. These potential drawbacks
and limitations of qPCR problems can be resolved or minimized by using a high quality DNA isolation
method, such as TriReagent. qPCR can be easily performed immediately after in-situ sampling onboard
ship or on shore. Preserved samples can also be used but these preservatives may cause PCR inhibition.
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The preferred strategies are no preservation, or preservation using ethanol, coupled with freezing.
Hosoi-Tanabe and Sako [102] could detect and quantify target cells after three years from field samples
processed in this way. The sensitivity of qPCR is lowered with samples preserved with formalin and
glutaraldehyde. Lugol’s iodine, a commonly used fixative has been reported to lower the sensitivity of
some qPCR experiments [102], but successfully applied in others that detected toxic algae [103,104].
Multiplex qPCR experiments require extensive optimizations to make different primers and/or probes
work together in a single PCR experiment. Handy et al. [93] compared multiplexing vs single probe
PCR and found that although both methods were sensitive and effective, multiplexing was more
efficient once optimized.

3.5. RT-qPCR

When the starting material in a qPCR experiment is RNA, this is termed quantitative reverse
transcription PCR (RT-qPCR). Total RNA or messenger RNA (mRNA) is first transcribed into
complementary DNA (cDNA) by reverse transcriptase, which is used as template in the qPCR reaction.
RT-qPCR can be performed in one or two steps [105]. One-step assays combine the RT step and qPCR
step in a single reaction tube along with buffers needed for both reactions. Target-specific primers
are used in one-step RT-qPCR. In two-step assays, the RT and qPCR steps are performed separately,
with different optimized buffers, reaction conditions, and priming strategies. It is almost impossible to
optimize the one-step method because both reactions are very different from one another, requiring
different temperatures, etc; thus being less sensitive. However, the one step method is more economical
and less prone to pipetting errors. In the two-step method, the cDNA generated can be reused at a later
date if needed. More different kinds of targets can be interrogated with the two-step method.

3.6. Lab-on-a-Chip

(LOC) is a device that integrates one or several laboratory functions into a single integrated system
(the so-called a “chip”, hence lab-on-a-chip) of only millimeters to a few square centimeters in size to
achieve automation and high-throughput screening or single or multiple targets [106,107]. Extremely
small fluid volumes down to less than a few pico liters are easily handled by LOCs. Detection can
be achieved fluorimetically, colorimetrically or electrochemically. They are usually designed to be
single use and disposable and their applications range across a wide variety of disciplines [106].
This technique is an emerging technology with many companies offering custom designed LOCs.
Some examples of developed LOCs include those for many pathogens to medical point of care [107,108].

3.7. Next-Generation Sequencing or High Throughput Sequencing (NGS or HTS)

Ebenezer et al. [109] summarized the NGS or HTS technologies available and their major features.
Life science studies using molecular techniques, such as full genome sequencing (de novo sequencing
and resequencing), amplicon sequencing, transcriptome sequencing, and metagenomics has employed
NGS or HTS technologies. These techniques with pyrosequencing generate much higher throughput
data, such that millions to billions of sequencing reactions take place in small reaction volumes
at the same time. In field sample studies, NGS or HTS technologies gather DNA data from both
environmental DNA and/or PCR products amplified from environmental DNA. Because DNA
templates are bound to substrates and amplified by PCR to generate clonal representatives, NGS or
HTS does not require cloning of template DNA into bacterial vectors. The number of sequence reads
by the NGS or HTS methods are continually increasing with upwards of 500 bp reads, NGS or HTS is
fast becoming the tool of choice for the identification and detection of microbes from environmental
samples [109]. However, the long time to process data is still a major concern and makes the use of
microarrays more attractive as a means of analyzing large numbers of samples when targets are known.

The dominance of NGS sequencing as performed by Illumina is being challenged by Oxford
Nanopore [110]. A new type of “nanopore” DNA sequencer, the MinION, is now available. It analyzes
DNA by drawing the molecules through a tiny, delicate pore in near real time. Each combination of
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the genetic letters A, G, C, T produces a change in electrical current as the DNA moves through the
pore, allowing the molecule to be read (sequenced). The nanopore is small enough to be portable and
reads out very long stretches of DNA up to more than 150 kb.

4. Enhancing Performance

A common concern in molecular techniques for the detection of organisms in aquatic
environments is related to the sample complexity in terms of abundance and diversity of planktonic
species. The question of wide types of species that cohabit in a certain aquatic ecosystem may be
potentially solved by different strategies, such as multiplexed biosensors, microarrays and NGS, etc.,
as mentioned in the preceding section. However, some times the low abundance of some species in the
environment is the critical factor that determines the feasibility of their monitoring. In this context,
in this section we will review some approaches that have been used to enhance the performance
of molecular techniques that go from development of nano-bioengineered platforms and the use of
preconcentration systems to improved hybridization and amplification methods.

4.1. Nano-Bioengineered Probes and Platforms

Biosensors have gain importance for specie-specific detection tanks to their outstanding features in
terms of simplicity, portability and miniaturization possibilities, along with those already mentioned in
the previous section. Molecular techniques for monitoring aquatic organisms based on electrochemical
biosensors are based on hybridization of specific nucleotides with their complementary strands,
linked both to a solid support and to a reporter able to produce a signal in the presence (or not) of
an electroactive indicator. The platform has the capability of transforming (transducing) the generated
signal into an electrochemical signal easy to be recorded and interpreted. Electrochemical detection can
be either direct, both by the intrinsic electro-activity of the nucleic acids and DNA duplex electroactive
intercalators, or indirectly by means of electroactive probes [111]. The resultant signal can be amplified
by coupling enzymes, fluorescent labels, inorganic nanoparticles, or through nanomaterial-based
hybrids platforms or a combination of the above [112].

Stability, sensitivity, hybridization efficiency and minimization of specific adsorption can be
modulated by controlling the surface chemistry and surface coverage. Mostly, noble metals and
semiconductor materials such as carbonaceous materials and polymers are the materials that
work as transducers. However, decoration of the transducers with nanomaterials, including
nanoparticles, carbon nanotubes, graphene, quantum dots, etc, has caused a tremendous evolution of
(bio)sensor devices [113]. The resultant nano-bioengineered structures are the responsible for the great
enhancement in sensitivity that more recent genosensor-based approaches exhibit today. The higher
sensitivity is related to the increased surface area and enhanced catalytic properties, among other
improved features from the nanostructures. For instance, bioreceptors immobilized in an irregular
nanostructured surface facilitates the accessibility of the target molecules and thus promote more
efficient electron transfer processes and faster reaction kinetics. Nano-bioengineered probes can be
either anchored at the transducer or coupled to reporters. In the pioneering work of Prof. Mirkin,
the first rational assembly of nanoparticles into a macroscopic material using DNA strands appeared.
Such a remarkable discovery made it possible to tailor the nanoparticles properties by means of
the specificity of the DNA interaction [114]. More recently, Prof. Bard applied Pt nanoparticles for
electrochemical amplification of DNA analysis by a single label response [115].

Thanks to the intrinsic electrochemical properties of AuNPs, they are the most common
material selected for signal amplification of DNA-based electrochemical biosensors. Coupling of
DNA sequences with nanoparticles allows for the development of genosensors of highly improved
performance. Target concentration can be inferred either after dissolution of AuNPs in acidic
media, with subsequent determination by anodic-stripping voltammetry [116], or by their coupling
with electroactive complexes with further interrogation by chronocoulometry [117]. Gold tracer
‘amplification’ by silver deposition on the Au surface has also been applied to enhance sensitivity and
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lower the detection limits of these kind of biosensors [118]. Coming to aquatic ecosystems monitoring,
a highly sensitive and specific gold-nanoparticle based electrochemical genosensor towards the 18S
rRNA and internal transcribed spacer regions of the fish pathogen Aphanomyces invadans was shown to
be suitable as a diagnostic tool in the aquaculture industry [119].

Inorganic and organic quantum dots (QDs) have demonstrated to be an alternative to
enzyme-based amplification with potential to overcome its limitations in terms of long-term stability
and storage as well as inhibition in harsh environments. For example, an electrochemical biosensor
assay with QDs of PbS, CdS, ZnS as labels was highly sensitive and specific for simultaneous detection
of non-protein coding RNA sequences of Vibrio cholerae, Salmonella sp. and Shigella sp.; with high
potential for monitoring multiple pathogens in environmental samples [120].

Hybrid nanocomposites have shown enhanced properties in the development of molecular
biosensors respect to the corresponding materials acting alone. For example, a new DNA biosensor
based on reduced graphene oxide decorated Ceria nanoparticles was designed for sub-femtomolar
detection of Aeromonas hydrophila DNA sequence in fish pond water [121]. A selective capture probe was
immobilized at a graphene oxide (GO)-cerium nanocomposite and the Fast Fourier transform square
wave voltammetry (FFT-SWV) was used to discriminate changes in target analyte concentrations in
the presence or a redox marker. Amperometric detection of Escherichia coli O157, H7 was achieved
by a GO, thionine (Thi), Au nanoparticles coated SiO2 nanocomposite (GO-Thi-Au@SiO2)-based
tag [122]. Large amounts of signal DNA and G-quadruplex were immobilized on the nanocomposite,
where hemin was further intercalated to obtain a hemin/G-quadruplex structure as HRP-mimicking
DNAzyme. Although the assay was only tested in laboratory conditions, it holds promise for aquatic
systems monitoring.

4.2. Pre-Concentration and Magnetic Separation Systems

Some pre-concentration systems have been proposed to solve the limitation of low abundance of
microorganisms in aquatic ecosystems. The most common practice consists of pre-concentrating
the microorganisms by filtering large volumes of water samples. This practice is time- and
power-consuming and not amenable with monitoring in outside settings. However in the EU µAQUA
project, >50 L of water were filtered using hollow fiber filters in relatively short amounts of time
(ca. 30 min) and the filters effectively concentrated all organisms down to viruses in the 50 L into a one
liter volume for easier down stream analysis [86,87].

Magnetic micro and nanocarriers have gained tremendous attention as pre-concentration
systems because of rapidity, practicality and cost-effectiveness, as well as low workload, high speed
and high-throughput automation [123]. Capture probe-modified magnetic particles are added to
the target DNA (RNA) containing sample, which is selectively captured. The captured target
can be easily confined in a specific place by a magnet and the sample washed off. Therefore,
the resultant concentrated target is free of interferences that can eventually be present in the initial
sample. An integrated microfluidic PCR system enabled pre-concentration of microbial pathogens
by magnetic separation prior to DNA amplification by PCR [124]. The system combined the
pre-concentration capabilities of magnetic nanoparticles with PCR amplification for the fast, specific,
and quantitative detection of the microbial pathogens in samples of large volume. A sensitive
and selective genomagnetic assay based on in-situ DNA amplification with magnetic primers was
developed by DNA double-hybridization with both a digoxigenin probe and a biotinylated capture
probe, with further binding to streptavidin-modified magnetic beads [125]. Although the DNA
amplification-based genosening strategy was demonstrated for the electrochemical detection of food
pathogens, it is promising for sensing a myriad of species including environmental pathogens from
aquatic ecosystems.

Magnetic beads have been also introduced as a separation technique in diagnostic Microbiology
since more than two decades. However, their application for monitoring environmental
microorganisms is rare [126]. Nucleic acids can be sequenced by solid phase assistance, in which
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biotin-labeled amplicons from the target sequences are linked to streptavidin-coated magnetic beads.
Denaturation can be achieved by treatment with NaOH or heat and the magnetic bead-linked and the
free dissolved strands separated by a magnet. Both strands can be recovered for sequencing.

4.3. Solid-Phase Hybridization

The target DNA can be immobilized by linking it with a solid phase support to capture
low-abundance target DNA sequences. It has shown to be a high-performance and high-throughput
method to detect the presence of little amounts of target genetic material. For example,
femtograms of ribosomal RNA from bacterial fish pathogens, including Aeromonas salmonicida;
Tenacibaculum maritimum; Lactococcus garvieae; and Yersinia ruckeri were detected by solid phase PCR.
The approach was based on a RT-PCR-enzyme hybridisation assay with NucleoLink(TM) strips for
liquid- and solid-phase PCR in one tube. It detected 4 fg of rRNA from pure cultures and between 1
and 9 CFU per 200 µL sample volume from culture media [127].

4.4. Isothermal Amplification

Unlike PCR, isothermal amplification is a nucleic acid amplification technique where the reactions
take place at a constant temperature, thus avoiding the thermal cycler requirement and making
possible amplification in outside settings. Among isothermal amplification techniques, loop mediated
isothermal amplification (LAMP) is a variant where the target sequence is amplified using either two
or three sets of primers, and a polymerase with high strand displacement and replication activity.
Additionally, a pair of “loop primers” can further accelerate the reaction. LAMP is considered
an enhanced amplification method because the amount of DNA produced is considerably higher
respect to that from normal PCR-based amplification. A rapid RT-LAMP assay was established for the
highly sensitive and specific detection of Eriocheir sinensis reovirus, a pathogen that causes high mortality
in crab aquaculture [128]. The assay was more cost-efficient and proper for field monitoring than the
normal PCR amplification method. Variations of LAMP, such as multiple endonuclease restriction
(MERT)-LAMP, have been successfully developed for simultaneous detection of V. parahaemolyticus
and V. vulnificus strains in a single reaction. These two marine seafood-borne pathogens cause severe
illnesses in humans and aquatic animals. The approach was sensitive, specific and rapid, and with
potential for simultaneous screening of the pathogens in a wide variety of samples. A colorimetric
LAMP assay was also evaluated for visual detection of Streptococcus agalactiae and Streptococcus iniae in
Tilapia [129]. The method demonstrated usefulness for monitoring fish health in grow-out ponds, in the
fish farming industry. Other pathogens from aquatic environments, such as Edwardsiella tarda [130],
Vibrio anguillarum [131], Vibrio vulnificus [132], and Lactococcus garvieae [133], have been also detected
by LAMP.

4.5. Hybridization Chain Reaction

Hybridization chain reaction (HCR) is a technique based on a chain reaction of recognition
and hybridization events between two sets of stable DNA hairpin molecules that storage potential
energy and offers an enzyme-free alternative for the rapid detection of specific DNA sequences [134].
Unlike normal PCR, in HCR, the binding of DNA to a substrate accomplishes not only recognition,
but also linear signal amplification without any external input and at room temperature. In this
technique, the DNA hairpin monomers coexist in solution until the target, acting as initiator strands,
triggers a cascade of the hybridization events that yields double helices analogous to the alternating
copolymers [134]. The technique has potential for highly efficient amplification of short sequence
oligonucleotides. For example, detection of Bacteria, Archaea and Methanosaetaceae in an anaerobic
sludge sample was achieved by simultaneous in-situ DNA-HCR [135]. Analogously, an improved
in-situ DNA HCR named quick HCR-FISH was tested for the rapid and sensitive identification of
marine bacteria with low rRNA contents not only in seawater but also in sediment samples [136].
Recently, HCR acting in tandem with a DNA-fueled target recycling reaction was used for the
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isothermal, label-free, non-enzymatic amplification and ultra-sensitive electrochemical detection
of nucleic acids [137]. Although it was only a proof-of-concept (depicted in Figure 5), the tandem could
be exploited in environmental analysis of pathogens from aquatic ecosystems.
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5. In-Situ Remote Sensing, HAB Monitoring in Buoys as Study Case

The Environmental Sample Processor is a fully autonomous, electromechanical fluidic system
designed originally by the Monterey Bay Aquarium Research Institute (MBARI) to collect discrete water
samples, concentrate particulates, and automate application of molecular analytical technologies [138].
It acquires and processes sample volumes of milliliters up to several liters at depths to 50 m. It is also
capable of sub-surface deployments, but is generally co-deployed with contextual sensors that provide
physico-chemical and biological data at the location and depth of the instrument. To provide a degree
of passive mobility, the ESP has also been deployed on a drifter at a fixed depth and is amenable to
shore-based/pier deployments.

It is commercially available from McLane Research Laboratories, Inc. (East Falmouth, MA, USA)
but costs over $300,000 with its third generation currently being developed. Detection chemistries
employ membrane-based DNA probe and protein arrays. A qPCR capability has been demonstrated
for microbial targets [139]. DNA probe arrays target HAB species using probes designed from rRNA
sequences in a SHA format for the simultaneous detection of multiple organisms in a single sample with
chemilumiscent detection [134]. A competitive ELISA technique for detection of toxins produced by
HAB species constitutes the protein arrays [140]. “The importance of immobilizing HAB detection onto
autonomous platforms that can intelligently target sample acquisition as a function of environmental
conditions and biological patch encounter” [141,142] is a goal that is paramount in all workers on toxic
algal blooms.

6. Future Directions and Concluding Remarks

Conventional methods for pathogen analysis in aquatic ecosystems suffer from limitations
and drawbacks when coming to practical applications. In this context, molecular techniques
have step-by-step profiling as promising candidates for microorganisms monitoring in natural
environments [143]. The practical utility of molecular-based techniques has shown to be limited
by both the diversity of species and their presence in very low concentrations in environmental
matrixes. Multiplexed biosensors, microarray formats, NGS or HTS have contributed to cover
analysis of multiple species at the same time. Since the advent of nanomaterials, the development of
nano-bioengineered probes and platforms have led to the development of biosensors of unprecedented
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features in terms of sensitivity, selectivity and detection limits. Magnetic separation systems offer
an encouraging alternative for pre-concentration of low abundant genetic material. In the same
manner, solid-phase hybridization is an option to capture low-abundance target DNA sequences.
Some other approaches based on amplification of the target have been conducted to enhance the
performance of molecular techniques. Whereas isothermal amplification allows for exponential
amplification at a constant temperature, hybridization chain reaction provides a linear number of target
copies in an enzyme-free isothermal format. In any case, the more important limitations of pathogen
detection in environmental samples, in general, and of molecular techniques, in particular, are related
to the time-consumption, costs, biodiversity and amount of genetic material required. Therefore,
new methods that solve the aforementioned limitations must advance towards the development of
high-throughput, cost-effective, more precise, sensitive and selective detection systems, with minimal
power consumption, miniaturized size and portability compatible with outside and remote settings.
Real time monitoring has only been achieved in one example from harmful algal blooms. However,
the potential for many of these methods to make this final leap are well within the near future. Their
use as an early warning system in any natural environment is laudable because their low cost and ease
of implementation ensures that high frequency monitoring can take place to enable a rapid response
time should any toxic or harmful organism in low abundance begin to increase.
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