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Radiotherapy and/or chemotherapy-induced oral mucositis (RIOM/CIOM) is a common
complication in cancer patients, leading to negative clinical manifestations, reduced
quality of life, and impacting compliance with anticancer treatment. The composition
and metabolic function of the oral microbiome, as well as the innate immune response of
the oral mucosa are severely altered during chemotherapy or radiotherapy, promoting the
expression of inflammatory mediators by direct and indirect mechanisms. Commensal
oral bacteria-mediated innate immune signaling via Toll-like receptors (TLRs) ambiguously
shapes radiotherapy- and/or chemotherapy-induced oral damage. To date, there has
been no comprehensive overview of the role of TLRs in RIOM/CIOM. This review aims to
provide a narrative of the involvement of TLRs, including TLR2, TLR4, TLR5, and TLR9, in
RIOM/CIOM, mainly by mediating the interaction between the host and microorganisms.
As such, we suggest that these TLR signaling pathways are a novel mechanism of RIOM/
CIOM with considerable potential for use in therapeutic interventions. More studies are
needed in the future to investigate the role of different TLRs in RIOM/CIOM to provide a
reference for the precise control of RIOM/CIOM.

Keywords: toll-like receptor, oral mucositis, gastrointestinal mucositis, chemotherapy, radiotherapy, microbiota
dysbiosis, oral microbiota
INTRODUCTION

Radiotherapy and/or chemotherapy-induced oral mucositis (RIOM/CIOM) is the most common
localized oral complication in a large proportion of patients receiving radiotherapy and/or
chemotherapy (Lalla et al., 2014). It seriously affects the quality of life of patients, increases the
economic burden of treatment, and has a negative effect on antitumor treatment (Thomsen and
Vitetta, 2018). Clinically, chemotherapy and radiotherapy are still two widely used, and effective
approaches to treat a variety of cancers, including head and neck tumors (Siegel et al., 2019), aimed at
improving survival (Bockel et al., 2018). Elting et al. reported that oral mucositis occurred in over 90%
of the patients who received radiotherapy to head and neck primary cancers (Elting et al., 2007).
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According to Sonis, when the total cumulative dose of radiation in
the mouth exceeds 30 Gy, the risk of oral mucositis is nearly 100%
(Sonis, 2011). In patients with head and neck cancer receiving
radiotherapy, the incidence rate of oral mucositis is up to 80%
(Rubenstein et al., 2004). Over half of the patients who received
altered fractionation radiation therapy and 34% of the patients
who received conventional radiotherapy experienced severe
mucositis (grades 3–4) (Trotti et al., 2003; Vera-Llonch et al.,
2006; Wang et al., 2018). Even if the dose and frequency of
chemotherapy and radiation were adjusted, the improvement and
recovery were not satisfactory. Chemotherapy and radiation can
also affect most of the alimentary canal. Patients developed mouth
ulcers, erythema, pain, eating disorders, vomiting, and diarrhea
complicated by weight loss and infectious diseases such as sepsis
(Elting et al., 2003; Kusiak et al., 2020). These effects usually lead to
more significant results, including malnutrition and prolonged
hospitalization, and may be accompanied by chronic
inflammation, necrosis, and systemic infection (Rosenthal and
Trotti, 2009). The compliance of patients will critically decrease,
contributing to breaks in radiotherapy (Saadeh, 2005) and a
reduction in the dosage of chemotherapy drugs (Vera-Llonch
et al., 2006). Moreover, these consequences have severely
influenced patient compliance and quality of life (Gibson
et al., 2015).

Growing evidence suggests that multidirectional interactions
between the oral microbiota and the host innate immune system
may influence the progression of inflammation caused by
chemotherapy or radiotherapy (Cario, 2016). Radiotherapy and
chemotherapy damage the epithelium of the oral mucosa,
destroy the normal barrier structure (Thomsen and Vitetta,
2018), and contribute to oral microbiome dysbiosis, which
further promotes the occurrence of mucositis (Vanlancker
et al., 2018). Chemotherapy or radiotherapy can reduce the
number and diversity of microbiota (Fijlstra et al., 2015). This
change in microbiota composition allows rare microbial species
to overgrow and shift the microbial community to disease-
accelerating entities, which may promote aberrant innate
immune signals in the oral mucosa during the development of
oral mucositis (Touchefeu et al., 2014; Cario, 2016).

As a key receptor found intracellularly or on the surface of
oral and gastrointestinal epithelial cells, which mediates the
interaction between microorganisms and hosts, the role of
TLRs in chemotherapy- or radiation-induced oral mucositis
has been illuminated by an increasing number of studies
(Sugawara et al., 2006; Uehara and Takada, 2008; Cario, 2016).
Among these receptors, some can bind pathogenic bacteria,
activate NF-kB, regulate downstream signaling pathways, and
promote inflammatory cytokines, including interleukin-6 (IL-6)
and tumor necrosis factor-alpha (TNF-a) (Khan et al., 2018).
Some receptors are able to activate ATP-dependent transport
pumps such as ATP-binding cassette subfamily B member 1/
multidrug resistance P-glycoprotein (ABCB1/MDR1 P-gp) to
expel harmful substances that are generated by radiotherapy and
chemotherapy (Frank et al., 2015) or regulate the production of
prostaglandin E2 (PGE2), granulocyte-macrophage colony-
stimulating factor (GM-CSF), and platelet-activating factor
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
(PAF), which promote the repair and regeneration of epithelial
cells (Shi et al., 2019). Therefore, this review will summarize the
current evidence concerning the potential involvement of the
TLR signaling pathway and explore the potential of TLRs as a
target for the treatment of RIOM/CIOM.
ORAL MUCOSITIS

Histological Changes and
Disease Process
Various histological changes occur in RIOM/CIOM, including
the decreased thickness of the oral mucosal epithelium and
reduced density of basal cells (Sobue et al., 2018). Nearly all
the cells and tissues of the oral mucosa, including the
extracellular matrix, contribute to barrier injury (Sonis et al.,
2004). Epithelial tight junctions are broken down to injure the
oral mucosa and oral ulcers occur (Sonis, 2007). This process
compromises the five phases proposed by Sonis (Sonis, 2004). In
the first stage, radiation or chemotherapy drugs directly damage
DNA double strands of the basal cells of the oral mucosa, causing
the release of a large amount of reactive oxygen species and
damaging the surrounding epithelium, tissues, and vascular
endothelial cells (Sonis, 2009). These factors all lead to the
second phase, in which reactive oxygen species, chemotherapy,
and radiation therapy activate a variety of transcription factors,
such as NF-kB, a powerful transcription factor that can activate
genes related to tissue destruction. In the third phase, the signals
are further amplified through positive feedback loops. Clinical
symptoms occur in the fourth, ulceration phase, where the direct
ulceration of mucosal tissues enriches for mostly gram-negative
bacteria. This, in turn, activates macrophages to further amplify
and exacerbate the inflammatory disease process. During the
final healthy phase, the injury is contained, and the extracellular
matrix sends out signals that promote cell proliferation and
differentiation, and the normal oral microbial composition
begins to rebuild, completing healing within four weeks
(Sonis, 2010).

Microbiota in the Pathogenesis
of RIOM/CIOM
There is a mutually beneficial relationship between the microbial
community and the host (Ye et al., 2013; Chang et al., 2021). For
example, resident oral bacteria are able to prevent colonization
by exogenous organisms, which have the potential to be
pathogenic (Shu et al., 2020). Resident bacteria use a number
of mechanisms to achieve this. They will compete with foreign
organisms for available ligands and receptors for attachment.
Because resident organisms are highly competitive with
endogenous substrates in the oral cavity, exogenous organisms
cannot thrive. The metabolic function of resident bacteria can
create a variety of microenvironments, which usually produce
conditions that are not suitable for other organisms to colonize,
such as changes in pH or redox potential (Seminario-Amez et al.,
2017). In addition, it has been shown that the coordinated
regulation of host inflammatory responses between commensal
June 2022 | Volume 12 | Article 831387
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oral bacteria and the host innate immune system is critical for the
control and maintenance of healthy homeostasis (Chang et al.,
2021). For instance, commensal oral bacteria can indirectly
participate in innate defenses by modulating select defense
mediators (Greer et al., 2013). Commensal oral bacteria can
also indirectly participate in inflammation resolution to maintain
coexistence with favorable microorganisms residing within the
oral cavity through key homeostatic immunological regulators of
host-commensal interactions in the oral mucosa (Nassar et al.,
2017). By participating in nitrate metabolism, host-oral
microbiome interactions play a significant role in the
maintenance of cardiovascular health (Wade, 2013).

The oral microbial composition can remain stable for a long
time in healthy individuals (Hu et al., 2013); and chemotherapy
and radiotherapy have been shown to lead to significant changes
in microbial composition that can contribute to the development
of mucositis (Costello et al., 2009; Napenas et al., 2010; Thaiss
et al., 2016; Sroussi et al., 2017). Chemotherapy and radiotherapy
can disrupt the ecological balance in the oral cavity by damaging
the oral epithelium and reducing the number of commensal
microbes (Donnelly et al., 2003; Ye et al., 2013). Napenas et al.
investigated 16S rRNA in different bacterial species before and
after chemotherapy in nine breast cancer patients (Napenas et al.,
2010). Of particular interest was the finding that 25 species (60%)
were exclusive to the post-chemotherapy samples, which
suggests a change in the oral microbiota following
chemotherapy. A study of head and neck cancer patients
receiving radiotherapy showed that Candida spp. were isolated
in 77% of the patients with oral mucositis (Belazi et al., 2004). In
another pediatric study, the presence of Candida spp. was shown
to be associated with the increased severity of mucositis in
children with acute lymphoblastic leukemia (de Mendonça
et al., 2012). Lastly, Hou et al. studied the dynamics of the
intraoral microbiota in patients treated with radiotherapy alone
as well as radiotherapy in combination with chemotherapy and
found that Clostridium spp., Porphyromonas spp., Dense
Helicobacter spp., and Puccinia spp. showed dynamic and
relatively synchronous changes in abundance in the bacterial
community (Hou et al., 2018). These changes appeared to
overlap with the temporal phase of severe mucositis episodes,
suggesting that an increase in the clinical severity of oral
mucositis is likely to be closely related to changes in the
proportion of specific microorganism groups in the patient’s
oral cavity. Hong et al. further elaborated that the severity of oral
mucositis was related to the imbalance of oral microbiota groups,
the enrichment of potential gram-negative pathogenic bacteria in
severe mucositis, and a decrease in symbiotic bacteria associated
with healthy tissues (Hong et al., 2019). Our previous research in
mice also indicated that after receiving radiotherapy, the top 30
most abundant bacteria in the oral cavity changed significantly,
with a significant increase in the total anaerobic bacteria (Wang
et al., 2021; Zhu et al., 2021).

Chemotherapy and radiotherapy reduce microbial diversity,
leading to an overpopulation of opportunistic pathogenic
bacteria, disrupting the balance between the microbial
community and host, leading to inflammatory responses in the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
oral mucosa (Vanhoecke et al., 2015; Ingrosso et al., 2021).
Furthermore, the composition and metabolic function of oral
microorganisms are significantly altered during chemotherapy
(de Farias Gabriel et al., 2021). The binding of some oral
microorganisms to pattern recognition receptors (PRRs),
especially TLRs, activates the receptors and promotes the
development of inflammation through a series of reactions that
activate NF-ĸB (Vasconcelos et al., 2016). After recognition by
TLRs, bacteria are processed and translocated into the cell,
activating nucleotide-binding oligomerization domain-like
receptors (NLRs). This, in turn, regulates downstream
signaling and produces inflammatory factors, which further
positively regulate the TLR-mediated inflammatory response
(Bahri et al., 2010). Translocating commensal bacteria can even
prolong the existence of already established ulcerations,
impairing tissue healing (Vasconcelos et al., 2016).

The occurrence of RIOM/CIOM not only contributes to
microbial dysbiosis but also plays a role in the direct damage
of epithelial cells, including DNA and RNA (Logan et al., 2008).
The collection of pathogen-associated molecular patterns
(PAMPS) and damage-associated molecular patterns
(DAMPS), such as high mobility group protein box-1
(HMGB1), nucleotide fragments, and reactive oxygen species,
disrupt normal gene expression and intensifies apoptosis by
TLRs. This then activates a cascade of proinflammatory
reactions to produce proinflammatory mediators such as IL-
1b, IL-6, and TNF-a (Choi et al., 2018). Therefore, the
involvement of the microbiome in the development of RIOM/
CIOM, and PRRS such as TLRs are considered critical in its
pathogenesis (Morales-Rojas et al., 2012; Wardill et al.,
2016) (Figure 1).
TOLL-LIKE RECEPTORS

TLRs are a family of molecules that are widely involved in
mobilizing innate immunity, maintaining oral epithelial
homeostasis, and signal transduction in the injury response
stage of the oral mucosa (Groeger and Meyle, 2019). TLRs can
respond to the endogenous molecular patterns caused by a
variety of microorganisms and cell damage, recruit different
junction proteins, and trigger a series of signaling cascade
responses, resulting in effective defense mechanisms against
invasive pathogens, tissue damage, or cancer, including the
production of proinflammatory factors (Li et al., 2019). TLRs
comprise a leucine-rich repeat (LRR) extracellular domain that
can recognize ligands and a Toll/IL-1R (TIR) intracellular
domain that is responsible for signal transduction (Mifsud
et al., 2014). Current studies have shown that there are mainly
myeloid differentiation factor (MyD88)-dependent pathways
and MyD88-independent pathways in the signaling cascade
amplification pathway (Hug et al., 2018), but TLRs can also
activate extracellular regulated protein kinases (ERKs) and c-Jun
N-terminal kinase (JNK) signal transduction upstream of
mitogen-activated protein kinase (MAPK) and other signal
transduction pathways (Anthoney et al., 2018).
June 2022 | Volume 12 | Article 831387
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Ten different kinds of TLRs have been discovered in humans,
and their specific ligands have also been identified (Kawai and
Akira, 2007). TLR1, TLR2, TLR4, TLR5, and TLR6 are mainly
expressed on the cell membrane. According to their ligands,
TLRs can be divided into three categories: TLR1, TLR2, TLR4,
and TLR6, which bind lipid species; TLR5, which recognize
pathogen proteins; and TLR3, TLR7, TLR8, and TLR9, which
bind nucleic acids including DNA and RNA from both cells and
viruses (Rauta et al., 2014). The typical microbial components
shared by bacteria can stimulate the immune-inflammatory
cascade in healthy oral mucosal epithelial cells, thereby
maintaining the balance between normal oral microbial
bacteria and the host (Sigal, 2005). However, excessive,
deregulated inflammation can disrupt the normal function of
healthy subgingival plaque biofilms with the concomitant
disruption of its functional properties in relation to innate
defense surveillance and tissue maintenance, leading to tissue
destruction (Darveau and Curtis, 2021). This is the functional
basis for the pattern recognition of TLRs (Takeda and
Akira, 2004).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
At present, all ten TLR mRNAs can be detected in oral
epithelial cells (Groeger and Meyle, 2019). Beklen et al.
obtained tissue samples from patients and confirmed that
TLR1 to TLR9 were differentially expressed in the oral mucosal
epithelium in addition to TLR10 using immunohistochemical
techniques to localize TLRs in tissue samples (Beklen et al.,
2008). Except for TLR7 and TLR8, all TLRs showed statistically
significant differences after periodontal inflammation and
normal tissue control. After obtaining oral mucosal epithelial
tissue samples, Sugawara et al. found that Toll-like receptors
were expressed in normal oral mucosal epithelium, especially
TLR4 and TLR2 by immunohistochemical analysis (Sugawara
et al., 2006). They also demonstrated that primary cultured oral
epithelial cells expressed TLR4 and TLR2 by PCR, flow
cytometry, and immunostaining; and its cell surface location
was more pronounced in inflamed oral epithelial tissues than in
healthy tissues (Lukova et al., 2020).

The expression of TLRs plays an important role in
maintaining the homeostasis of the oral epithelium. The most
likely relevant defense mechanism mediated by TLR signaling in
FIGURE 1 | Microbial dysbiosis alters molecular pathways in RIOM/CIOM. Chemotherapy and radiotherapy lead to microbiota dysbiosis, after which TLRs can bind
to HMGB1 as DAMPs from necrotic and apoptotic cells, as well as bacterial fragment PAMPs. Thus, TLRs upregulate NF-kB through the MyD88 signaling pathway
and activate NLRs and proinflammatory reactions including IL-1b, IL-6, and TNF-a, promoting the damage of nucleic acids and the positive feedback of
proinflammatory reactions to participate in RIOM/CIOM.
June 2022 | Volume 12 | Article 831387
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the oral cavity is the induction of antimicrobial substances, such
as defensins (a-type, b-type, and q-type), and the expression of
human b-defensin (hBD)-1 to hBD-4 mRNA and protein in the
oral epithelium (Liu et al., 2014). The mechanisms regulating
TLR signaling in oral mucosal epithelial cells include the
differential expression of TLRs and their signaling partners. Its
cellular localization and mode in oral mucosal tissues affect its
response to pathogens while attenuating the response to
commensals and maintaining homeostasis under physiological
tissue conditions (McClure and Massari, 2014). In this, human
periodontal ligament cells (hPDLFs) can play an important role
in the immune response of the periodontal microenvironment by
secreting proinflammatory cytokines. Lipopolysaccharide (LPS)
is a component of gram-negative bacteria and is a potent
stimulator of TLR4 (Brown et al., 2010). A previous study
identified the unique LPS-sensing mechanism of the oral
epithelium, whereby the activation of TLR4 in gingival
epithelial cells required vesicular acidification to turn on TLR4
signaling, indicating the stringency for fine-tuning a local LPS
response (Kantrong et al., 2019). It has been confirmed that the
mRNA and protein levels of TLR increased after the initial LPS
stimulation but were found to be reduced after the secondary
challenge. This process favors hPDLFs in maintaining oral
mucosal immune homeostasis (Wu et al., 2015). After fungal,
bacterial, and viral pathogens bind to TLRs, the downstream
signaling pathways are activated and play an important role in
innate and adaptive immune responses . Numerous
microorganisms are constantly present in the oral mucosa, so
the expression and function of TLRs are necessary to maintain
oral mucosal homeostasis (Groeger and Meyle, 2019). The
following details the specific roles of various TLRs in RIOM/
CIOM (Figure 2).
TLR2 AND RIOM/CIOM

At present, the activation of TLR2 is generally believed to
increase the expression of proinflammatory cytokines and
participate in signaling pathways important in the main injury
response period of oral mucositis induced by radiotherapy and
chemotherapy (Villa and Sonis, 2016). TLR2 is highly expressed
in the basal layer of the gingival epithelium and plays an
important role in tissue homeostasis (Beklen et al., 2008). For
example, TLR2 can recognize pathogens in the basal layer of the
mucosal epithelium to promote the occurrence of TLR-
dependent inflammation (Groeger and Meyle, 2019).
Moreover, TLR2 can form a functional complex with other
TLRs and activate NF-kB through the MyD88 signaling
pathway. Studies have shown that the expression of NF-kB in
human oral mucosa increased after chemotherapy (Frings et al.,
2016), which may be related to the occurrence of oral mucositis
after chemotherapy. NF-kB is a key downstream transcription
factor activated through the TLR signaling pathway. After
activation, it is transferred to the nucleus to bind to the target
gene promoter region, and transcription induces the production
of many inflammatory factors, such as IL-1b, IL-6, and IL-8
(Stringer and Logan, 2015). In contrast, TLR2 may function in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
protecting the mucous membrane. TLR2 has been shown to
protect the intestinal mucosal barrier by activating ABCB1/
MDR1 P-glycoprotein (ABCB1/MDR1 P-gp) (Frank et al.,
2015). ABCB1/MDR1 P-gp is an ATP-dependent efflux
transport pump that prevents the accumulation of foreign
bodies in cells, thereby reducing the production of harmful
substances in cells during chemotherapy (Cario, 2016).

Cario et al. used TLR2-/- mice, MyD88-/- mice, and wild-type
mice to establish in vitro and in vivo models of intestinal
epithelial cells to assess spontaneous apoptosis by terminal
deoxynucleotidyl transferase-mediated dUTP-biotin nick end-
labeling (Cario et al., 2007). The resulting data showed that TLR2
could control mucosal inflammation by modulating epithelial
barrier function. Moreover, in intestinal mucosal inflammation,
synthetic Pam3Cys-SK4 (PCSK), a ligand for TLR2, significantly
inhibited mucosal inflammation and apoptosis by restoring the
integrity of intestinal epithelial tight junctions in vivo. To date,
there are relatively few studies on TLR2 and RIOM/CIOM. More
related studies are needed to explain the relationship between
TLR2 and oral mucositis (Figure 2).
TLR4 AND RIOM/CIOM

Although, the results of existing studies focusing on the role of
TLR4 seem to be controversial, the activation of TLR4 is widely
believed to increase the expression of several proinflammatory
cytokines, including IL-6 and TNF-a (Kawai and Akira, 2010).
Some studies have found that TLR4 was closely related to the
occurrence and development of some inflammatory oral
diseases, such as recurrent aphthous ulcer and periodontitis.
For example, Karasneh et al. found a significant association
between the TLR4 rs10759931 polymorphism and recurrent
aphthous stomatitis, suggesting that TLR4 may be a
therapeutic target for the treatment of oral ulcers (Karasneh
et al., 2015). Moreover, Qi et al. conducted controlled
experiments in a mouse model of periodontitis that showed
periodontal inflammation upregulated TLR4 levels, enhanced
cellular immunity, and affected endogenous transcription factor
expression, thereby increasing the inflammatory response in vivo
(Qi et al., 2019). However, the inhibition or knockdown of TLR4
receptors in mice effectively reduced periodontal inflammatory
responses and cellular immunity. This suggests that TLR4 may
be relevant as a therapeutic target for the inflammation of
periodontal tissues in the oral cavity. Together, these results
have some implications for oral mucositis. DAMPs, such as
HMGB1, bind to TLR4 and activate TLR4 by interacting with
LPS due to chemotherapy and radiotherapy. The inflammatory
cascade reaction is then initiated. The TLR4 signaling pathway
can stimulate host cells to produce proinflammatory cytokines
such as TNF-a (Stringer and Logan, 2015), resulting in ulcers
after damaging the basal layer of the mucosal epithelium, which
runs through the entire oral epithelium (Villa and Sonis, 2016).
In addition, the interaction between TLR4 and antigen-
presenting cells can lead to the upregulation of costimulatory
molecules, such as CD40, CD80, and CD86, on antigen-
presenting cells, which may aggravate mucosal epithelial
June 2022 | Volume 12 | Article 831387
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inflammation (Karasneh et al., 2015). Hamada et al. reported
that in the intestinal mucosa of methotrexate (MTX)-treated rats,
a significant increase in TLR4 mRNA and protein expression was
observed and coincided with a proinflammatory setting
(Hamada et al., 2013). TLR4 deficiency resulted in significantly
reduced acute NF-kB signaling, inflammation, and COX-2
expression in a preclinical model of dextran sulfate sodium
(DSS)-induced colitis (Fukata et al., 2005).

Several studies also showed that TLR4 signaling played a
protective role. One study showed a protective mechanism in
oral epithelial cells, where TLR4 was internalized and could not
be activated by the major virulence factor LPS to prevent a hyper
response to oral commensal bacteria (Kantrong et al., 2019).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Both TLR4 and Myd88 protein and mRNA levels were
significantly down-regulated in MTX-treated rats compared to
control animals due to a compensatory mechanism in which
activated receptors mediated their own downregulation to limit
or stop the response to the stimulus (Sukhotnik et al., 2014).
When activated by bacterial LPS, TLR4 has been shown to
provide protection to the intestinal epithelium from radiation
damage, increasing crypt survival and prostaglandin activity
(Egan et al., 2004). According to previous clinical studies,
severe chemotherapy-induced gastrointestinal mucositis was
prevented in TLR4 gene knockout mice. However, TLR4
knockout mice completely lack an IL-6 response, and IL-6 may
be a more promising therapeutic target for preventing or
FIGURE 2 | TLR2, TLR4, TLR5, and TLR9 participate in the occurrence and development of RIOM/CIOM through different mechanisms. Activated TLR2, TLR4, and
TLR9 induce the expression of proinflammatory cytokines (IL-6, IL-8, IL-1b, and TNF-a) to participate in the development of RIOM/CIOM through the MyD88/NF-kB
signaling pathway. TLR2 can be activated by forming a functional complex with other TLRs, and TLR2 can also activate ABCB1/MDR1 P-gp to prevent harmful
substances from accumulating in cells. Due to chemotherapy and radiotherapy, TLR4 could not only bind to HMGB1 and myeloid differentiation protein 2 (MD-2),
and be activated through interactions with LPS, but could also interact with antigen-presenting cells, accompanied by the upregulation of costimulatory molecules,
such as CD40, CD80, and CD86. When activated by CBLB502, TLR5 induces protective cytokines (G-CSF) and antioxidants (SOD2), contributing to rebuilding the
epithelium. As for TLR9, it can be activated after recognizing CpG DNA from bacteria.
June 2022 | Volume 12 | Article 831387
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alleviating chemotherapy-induced gastrointestinal mucositis
(Khan et al., 2018). In this way, it plays a protective role in
gastrointestinal mucositis. Moreover, in DSS-induced or
radiation-induced colitis and injury models, Shi et al. reported
that mice with TLR4 deficiency were more susceptible to DSS-
induced and radiation-induced intestinal damage, although they
did not produce as many proinflammatory cytokines as their
wild-type counterparts (Shi et al., 2019). In addition, the
moderate activation of TLR4 by LPS promoted the expression
of PGE2 and GM-CSF, repairing the epithelium in DSS and
radiation-induced damage (Shi et al., 2019). Based on the above
results, we believe that the role of TLR4 is to maintain a balance
between protection and damage. When it is over-activated, its
proinflammatory effect dominates, leading to the further
aggravation of mucositis. However, if TLR4 is knocked out or
inhibited completely, it will not be able to activate innate
immunity and promote epithelial repair. Therefore,
maintaining a balance in TLR4 activation is crucial in treating
RIOM/CIOM (Figure 2).
TLR5 AND RIOM/CIOM

It has been demonstrated that the activation of TLR5 could
ameliorate RIOM/CIOM. When the same agonist was tested in a
mouse model it not only reduced the extent of oral mucosa
damage but also accelerated regeneration (Toshkov et al., 2017).
CBLB502, a TLR5 agonist, was administered to mice under
single-dose and fraction local radiation of the head and neck
and significantly alleviated mucositis (Burdelya et al., 2012).
Burdelya et al. found that CBLB502 could be used as a ligand
and agonist of TLR5, which mainly mediates the activation of
downstream signaling pathways through TLR5 signaling
pathways in normal tissue or tumors (Burdelya et al., 2012).
The mice in the experimental group were subcutaneously
injected with different doses of CBLB502 30 min before
radiotherapy. The observation and comparison of the
bodyweight of the mice and the pathomorphology of the mice
mucous membranes between the experimental group and the
control group, showed that CBLB502 could significantly reduce
the severity of oral mucositis and accelerate the recovery of
mucosal tissue. Moreover, under some radiation doses, CBLB502
reduced the degree of radiation-induced weight loss in mice after
a single dose of radiotherapy. This study suggests that CBLB502
has the characteristics of both supportive therapy (radiotherapy
adjuvant) and anticancer drugs. The mechanism was that TLR5
activated NF-kB signaling, which further induced antioxidant-
designated superoxide dismutase 2 (SOD2) and radioprotective
cytokine granulocyte colony-stimulating factor (G-CSF)
(Burdelya et al., 2008). By suppressing the oxidative stress of
ROS and contributing to restoration, they effectively reduced
radiation toxicity (Atkinson et al., 1995). Furthermore, the
activation of TLR5 had no protective effect on locally
irradiated syngeneic head and neck mouse tumors (Burdelya
et al., 2008). Attributed to the immunostimulatory effect of TLR5
signaling activation, tumor necrosis increased, leading to
significant tumor regression (Rhee et al., 2008). In this case, a
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
TLR5 agonist may be an ideal agent for treating RIOM/
CIOM (Figure 2).
TLR9 AND RIOM/CIOM

The role of TLR9 in RIOM/CIOM is not well documented. TLR9
is a receptor that recognizes PAMPs such as unmethylated
cytosine-phosphate-guanine motif (CpG DNA) from bacteria,
and plays an important role in innate and adaptive immunity
(Varga et al., 2016; Dragasevic et al., 2018). TLR9 has been
confirmed to play an inflammatory and destructive role in the
gastrointestinal tract (Donnelly et al., 2014). After chemotherapy,
TLR9 is more likely to identify a part of the intestinal microbiota,
send downstream signals, produce proinflammatory mediators,
and mediate the occurrence of gastrointestinal mucositis.
Adriamycin is an antibiotic used in anti-tumor therapy that
easily induces intestinal injury during clinical treatment. The
TLR9 antagonist ODN2088 can block TLR9 signal transduction
and significantly reduce adriamycin-induced intestinal injury
(Dragasevic et al., 2018). TLR9 antagonists can reduce intestinal
injury caused by antineoplastic drugs. Some studies have also
found that TLR9 receptor gene deletion could improve the survival
rate of animals and reduce intestinal injury and bacteremia. At the
same time, it decreased the expression of inflammatory markers,
such as NF-kB, IL-1, IL-18, and COX-2 (Ribeiro et al., 2016).
Wong et al. also illuminated that, compared to wild-type mice that
were injected with saline or irinotecan to induce intestinal
mucositis, TLR9 gene knockout preserved mucosa architecture,
bacterial translocation, and the expression of IL-1b (Wong et al.,
2015). However, the improving trend in diarrhea and survival did
not achieve statistical significance, which may have been due to the
different chemotherapy agents administered. Therefore, the
current evidence demonstrates that activated TLR9 plays a
proinflammatory role in mucositis, suggesting that the inhibition
of TLR9 may also be a potential therapeutic target for RIOM/
CIOM. However, more work is still needed to clarify the role of
TLR9 in RIOM/CIOM (Figure 2).
CONCLUSION

With the continuous deepening and accumulation of research, the
role of TLRs in RIOM/CIOM is becoming clearer. The mucositis
process is recognized as a balance between pathological factors and
protective factors. TLR9 recognizes the microbiota and increases
the expression of proinflammatory cytokines. In contrast, TLR5
could suppress the oxidative stress of ROS to contribute to the
restoration of RIOM/CIOM by inducing SOD2 and G-CSF. TLR2
and TLR4 could not only upregulate NF-kB to contribute to the
increase in pathological factors through the MyD88 signaling
pathway, promoting RIOM/CIOM but also induce ABCB1/
MDR1 P-gp and protective cytokines to promote the restoration
of normal mucosa (Figure 3). The development of agonists and
antagonists is also a promising direction for the clinical treatment
of RIOM/CIOM in the foreseeable future. Of the studies reviewed,
evidence suggests that the inhibition of TLR2 and TLR5, and the
June 2022 | Volume 12 | Article 831387
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activation of TLR9 may be plausible in the protection of RIOM/
CIOM. The role of TLR4 may need to be cautiously balanced to
exert its therapeutic effect. Further studies in this area are expected
to reveal the role of TLRs and their interaction with the
microbiome (Figure 3).
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