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Abstract: Economic development and land-use change can strongly affect terrestrial ecosystems’
carbon balance. This paper quantifies the changes in land use of Yangtze River Delta urban agglom-
eration (YRD) in 2020 and 2035 under three economic growth scenarios, exploring the concurrent
impact on carbon storage. The results showed that the land carbon storage of YRD had decreased by
1453.80 Tg in 2000–2020, and will continue to decrease by 982.38 Tg, 1417.62 Tg, and 1636.21 Tg under
the scenarios of a slow, medium, and rapid economic growth from 2020 to 2035, respectively. The
large-scale occupation of cultivated land and woodland for construction land caused by economic
development and population growth was an important reason. The occupation of cultivated land by
construction land in Nanjing, Shanghai, and its surrounding areas had further intensified, while the
reduction in carbon storage caused by the reduction in woodland had become more prominent in
Hangzhou, Shaoxing, Jinhua, and the surrounding areas.

Keywords: carbon storage; economic development; land use; Yangtze River Delta urban agglomeration

1. Introduction

Carbon storage in terrestrial ecosystems is a vital part of global carbon storage, pro-
foundly influencing the carbon reduction and alleviation of global warming. Carbon
storage is a process of ecosystems absorbing and accumulating atmospheric carbon [1,2].
The global terrestrial ecosystems store approximately 2030–2538 Pg of carbon, including
208–609 Pg in vegetation and 1523–1929 Pg in the top 1 m of soil [3]. As the most direct
manifestation of the impact of human activities on climate change [4], land-use change
is the greatest uncertainty factor in estimating carbon storage in terrestrial ecosystems.
Greatly disturbed by economic growth and population agglomeration, a considerable area
of the original green land has been converted into construction land [5–7], directly leading
to a sharp decrease in land carbon storage [8,9]. Hence, there is necessary and meaningful
to conduct research from the perspective of economic growth and land-use change.

There is a growing realization, at national and international levels, that we should
increase carbon storage from land use to meet the challenge of carbon neutrality. In
particular, land-use change can significantly alter vegetation carbon storage and soil organic
carbon storage, although obvious soil organic carbon change may take longer [10]. There
are differences in the carbon storage of different land-use types, and woodland usually has
high soil carbon storage densities, compared with other land-use types [11,12]. Changes
from woodland to other land-use types usually release carbon from the soil, especially the
upper layers of soil. Hence, many scholars have proposed increasing carbon storage by
adjusting the land-use structure, which appeared to be an effective plan.
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Plenty of research has simulated changes in land use, but the knowledge is still
limited. There is a mutual feedback relationship between land-use change and human
socioeconomic development [13], and the interaction should be fully considered [14], which
is often simplified or ignored. The common point of previous studies was that human
activities and economic growth were regarded as external systems that affect land use,
neglecting the dominant control and feedback effect of land use on human activities [15,16].
For example, Liu et al. (2017) [17] studied population, GDP, investment, and production
technology as the main driving forces of land-use change and simulated the scenarios of
future land use such as urban land, cultivated land, and forest land. Neoclassical economic
theory believed that land also has assets and attributes that should be the input elements
for economic growth [18], such as capital, labor, and technology. In other words, land is
an output element as well as an input element in the urban development, rather than a
one-way correlation similar to A acting on B.

A substantial proportion of the literature focused on urban land-use changes and the
associated effect on carbon storage but lacked the analysis of all land-use types [19,20].
For example, He et al. (2017) [21] simulated the impact of urban ecosystems on carbon
storage under different scenarios based on administrative districts and distance to the
boundaries. Yang et al. (2020) [22] linked RCPs and SSPs to explore the impact of urban
land-use change on carbon storage in the multiple urban expansion scenarios. However,
there is a trade-off relationship between construction land and non-construction land, and
a singly consideration of urban systems or non-urban systems may not reflect the current
carbon storage and will thus greatly affect the precision.

The objective of this paper is to calculate the land-use change under different economic
growth scenarios and analyze its impact on carbon storage, using the Yangtze River Delta
urban agglomeration (YRD), China, as an example. There are two main reasons why YRD
was selected as the research case. First, YRD is the sixth-largest urban agglomeration
in the world and the largest urban agglomeration in China, which is undergoing a fast
urbanization process with dramatic land-use change [23]. Second, the urban land-use
intensity keeps increasing due to the population and industrial agglomeration, and other
energy consumption-related human activities. Hence, YRD provides an ideal case to
investigate the issue of changes in carbon storage caused by economic growth. Detailed
research contents will include the following: (1) simulate the land-use changes of the YRD
region under different economic growth scenarios from 2000 to 2030; (2) calculate the
carbon storage loss caused by land-use changes; (3) provide detailed policy and strategy
references from multiple angles of land-use management.

The innovation of this paper has three aspects. First, the paper developed a compre-
hensive study of closed loops, fully connecting social, economic, and land-use systems,
and understanding their dynamic interactions and feedback. Second, the construction land
and the non-construction land were included in the research framework, clarifying the
structural changes of land use. Third, three economic growth scenarios were designed
according to different combinations of birth rate, food demand, and land-use policy.

The structure of this paper is as follows: Section 2 describes data resources and
methodology. Section 3 presents the results. Sections 4 and 5 show the discussion and
conclusions, respectively.

2. Methodology and Data
2.1. Study Area

The Yangtze River Delta urban agglomeration (YRD) is located in the developed
coastal areas of eastern China, with longitude ranging from 115◦46′ E to 123◦25′ E and
latitude ranging from 27◦03′ N to 34◦28′ N. It is covered Shanghai, Jiangsu, Zhejiang,
and Anhui Provinces. According to the Outline of the Yangtze River Delta Regional
Integrated Development Plan (2019), YRD includes 27 prefecture-level cities with an area
of 225,000 km2 (Figure 1). Jiangsu and Zhejiang Provinces include 9 cities, respectively.
Additionally, Anhui Province includes 8 cities. The economic growth and high urbanization
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rate in this region are accompanied by excessive population density and high demand for
construction land, with frequent land-use changes.

Figure 1. Study area.

2.2. Data

Data sources used in this paper include socioeconomic data, land use images, and
some spatial geographic data.

Crop yield data and other socioeconomic data were obtained from statistical yearbooks
of Jiangsu Province, Zhejiang Province, Anhui Province, and Shanghai, from 2001 to 2021.
In order to eliminate the impact of prices, all the economic indicators involved were
converted into 1990 prices.

Land use images were obtained from the Institute of Geographic Sciences and Nature
Resources Research (Available online: http://www.resdc.cn/ (accessed on 22 September
2021)), with an accuracy of 30 m from 2000 to 2020. Land-use classifications used in this
paper include the 6 first-level types, of cultivated land, woodland, grassland, water area,
construction land, and unused land. The comprehensive valuation accuracy of the first
level of land use was >93%, and that of the second level was >90% [24]. The MODIS
NDVI images of a 500 m grid come from the Geospatial Data Cloud (Available online:
http://www.gscloud.cn/ (accessed on 22 September 2021)).

Moreover, some spatial geographic data were collected from the database of the
Chinese Academy of Sciences (Available online: http://www.resdc.cn (accessed on 22
September 2021)), such as administrative boundaries, rivers, roads, settlements, digital

http://www.resdc.cn/
http://www.gscloud.cn/
http://www.gscloud.cn/
http://www.resdc.cn
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elevation, and soil type data, which were mainly used to identify urban development and
limited regions.

2.3. Methods

Factors related to economic growth and urbanization will directly or indirectly affect
the structure and spatial pattern of land use, leading to changes in carbon storage [25–27].
Figure 2 presents the research framework. The system dynamics model (SD) and future
land-use simulation (FLUS) model were utilized to simulate the future land-use demand
and the distribution of the spatial pattern under different coupling scenarios, respec-
tively [17]. Additionally, the integrated valuation of ecosystem services and trade-offs
(InVEST) model was used to evaluate the response of carbon storage at the land patches.

Figure 2. The hierarchical analysis framework.

2.3.1. Prediction of Future Land Use Demand

The SD model was utilized to establish the feedback relationship between urbanization,
economic growth, and land use due to the obvious advantages in dealing with the nonlinear
behavior of complex systems on a macro scale [28]. In the SD model, the population
growth, economic development, and other relevant urbanization factors were used as
driving variables to carry out multi-scenario simulations, by combining land use and
industrial growth, investment, economic output per unit area of land, housing supply, and
agricultural production.

Four subsystems were used to describe the SD model, including economic subsystem,
population subsystem, construction land use subsystem, and non-construction land-use
subsystem, with more than 137 variables. Figure 3 shows the main variables and relation-
ships of the four subsystems. Figure 4 provides the causal loop of the SD model.
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Figure 3. The structure of the SD model.

The population subsystem mainly included changes in urban population and rural
population. For example, both the continuing migration of the rural population to the
city and the increasing of urban inhabitants will trigger more land demand for housing,
transportation, and industrial land [29], and it also affect the structure of non-construction
land through changes in dietary structure, such as the intake of fish and milk. The economic
subsystem mainly included changes in the output value of the primary (secondary and ter-
tiary) industries, which will be affected by population growth, technological development,
and industrial structure adjustment. Both population subsystem and economic subsystem
affected structure and amounts of land use. The increase in construction land usually led
to a decrease in non-construction land, such as the loss of cultivated land, woodland, and
waters.

The Vensim PLE software (Massachusetts Institute of Technology, Cambridge, MA,
USA) was used to design the causal cycle diagram of the SD model. The SD model
simulations begin with 2000, calibrated with 2000 and 2020 data. Table 1 shows that the
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errors of simulation results were less than 10%, indicating that the SD model was reliable
and can be used to simulate the future land-use demand [13].

Figure 4. SD model of land use.

Table 1. Model historical data simulation error.

Main Variable Average Error Rate

Urban population scale 1.27%
Rural population scale 1.36%
Urban land Scale 5.04%
Urban industrial land scale 0.00%
Urban residential land scale 3.55%
Land for other tertiary industries 2.48%
Cultivated land scale −0.18%
Woodland scale 0.09%
Grassland scale 2.22%
Waters 0.16%

2.3.2. Simulation of Spatial Land-Use Patterns

FLUS model was utilized to generate the spatial pattern of land use [17]. This paper
obtained the combined conversion probability of land-use type k in grid unit p at time t by
calculating the probability of occurrence, land-use conversion inertia, neighborhood effect,
and land-use conversion cost. The formula is as follows:

TPt
p,k = Pp,k ×Ωt

p,k × Inertiat
k × (1− scc→k) (1)

where TPt
p,k is the combined conversion probability. Pp,k, Ωt

p,k, Inertiat
k, and scc→k represent

the probability of occurrence, the neighborhood effect, the conversion inertia of land-use
type k, and conversion cost from land-use type c to k, respectively.

Roulette selection was utilized to determine the land-use type k of the grid unit p
after estimating the combined probability. The higher the combined conversion probability
of land-use type is, the higher is the probability of being allocated to the grid unit p.
This ensures the uncertainty of the actual land-use dynamic change and also reflects the
randomness of the land-use spatial pattern distribution.
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A three-layer ANN model was used to measure the probability of occurrence. In
the input layer, each neuron corresponds to a spatial variable, including climatic factors,
natural environmental factors, socioeconomic factors, and neighboring factors. Addition-
ally, in the hidden layer, the artificial neural network was trained based on sampling data
(random sampling strategy, sampling rate: 10%), combined with land-use types and other
geographic information attributes. The formula is as follows:

Pp,k = ∑j wj,k ×
1

1 + e−netj(p,t)
(2)

where wj,k is an adaptive weight. netj(p, t) is the signal received by neuron j.
The neighborhood effect reflected the interaction between the land in each grid and

its surrounding grid. The formula is as follows:

Ωt
p,k =

∑N×N con
(

ct−1
p = k

)
N × N − 1

× wk (3)

where wk is the weight of land-use type k. ∑N×N con(ct−1
p =k)

N×N−1 represents the number of grid
units belonging to land-use type k in the N × N units (here, N = 3) at iteration time t− 1.

Land-use conversion inertia was the core of the adaptive inertia competition mecha-
nism [30]. The formula of the conversion inertia is as follows:

Intertiat
k =



Intertiat−1
k ,

∣∣∣Dt−1
k

∣∣∣ ≤ ∣∣∣Dt−2
k

∣∣∣
Intertiat−1

k × Dt−2
k

Dt−1
k

, Dt−1
k < Dt−2

k < 0

Intertiat−1
k × Dt−1

k
Dt−2

k
, 0 < Dt−2

k < Dt−1
k

(4)

where Dt−1
k and Dt−2

k represent the difference between the macro demand and the alloca-
tion amount of land-use type k at iteration time t− 1 and t− 2, respectively.

2.3.3. Assessment of Carbon Storage Change

This paper used the InVEST model to calculate the carbon storage of land use based
on the land-use raster map, including above-ground carbon storage (AGC), below-ground
carbon storage (BGC), soil organic carbon density (SOC), and dead organic matter carbon
density (DOC) [31]. The formula is as follows:

Cp,k = A× (Dk
AGC + Dk

BGC + Dk
SOC + Dk

DOC) (5)

where Cp,k is the carbon storage of land-use type k in unit p. A is the area of a grid cell.
Dk

AGC, Dk
BGC, Dk

SOC and Dk
DOC represent the density of AGC, BGC, SOC, and DOC of the

land-use type k, respectively. The values of carbon density were estimated based on the
existing literature (Table 2).

Table 2. Carbon density of each land-use type (unit: Mg/hm2).

Types AGC BGC SOC DOC Source

Cultivated land 17.55 11.59 80.70 2.24 Fang et al. (2001) [32]; Jian (2001) et al. [33];
Wang et al. 2001 [34]; Chuai et al. (2013) [35]Woodland 31.83 6.37 105.77 2.94

Grassland 14.45 17.35 88.06 2.45 Fan et al. (2008) [36];
Chuai et al. (2013) [35]

Waters 0 0 0 0
Jian (2001) [33]; Zhang et al. (2017) [37];Construction

land 7.61 1.52 34.33 0

Unused land 10.36 2.07 34.42 0.96
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2.4. Scenario Setting

To compare the evolution of land use in YRD under different scenarios from 2020
to 2035, 10 parameters were used: primary (secondary, tertiary) industry growth, family
planning impact factor, urban housing area per capita, the change rate of industrial output
value per area, grain self-sufficiency rate, the annual change rate of per capita forest
occupancy and annual growth rate of livestock meat production per unit of pasture. Three
development models were designed: high-speed economic growth scenario (HE), the
medium economic growth scenario (ME), and the slow economic growth scenario (SE), as
shown in Table 3.

Table 3. Parameters of three scenarios.

Control Variable SE ME HE

Primary industry growth rate 4% 4.5% 5%
Secondary industry growth rate 6% 6.5% 7%
Tertiary industry growth rate 11% 11.5% 12%
Family planning impact factor 1.4 1.5 1.6
Annual growth of urban housing area per capita 1.3% 1.4% 1.5%
Change rate of industrial output value per area
(increasing year by year) 0.10% 0.11% 0.12%

Grain self-sufficiency rate 100% 95% 90%
Annual change rate of per capita forest occupancy 0.45% 0.30% 0.15%
Annual growth rate of aquatic product output per unit
area of water 3.00% 3.20% 3.40%

Annual growth rate of livestock meat production per
unit of pasture 1.20% 1.40% 1.60%

2.4.1. Economic Growth Rate

In order to achieve high-quality urbanization, the potential economic growth rate in
the future may continue to decline [38,39], which had become the consensus of scholars and
research institutions at home and abroad [40,41]. The future growth rates of the primary,
secondary, and tertiary industries in YRD were determined by historical growth trends
and related forecasts. Specifically, the growth rates of the primary, secondary, and tertiary
industrial output values were estimated to be 5%, 7%, and 12% in high-speed economic
growth scenarios, respectively. Additionally, in the moderate economic growth scenario,
they were 4.5%, 6.5%, and 11.5%, respectively, while in the low-speed economic growth
scenario, they were 4%, 6%, and 11%, respectively.

2.4.2. Family Planning Changes

Although China had implemented the three-child policy, the trend of negative popu-
lation growth was unavoidable. According to the birth data of one, two, and three children
and above in the China Population and Employment Statistical Yearbook since 1998, we
found that different family planning policies have different effects on the fertility rate,
and the average impact coefficient was between 1.40 and 1.81. In addition, the planning
document also provided an outlook on the future population’s fertility rate. For example,
the “National Population Development Plan (2016–2030)” set the total fertility rate of 1.8
as the expected development target. The prediction results of the low, medium, and high
total fertility rates of 2020–2050 by the United Nations “World Population Outlook 2019”
were 1.4–1.52, 1.7–1.75, and 1.89–2.09, respectively [42]. The World Bank estimated that the
total fertility rate between 2020 and 2050 will be approximately 1.7 to 1.8 [43]. Based on the
above results, this paper assumed that the low, medium, and high total fertility rates were
1.4, 1.50, and 1.60.

2.4.3. Demand for Non-Construction Land

The setting of relevant parameters for non-construction land mainly involved changes
in waters, woodland, and cultivated land. In the future, the overall water area had not
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changed much to meet the needs of urban and rural residents for high-quality aquatic
products and beautiful water resources. Therefore, this paper set the annual growth rate of
aquatic product output per unit area of water in each scenario to be 3.0%, 3.2%, and 3.4%,
respectively, combined with historical data.

According to the data from the sixth to ninth consecutive forest resource inventories
in China, the national per capita forest land occupation has increased by approximately
0.34% per year. Therefore, the change rate of per capita forest occupancy in each scenario
was set to be 0.45%, 0.30%, and 0.15%, respectively.

The amount of cultivated land must adhere to the basic principles of ensuring food
security. Determining the goal of food self-sufficiency had become the basis for assessing
the country’s food security status and adjusting agricultural-related policies. Generally, a
food self-sufficiency rate of more than 100% is completely self-sufficient, 95% to 100% is
basically self-sufficient, 90% to 95% is an acceptable level, and less than 90% indicates that
food security is facing a greater risk [44]. Some scholars believed that it is more reasonable
to set the goal of food self-sufficiency at around 90% in the future. Combining with the
goal of stabilizing the grain self-sufficiency rate above 95% in the “Outline of National
Food Security Mid-Term and Long-Term Plan (2008–2020)” [45,46], this paper set the food
self-sufficiency rate as 90%, 95%, and 100%, respectively.

2.4.4. Demand for Construction Land

It was expected that the per capita housing area in urban areas will continue to increase.
On the one hand, there will still be a large number of people flowing from rural to urban
areas in the future, generating housing demand. On the other hand, both the increasing
trend of family miniaturization and improved housing can put tremendous pressure on
housing land. The Evergrande Research Institute uses South Korea and Russia’s per
capita housing demand as its benchmark target and assumes that China’s urban per capita
housing area will increase by 1.30 to 1.50% annually from 2019 to 2030 [47].

In addition, in terms of urban industrial land, it was assumed that the output value per
unit area of urban industrial land and urban tertiary industry land will continue to increase.
Combined with historical data, this paper set the annual change rate of the average output
value of urban industrial land in the future will increase by 0.10–0.12% annually.

3. Results
3.1. Changes in Land Use

Only the area of construction land, waters, and unused land increased during 2000–
2020. Specifically, the area of construction land increased by 12,838.34 km2, with an
average annual growth rate of 2.90%, which was primarily converted from woodland and
cultivated. On the contrary, the total area of cultivated land, woodland, and grassland lost
12,781.44 km2, 802.90 km2, and 167.49 km2, respectively.

Figure 5 presents the quantitative changes of different land-use types under three
economic growth scenarios from 2020 to 2035. During the period of 2020–2035, construction
land would maintain growth, increasing by 13,193.99 km2, 16,421.71 km2, and 19,876.39 km2

under the scenarios of low, medium, and high economic growth. The growth rate of
construction land under the high economic growth scenario was the most dramatic, which
was 1.68 times that in 2020. Similar to the changing trend from 2000 to 2020, the area of
cultivated land and woodland were still facing different degrees of reduction. The average
annual decline rates of cultivated land under the three scenarios were 0.40%, 0.55%, and
0.76%, respectively, and the decline rates of woodland were 0.40%, 1.25%, and 1.57%,
respectively. From 2020 to 2035, the area of unused land and waters will increase slightly
but not significantly.
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Figure 5. Changes in land-use quantities under different scenarios. (a) Construction land; (b) Cultivated; (c) Woodland;
(d) Grassland; (e) Waters; (f) Unused land.

Figure 6 shows the changes in the land-use pattern of YRD from 2000 to 2035. The
spatial distribution of land use in YRD had the following characteristics: (1) most newly
developed construction land was concentrated in Hefei, Shanghai, northern Jiangsu, and
northern Zhejiang Provinces. The production factors in these places were very concen-
trated, accompanied by obvious market forces. The Suzhou-Changxi metropolitan area,
Hangzhou metropolitan area, and Ningbo metropolitan area were still the centers of rapid
development of the YRD region, requiring a lot of construction land; (2) with the deepening
of the integration process of the YRD region and its industrial transformation, cities such



Int. J. Environ. Res. Public Health 2021, 18, 11924 11 of 20

as Nantong and Taizhou in Jiangsu Province, as well as Wuhu and Xuancheng in Anhui
Province, gradually became key development cities in the region, undertaking the transfer
of industries and population. Therefore, construction land in this area showed a clear
growth trend after 2010; (3) the southwest was dominated by the conversion of woodland
and grassland, resulting in the concentration of land-use types with carbon sink functions
in the south.

Figure 6. Land-use and -cover change in YRD from 2000 to 2035.

3.2. Potential Impact on Carbon Storage

Figure 7 shows the results of changes in carbon storage from 2000 to 2035. During the
process of urbanization in YRD, many woodlands, grasslands, and cultivated lands were
forced to convert to construction land with negligible carbon storage capacity, resulting
in a loss of carbon storage. The total scale of carbon storage in YRD was 35,809.44 Tg in
2000, and it was reduced by 1453.80 Tg in 2020, with an average annual loss rate of 0.21%.
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Although the average annual loss rate of carbon storage in 2020–2035 was slower than that
in 2000–2020, the carbon storage in YRD dropped significantly. The loss of carbon storage
showed obvious spatial heterogeneity under the next three scenarios, indicating that the
speed of economic growth and the number of population growth will have a significant
impact on carbon storage through land-use changes.

Figure 7. Carbon storage loss in YRD under different scenarios.

The reduction in SOC and AGC were the main type of carbon storage loss, accounting
for 67.74% of the total loss from 2000 to 2020. Under the three scenarios from 2020 to 2035,
carbon stocks continued to decline, and the average annual loss rate was lower than that in
2000–2020. The loss ratio varies from scenario to scenario, with 0.07%, −0.20%, and−0.03%
under SE, ME, and HE, respectively. The reduction in SOC and AGC was still the main
type of carbon storage loss.

Figure 8 indicates the spatial distribution of carbon storage loss in YRD from 2000
to 2035. Changes in carbon storage also showed obvious spatial heterogeneity. From
2000 to 2020, areas with high carbon loss showed a clear Z-shaped distribution, including
cities such as Nanjing, Shanghai, Suzhou, Wuxi, Hangzhou, and Ningbo. Additionally,
Shanghai and its surrounding areas were experiencing more severe carbon storage loss
than other regions. The second was Jiangsu Province. In addition, Hefei, Hangzhou, and
its surrounding also suffered more carbon storage losses. Although carbon storage had
generally declined, high-carbon storage patches were mainly distributed in the hilly and
mountainous areas of the west and southeast in Zhejiang Province.
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Figure 8. Spatial distribution of carbon storage loss in YRD: (a) from 2000 to 2020; (b–d) from 2020 to 2035 under the
scenarios of SE, ME, and HE.

The changes in carbon storage under different economic growth scenarios were further
compared. From 2020 to 2035, the carbon storage loss and gains of the YRD region would
be evenly distributed. The carbon loss of Shanghai and its surrounding cities might be
reduced, while the carbon storage of Anhui Province would increase significantly. Carbon
storage in most regions under the scenario of slow economic growth will remain in a state
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of controllable fluctuations, while the scenario of high economic growth may increase or
decrease substantially.

From the perspective of changes in specific cities, carbon storage still showed a signifi-
cant decline in cities with high economic levels, such as Shanghai and its surrounding [48].
By contrast, the small and medium-sized cities’ carbon losses may be alleviated considering
the relatively weak economic foundation and low population inflow, such as Anqing city
and Chizhou city. Shanghai, in particular, would experience the most carbon storage loss.
Under scenarios of a slow, medium, and high economic growth, Shanghai would experi-
ence 53.81 Tg, 74 Tg, and 95 Tg carbon storage loss, representing 5.48%, 5.24%, and 5.84%
of total carbon storage loss, respectively. The second was southern Jiangsu cities, such as
Suzhou and Wuxi. Under scenarios of a slow, medium, and high economic growth, Suzhou
would experience 13.18 Tg, 21.86 Tg, and 29.98 Tg, carbon storage loss, representing 1.34%,
1.54%, and 1.83% of total carbon storage loss, respectively. Additionally, the carbon loss
of Wuxi would be 12.25 Tg, 17.58 Tg, 22.94 Tg, accounting for 1.25%, 1.24%, and 1.40%,
respectively.

This result emphasizes that policymakers should determine the main factors of carbon
storage loss at the city level or even the county level, and design land-use policy and
urban development plans based on local conditions. For example, protecting woodland
land should be the top priority in northeastern Zhejiang, and megacities such as Shanghai
should encourage the excavation of stock construction land.

3.3. Divergent Causes of Carbon Loss

From 2000 to 2020, the proportion of cultivated land, woodland, grassland, and
unused land converted to construction land accounted for 88.10%, 6.16%, 5.70%, and 0.03%
of the total newly development construction land area, and the corresponding proportion
of carbon storage loss accounted for 84.89%, 6.82%, 8.28%, and 0.01%, respectively. From
2020 to 2035, the conversion of cultivated land to construction land was still the main
reason for the loss of carbon storage. At the same time, the reduction in carbon storage
caused by the occupation of woodland may also significantly affect some cities such as
Shanghai and Jiangsu. Hence, it was very important to protect high-value carbon sink
areas, and woodland protection areas should prioritize the maintenance of carbon storage
as the primary task, and the mode of urban growth by occupying arable land should be
encouraged as little as possible in megacities.

Figure 9 represents the reasons for the loss of carbon storage at the urban scale of
the YRD region from 2020 to 2035, which can be summarized into three types (Figure 10):
(a) taking Nanjing, Maanshan, and Yangzhou as examples, the main loss of carbon storage
was jointly determined by the conversion of woodland and cultivated land to construction
land, and the conversion of woodland to cultivated land and grassland. Specifically, under
the guidance of a series of ecological protection policies such as returning farmland to
forests, the impact of deforestation for large-scale agricultural development gradually
weakened, and urban expansion caused by the conversion of cultivated land gradually
became the main threat of carbon storage loss; (b) for cities such as Shanghai, Jiaxing, and
Suzhou, the occupation of cultivated land for construction land had always been the main
reason for the reduction in carbon storage. In addition, the conversion of woodland to
construction land and cultivated land was also part of the reason for the loss of carbon
storage; (c) in cities with high woodland coverage such as Hangzhou, Shaoxing, and Jinhua,
the conversion of woodland to cultivated land and construction land, the conversion of
cultivated land to construction land, and the conversion of forest land to grassland were
the basic driving forces for carbon storage. However, under the circumstances of economic
growth and population increase, the carbon loss mainly caused by the conversion of
woodland to farming will intensify in the future, during 2020–2035.
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Figure 9. Spatial patterns of different causes of carbon storage loss from 2020 to 2035: (a) Nanjing, Maanshan, and Yangzhou;
(b) Shanghai, Jiaxing, and Suzhou; (c) Hangzhou, Shaoxing, and Jinhua.
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Figure 10. Changes in major causes of carbon loss.

4. Discussion
4.1. Land-Use Change and Carbon Storage State

Urban development in coastal areas deserves more attention. The closer to the coast,
the faster the urban construction land growth [49,50]. This is largely influenced by the
coastal area development policy proposed by the Chinese government. Although the
control of land transfer type is important, it is an inevitable trend that economic growth
requires a large amount of construction land. Therefore, it is necessary to adopt other
methods to increase the carbon storage of this important area, such as land management,
and the combined use of inorganic fertilizer on cultivated land.

In addition, due to the decrease in the rural population, the construction land of
villages and towns will enter a phase of reduction. A large area of rural residential land will
likely be converted to cultivated land or other land types, which represents a huge potential
for increasing carbon storage [35]. Therefore, strengthening rural land consolidation may
be another effective way to increase carbon storage in the future.

4.2. The Comprehensive Influence on Carbon Storage

Although the carbon storage of land use in Yangtze River Delta urban agglomeration
has continued to decline significantly, the annual loss rate has slowed down, compared with
2000–2020. Moreover, there is an obvious spatial heterogeneity, indicating that different
economic development models can significantly change carbon storage.
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Under the same socioeconomic modes, the difference in carbon loss mainly results
from the increase in population. Specifically, the total population of the YRD region will
reach 159.1 million by 2035, and the urbanization level will reach 81.43% under the scenario
of rapid economic growth. Under the scenario of moderate economic growth, the total
population will reach 19.07 million, and the urbanization level will be 81.52%. In the case
of low economic growth, the total population and urbanization level are 19.07 million and
81.51%, respectively. Under the scenario of slow economic growth, the birth rate is also
low, which decreases the demand for construction land. Therefore, moderate GDP and
population growth will help slow down carbon storage losses [22].

Further, the growth of construction land mainly results from urban residential land,
followed by industrial land and tertiary industry land. The miniaturization of family scales
and the improved housing conditions of some urban residents will generate considerable
housing demand [51]. Part of the demand for land development from industrial growth is
offset by the increase in land output.

4.3. Strengths and Limitations

This paper fully considered the interdependent relationship among human activities,
economic growth, and land use. The SD model of land use established can be extended
to different regions. In addition, the SD model has multiple exports, such as changes
in population, changes in industrial output, and changes in labor demand, which could
provide the potential role of different factors in land use and carbon storage changes.

There are three limitations in the quantification of carbon density: (1) due to data
limitations, the carbon density coefficients in this paper were obtained from the literature;
(2) only the difference in carbon storage intensity of different land-use types was considered;
(3) the change in carbon density over time was not considered, although obvious soil
organic carbon change may take longer [10]. In fact, carbon density changes in time and
space [52]. However, this paper discussed the changing trend of carbon storage land use
driven by economic growth, rather than the precise prediction of each grid. Hence, the
importance of policy recommendations in the study area will not be disturbed by the
results currently presented.

The framework considered both the socioeconomic system and land-use system, in
terms of both quantity and spatial distribution. However, the carbon emissions of human
activities and land use were not discussed in this paper. Although these limitations do not
influence the feasibility of the framework and reliability of the results, there still are many
details worth to be further to discussed in land-use policy.

In addition, we acknowledge that other factors also had an impact on carbon storage,
such as climate change, energy consumption, and the existence of other scenarios, such as
(1) scenarios that the random combination of economic growth rate and family planning
impact factors and (2) no consideration of the changes in dietary structure.

5. Conclusions

To the best of our knowledge, this paper is the first to assess the potential impact of
land use on carbon storage driven by economic growth by examining the interdependen-
cies between land use, economy, population, and other urbanization factors. The major
conclusions are as follows: (1) from the simulations, compared with 2000–2020, the loss
of future carbon storage will be effectively controlled, but it is still in a state of depletion.
The land carbon storage will continue to decrease by 982.38 Tg, 1417.62 Tg, and 1636.21 Tg
under the scenarios of a slow, medium, and rapid economic growth from 2020 to 2035,
respectively; (2) the causes of carbon loss in different regions are heterogeneous. For
example, the threat of the occupation of cultivated land by construction land in Nanjing,
Shanghai, and its surrounding areas has further intensified. The carbon loss caused by the
conversion of woodland in Hangzhou, Shaoxing, Jinhua, and its surrounding areas will
intensify; (3) the large-scale occupation of cultivated land and woodland for construction
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land caused by economic development and population growth was an important reason
for the loss of carbon storage.

Based on the results, three policy suggestions are proposed. First, to support a consid-
erable population and promote economic development, built-up land expansion control
faces great pressure. Therefore, other measures should be considered, for example, green-
land construction among built-up land, which may also provide many other ecological
functions to improve our living environment [53]. Second, controlling the population and
economic growth rate should be another priority. Generally, population growth requires ur-
ban expansion to provide more settlements [10], which will result in the reduction in forest
land and arable land with strong carbon sequestration capabilities. Third, it is fundamental
to strengthen rural land consolidation. The Yangtze River Delta urban agglomeration is
facing a considerable challenge of the loss of rural population in the future, representing
that consolidation of rural residential land has great potential to increase carbon storage.

Future research may require in-depth exploration from the following aspects. First,
future research needs to further explore different scenarios. Second, future research needs
to improve the estimation accuracy of carbon density. In the InVEST model, carbon storage
is calculated based on the four-carbon densities of different land-use types, and the spatial
resolution and carbon cycle process profoundly affect the accuracy of the calculation. Third,
future research needs to consider the impact of energy consumption and climate change.
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