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Predicting the compressive 
strength of self‑compacting 
concrete by developed 
African vulture optimization 
algorithm‑Elman neural networks
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The compressive strength of concrete depends on various factors. Since these parameters can be in 
a relatively wide range, it is difficult for predicting the behavior of concrete. Therefore, to solve this 
problem, an advanced modeling is needed. The aim of the literature is to achieve an ideal and flexible 
solution for predicting the behavior of concrete. Therefore, it is necessary to develop new approaches. 
Artificial Neural Networks (ANNs) have evolved from a theoretical method to a widely utilized 
technology by successful applications for a variety of issues. Actually, ANNs are a strong computing 
tool that provides the right solutions to problems that are difficult to use conventional methods. 
Inspired by the biological neural system, these networks are now widely used for solving a wide 
range of complicated problems in civil engineering. This study’’s target is evaluating the performance 
of developed African vulture optimization algorithm (DAVOA)‑Elman neural networks (ENNs) by 
considering different input parameters in predicting the self‑compacting concrete compressive 
strength. Hence, once 8 parameters and again to get as close as possible to the prediction conditions 
in the laboratory, 140 parameters entered to the improved version of Elman Neural Networks as 
input. According to the results, the element network has the lowest mean squares of the test error in 
predicting the compressive strength of 7 and 28 days in 100 repetitions. Further, in predicting both 
compressive strengths, the element grid with the Logsig‑Purelin interlayer transfer function has 
the lowest test error, which determines the optimal transfer function. Moreover, the results showed 
that DAVOA as a reliable tool with time and cost savings have high power in predicting the desired 
characteristics. Also, in predicting both 7‑day and 28‑day compressive strength, networks built with 
140 parameters have a 74.54 and 70.44% improvement in test error over 8‑parameter networks, 
respectively, which directly affects this effect. Further parameters are considered as input to the 
network error rate in predicting the desired properties.
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LOA  Lion optimization algorithm
MSE  Mean square error
MVO  Multi-verse optimizer
OBL  Opposition-based learning
WCO  World cup optimization

Today, concrete is one of the most utilized materials in construction. For this reason, it is so significant to study 
the behavior and strength of  concrete1. Self-compacting concrete is a concrete with high efficiency and non-
separation that can be poured in the desired location, fill the mold space and surround the reinforcement with-
out the need for mechanical  compaction2. In general, self-compacting concrete is made with ordinary concrete 
materials, and in some cases, in addition to relatively large amounts of super-plasticizer, a viscous additive is 
used to make  it3. The type, quality and amount of materials used in concrete construction are the most significant 
factors in the compressive strength of concrete. For example, parameters such as water to cement ratio, type 
and amount of chemical and mineral additives can be mentioned. Since these parameters can be in a relatively 
wide range, it is difficult for predicting the behavior of concrete. Therefore, to solve this problem, an advanced 
modeling is  needed4.

Making concrete without the need for vibration has been an important goal for concrete professionals who 
can achieve this goal by using additives and changing the mixing ratio of components, and eliminate concrete 
defects due to compaction operations. The invention of self-compacting concrete has been the result of these 
efforts. According to the definition of Bartos, self-compacting concrete is concrete that moves by its own weight 
and is able to completely fill the molds and maintain its homogeneity without the need for any vibration and 
even in spite of dense  rebar5. The important advantages of this concrete are elimination of vibration operation, 
ease of concreting, increase of execution speed, ensuring proper compaction, especially in narrow sections with 
compact rebar, optimal strength to aggregate separation, ability to create smooth and beautiful finished surfaces. 
Finally, various projects of architecture on the facade, as well as reducing noise pollution in the workplace and 
the urban environment  noted6. Therefore, due to the high use of self-compacting concrete, they thought of 
modeling it using artificial neural networks. One of the most beneficial means for achieving this purpose is the 
artificial neural network, which is derived from the concept of biological Neural Networks. The neural network 
model is in fact a complex nonlinear regression model that can be used for predicting the behavior of concrete 
at the lowest laboratory  cost7.

The reason for choosing the artificial neural network model is that unlike the classical methods that exist 
in statistical theories, in these networks, no specific model or function with limiting assumptions is needed 
to linearize the problem. These networks are considered as a powerful and unique tool for unconventional or 
impossible analysis.

One of these is the detection of nonlinear  systems8. In the last few decades, when computers have made it 
possible for implementing computational algorithms, in order to simulate the computational behavior of human 
beings, many research works have been started by several scientists, whose outcomes are in the field of artificial 
intelligence and in the computational intelligence subcategory is classified as Artificial Neural  Networks9. In 
concrete technology field, it can be said that so far many researchers have designed different models of Artificial 
Neural Networks for predicting the different features of different concretes. Hameed et al. Used Artificial Neural 
Networks for predicting compressive strength and high-strength concrete  slump10.

Abellán et al.11 utilized a neural network for predicting the modulus of elasticity of normal concrete and 
high strength. Surayadi et al.12 estimated the 28-day compressive strength of their compacted concrete. To do 
this, 120 laboratory data were considered for the training phase, 50 data for the validation phase, and 80 data for 
the experimental phase, for a total of 250 laboratory data were collected. The amount of cement, fine-grained, 
coarse-grained and fly ash, the ratio of water to cement, and chemical additives were defined as 6 inputs and the 
compressive strength as a single output of the neural network. By changing the number of layers and neurons, 
they reached a network with a hidden layer and 5 neurons as an artificial neural network with appropriate 
architecture. Ramachandra et al. used Artificial Neural Networks for predicting the compressive strength and 
flexural strength of polymer concrete include fly  ash13. Utilization of an artificial neural network in MATLAB 
for predicting the compressive strength of concrete with recycled aggregates by some researchers. Training and 
experimental data for Artificial Neural Network development were accumulated utilizing 139 datasets obtained 
from 14 article resources. The improved Artificial Neural Network utilizes 6 input characteristics: water to cement 
ratio, water absorption, fine particles, coarse grains, recycled coarse grains, and water to total material ratio. 
The type of network used in this study is neural network after error propagation. Mean square error (MSE) was 
utilized as a measure to stop artificial neural network training. The results show that ANN is an efficient model 
to be used as a tool for predicting the compressive strength of concrete with recycled aggregates, which consists 
of various kinds and recycled aggregates  resources14.

A review on the application of machine learning/deep learning methods for modelling the concrete/fiber-
reinforced concrete at elevated temperatures was conducted  in15. These methods were categorized according to 
the type, technical features, and research applications. Nguyen et al.16 proposed the semi-empirical formulas 
for strength predictions of concrete. Non-dimensionalization and optimisation techniques were used to solve 
this problem. The concrete strength of five datasets was predicted successfully with high accuracy. The lowest 
value of  (R2) was 0.8567 for Dataset 1 and the highest one was 0.9555 for Dataset 3.  In17, a MA framework was 
developed to estimate the parameters of antenna systems. A periodic switching scheme was studied to balance 
between global and local search. DE and NFS were used as global and local optimizers respectively. MDE-NFS 
algorithm was proposed to improve the energy efficiency of antenna systems. Mahmood et al.18 conducted an 
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analysis of the experimental outcomes related to the compressive strength of hand-mixed cement-grouted sands 
by employing a range of mathematical methodologies. The compression strength evaluated in accordance with 
the BS standard was found to be 72% greater than that of the identical mix assessed under the ASTM standard. 
Emad et al.19 developed the impact of mix proportions on the compressive strength of ultra-high performance 
fiber reinforced concrete, considering multi-scale models to predict the compressive strength. A difference-based 
method for constructing the compressive strength targets was also proposed. Albaijan et al.20 employed Silica 
nano powder to increase the strength of concrete, considering eleven machine learning methods to estimate 
the uniaxial compressive strength of nanosilica concrete. A graphical user interface was also developed for the 
concrete’s uniaxial compressive strength estimation. The statistical evaluation indicated that all models dem-
onstrated commendable accuracy in relation to the experimental outcomes; however, the decision tree regres-
sor model exhibited the lowest accuracy, reflected by a correlation coefficient of 0.68. Fakhri et al.21 explored 
the capabilities of twelve machine learning algorithms to forecast the tensile strength of geopolymer concrete 
subjected to different curing conditions. The results from both laboratory experiments and machine learning 
analyses indicated that the geopolymer concrete formulated with 30% fly ash and 70% ground granulated blast 
slag, combined with 14 mol of NaOH and subjected to an oven curing process at 300 °F for a duration of 28 days, 
demonstrated enhanced tensile strength.

Serray et al. modeled the new features of self-compacting concrete utilizing a Neural Network  method22. In 
a 2019 study, Rajshwari et al. used compressive strength data from concrete containing large volumes of fly ash, 
collected from previous experimental research, to model 270 databases were gathered from previous studies, 
of which twelve were used for the neural network test phase. An ANN model with eight input parameters (ie 
cement value, fly ash value, ratio of water to adhesives, value of superplasticizer, amount of fine aggregate, amount 
of coarse and sample, and type of fly ash) was constructed for predicting the compressive strength of concrete. 
Along with weights and biases were adjusted by try and error for achieving a model with better performance.

Correlation coefficients for training and test data were 96.9% and 98%, respectively, indicating that Artificial 
Neural Network can be utilized for predicting the strength of HVFA  concrete23. Balf et al.24 used 169 mixing 
schemes and 11 input neural network parameters that accurately predicted the 28-day compressive strength of 
self-compacting concrete containing chemical and mineral additives.

Today, self-compacting concrete is a concrete with high efficiency and non-separation that can be poured 
in the desired location, fill the mold space and surround the reinforcement without the need for mechanical 
compaction. The compressive strength of concrete depends on various factors. Since these parameters can be in 
a relatively wide range, it is difficult for predicting the behavior of concrete. Therefore, to solve this problem, an 
advanced modeling is needed. The aim of the literature is to achieve an ideal and flexible solution for predicting 
the behavior of concrete. Therefore, it is necessary to develop new approaches. In this regard, ANNs are a strong 
computing tool that provides the right solutions to problems that are difficult to use conventional methods. 
This study’s target is evaluating the performance of DAVOA-ENN by considering different input parameters in 
predicting the self-compacting concrete compressive strength. Table 1 compares the work done in this research 
with similar literature.

The neural network used in this study is the recursive network of the element; where, 275 and 549 mixing 
designs were collected from valid articles for predicting the compressive strength of 7 and 28 days of self-
compacting concrete, respectively. The research was conducted in two series. In the first series, 140 parameters 
affected by the strength characteristic of concrete were entered into the network as introduced, which is unique 
among the papers presented in the field of predicting the properties of concrete. The reason for choosing this 
number of parameters is to build a comprehensive model for self-compacting concrete with a significant extent, 
along with simulating more and more prediction conditions to laboratory conditions by using more influencing 
factors that are actually available in laboratory conditions. In the second series, for investigating the effect of 
selected input parameters on the accuracy of the network in predicting the desired properties, the researcher 
reduced the parameters to 8 inputs. In this study, MATLAB neural network toolbox was used to construct and 
train neural networks. The network has an input, an output, and a hidden layers. The neurons number in the 
input layer is equivalent to the number of input parameters, i.e. 140 neurons, and in the output layer is equivalent 
to the desired single parameter, i.e. compressive strength of 7 or 28 days.

In summary, in the current research, the following objectives are considered:

 (i) Evaluation of the performance of the elemental dynamic Neural Network in predicting the self-com-
pacting concrete compressive strength, especially in a situation where the scope of work is high due to 
the large volume of parameters and mixing scheme used. This research clearly shows the high potential 
and reliability of this network in terms of forecasting.

 (ii) Illustrating the effect of network optimization (performing the steps taken in the research) on increasing 
the accuracy of predicting the desired feature.

 (iii) The performance of the constructed networks varied when more parameters were considered as entered. 
Hence, once 8 parameters and then in order to simulate with real test conditions, 140 parameters are 
entered as element networks. Then, between the results obtained from the optimal networks with 8 and 
140 entries, it was caught in the case form, which is the best network (selected network). Finally, the 
outcomes gained from the selected networks were compared with the laboratory outcomes.

 (iv) Making an almost comprehensive model for predicting compressive strength of 7 and 28 days of self-
compacting concrete, even if the model includes a design of different mixtures of different types of 
self-compacting concrete (not just one type of self-compacting concrete). The maximum number of 
parameters that could be collected in this study was collected to conduct the research in a more com-
prehensive context.
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Compressive strength of concrete
Compressive strength is one of the most significant features of hardened concrete. When tensile strength or 
shear strength is important in places, compressive strength is utilized for estimating the required  properties35. In 
other words, many various properties of concrete are determined by the compressive strength of concrete and are 
related to this characteristic, including specific gravity, permeability, durability, abrasion strength, sulfate strength, 
tensile strength, and some other concrete properties. Like other concrete, achieving the compressive strength 
of self-compacting concrete is possible through costly and time-consuming tests. Therefore, in this research, 
in order to achieve this important property of self-compacting concrete, the Artificial Neural Network is used 
with the aim of reducing the performance of laboratory work. In this study, MATLAB neural network toolbox 
was used to construct and train neural networks. The network has an input, an output, and a hidden layer. The 
neurons number in the input layer is equivalent to the number of input parameters, i.e. 140 neurons, and in the 
output layer is equivalent to the desired single parameter, i.e. compressive strength of 7 or 28 days. There is no 
specific rule for determining the number of neurons in the hidden layer, and trial and error is commonly used. 
In this study, according to the instructions provided in the literature, the number of neurons in the hidden layer 
was considered at least twice the number of parameters of the input layer, which varies from 30 to 300 neurons 
to determine the optimal number of neurons. The training algorithm used in the network is equal to the DAVOA 
due to the vastness of the network and the large number of neurons. The interlayer transfer function is set to the 
network default, tangsig-tangsig.

The selection of ENN over Multilayer Perceptron (MLP) and Feedforward (FF) models was motivated by sev-
eral distinctive advantages that ENN offers for predicting the compressive strength of self-compacting concrete. 
ENN incorporates recurrent connections through feedback loops from the hidden layer to the context units. 
This allows the network to maintain a memory of previous states, which is beneficial for capturing temporal 
dependencies and dynamic patterns in the data that are not accessible to MLP and FF models. ENN is well-suited 
for modeling dynamic systems and processes where the current state depends on previous inputs. The prediction 
of concrete compressive strength involves complex interdependencies among variables, making ENN a suitable 
choice for capturing these relationships more effectively than static models like MLP and FF.

The architecture of ENN is designed to handle sequential data more efficiently. In our study, the historical 
and sequential nature of the input parameters can be better learned and represented through ENN’s recurrent 

Table 1.  Comparison of the work done in the research with similar literature.

Structure and topology Key results Refs.

Implementation of feed-forward neural network, ENN, support vector machine 
and multi-linear regression for predicting the compressive strength of high-
performance concrete

The values of  R2 for the evaluation models were in the range of 0.9950 to 0.9853. 
The suggested model demonstrated significant accuracy and efficacy in forecast-
ing the compressive strength of high-performance concrete

25

Compressive strength of palm oil fuel ash concrete was predicted using six 
concrete parameters as inputs of the elaborated model. Four machine learning 
techniques were compared in many relationships

ANN and ANN with combined inputs outperformed PSO and GA in terms of 
predictive accuracy. Further, ANN with combined inputs demonstrated a rela-
tively higher performance level than ANN

26

An ANN was provided to predict pervious concrete properties. Accurate predic-
tion of permeability and compressive strength were attained

Predictive accuracies of  R2 = 0.98 for permeability and  R2 = 0.97 for compressive 
strength were achieved. The ANN models offered viable alternative to tedious lab 
tests for FRC assessment

27

A model was developed to predict the compressive strength and crushing strain 
of concrete confined with fiber-reinforced polymers utilizing neural networks 
and regression techniques

The model utilizing neural networks exhibited a high level of predictive accuracy, 
and the findings indicated that employing neural networks to evaluate the com-
pressive strength and crushing strain of FRP-confined concrete is both effective 
and advantageous

28

Two distinct models of ANN and two separate Adaptive Network-based Fuzzy 
Inference Systems were developed to forecast the compressive strength of seven 
various cement mortar samples, which included combinations of pumice and/or 
diatomite, assessed over multiple days

Pumice and diatomite contribute to compressive strength of mortars in later ages. 
Cement mortars’ compressive strength could be estimated with a very small error 
and short time with ANN and ANFIS models. ANN models showed relatively 
better prediction performance compared to ANFIS models

29

Non-linear ultrasonic and ANN were used for non-destructive evaluation of the 
damages in concrete. The time-domain signals of the received ultrasonic waves 
were used

Voltage of input pulse and peak-to-peak voltage were more important than the 
average pulse velocity in prediction of damage

30

Agro-waste was utilized as a substitute in cement to reduce landfill problems. 
The best-fit statistical model was identified for predicting compressive strength 
of concrete

De-oiled Earth and rice husk ash had good pozzolanic reaction to be used as 
a cementitious material. The  R2 values derived from the regression and ANN 
methodologies were 0.6561 and 0.9673 for the 7-day period, while for the 28-day 
period, the values were 0.6441 and 0.9636, correspondingly

31

The modeling of air chamber pressure control in slurry shield tunneling was 
developed. A predictive control system based on ENN model for air pressure was 
proposed. PSO algorithm was implemented to improve the learning capability of 
ENN model

The implementation of a predictive control system utilizing a PSO-based ENN 
model demonstrated significant potential for improving face stability during 
slurry shield tunneling operations

32

Various AI methods had been employed to predict the compressive strength of 
concrete containing sugarcane bagasse ash. AI models trained on concrete data-
sets with sugarcane bagasse ash, fly ash, slag, and none to assess their impact

Sugarcane bagasse ash could be used as a partial replacement of cement in 
concrete mixtures. The multi-objective genetic algorithms could be employed to 
optimise sugarcane bagasse ash concrete for cost-effective compressive strength

33

A comprehensive dataset for modeling the compressive strength of Carbon 
Fiber-Reinforced Polymer Confined-Concrete- Confined Circular Concrete was 
gathered. The predicting the compressive strength of CFRP- CC specimens was 
based on using data-driven methods

The model demonstrated exceptional predictive performance, as indicated by an 
outstanding  R2 of 0.9847, which exceeds that of alternative methodologies

34

Evaluating the performance of Developed African Vulture Optimization 
Algorithm-Elman Neural Networks by considering different input parameters in 
predicting the self-compacting concrete compressive strength

In predicting both 7-day and 28-day compressive strength, networks built 
with 140 parameters have a 74.54 and 70.44% improvement in test error over 
8-parameter networks, respectively, which directly affects this effect

Current paper
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structure, potentially improving predictive accuracy. Further, the context units in ENN help in better generaliza-
tion of the learning model by considering both the current and past input information, leading to more robust 
predictions, especially in cases where the data has inherent time-dependent characteristics. While MLP and FF 
models are powerful in handling non-linear relationships, they lack the inherent memory capability and dynamic 
modeling features that ENN provides. In our tests, ENN demonstrated superior performance in capturing the 
intricacies of the data, which can be attributed to its recurrent nature. By leveraging the strengths of ENN, we 
aim to achieve higher accuracy and reliability in predicting the compressive strength of self-compacting concrete, 
addressing the dynamic and interdependent nature of the involved parameters.

The choice of the DAVOA over other optimization algorithms was driven by several key factors that align with 
the needs of our study on predicting the compressive strength of self-compacting concrete. DAVOA is known for 
its rapid convergence rates and efficient search capabilities. It effectively balances exploration and exploitation 
during the optimization process, making it suitable for complex, high-dimensional problems like predicting 
concrete properties. The algorithm is adaptable and can handle various constraints and objective functions. This 
flexibility allows it to be applied to diverse problems, including those with non-linear relationships such as those 
found in concrete strength prediction. Moreover, DAVOA has demonstrated robustness in handling noise and 
uncertainty in data. Given the variability and complexity of factors affecting concrete compressive strength, this 
characteristic is particularly beneficial.

Previous studies have shown that DAVOA outperforms or is competitive with other optimization algorithms, 
such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO), in terms of accuracy and computa-
tional efficiency. These comparisons support its effectiveness in applications similar to ours. The utilization of 
DAVOA in this context offers a novel approach, contributing to the innovation of optimization techniques used 
in civil engineering applications. Its application demonstrates the potential for newer algorithms to improve 
predictive modeling in material science. By choosing DAVOA, we aim to leverage these strengths to enhance 
the predictive accuracy and efficiency of our neural network models, ultimately providing more reliable and 
insightful results for the compressive strength of self-compacting concrete.

Methodology
Elman neural network
The Elman Neural Network is a recursive network originally introduced by Elman in 1990. This network is not 
only able to transfer data forward but also to transfer information  backward36. This network has a feedback loop 
from the hidden layer to the input  layer37. This feedback loop allows the network to form various time patterns. 
The element neural network is usually referred to as a special type of feed-forward network that has additional 
memory and a recursive loop. These networks are often used to identify or generate time outputs in nonlinear 
 systems38. Here, the optimized version of the Elman Neural Network is utilized for predicting the compressive 
strength of concrete. This network possesses 4 main layers containing the input, the context, the hidden, and 
the output layer. The principal sections of the network are related to the feed-forward Neural Networks like the 
connections in the input layer ( Wi

h ), the hidden layer ( Wh
h ), and the output layer ( Wo

h ) are such as the multi-layer 
neural network. Figure 1 demonstrates a comprehensive form of the Elman Neural Network.

The Elman Neural Network contains an additional layer named context layer ( Wc
h ) in which the inputs come 

from the outputs of the hidden layers for storing the hidden layer amounts in the past stage. This could be seen 
in Fig. 1. The input layer and the output layers dimension are supposed n, i.e. x1(t) = [x11(t), x

1
2(t), ..., x

1
n(t)]

T and 
y(t) = [y1(t), y2(t), ..., yn(t)]

T the dimension for the context layer is assumed m. In this network, the lth input 
layer and the kth hidden layer are according to the following equations:

(1)ui(l) = ei(l),
i = 1, 2, ..., n

Input LayerContext Layer

Output Layer

Hidden Layer

Fig. 1.  The Elman neural network.
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where ωl
kj(l) presents the ith and jth weights of the hidden layers from the oth node and xcj (l) presents the signal that 

is come from the kth context layer node. Therefore, for the input layer i, the weight of the hidden layer k is gained 
by ω2

kj(l) . The hidden layer output ultimate amount which is fed to the context layer is demonstrated as below:

where

where vk(l) demonstrates the hidden layer normalized amount. Therefore, the context layer output is as below:

where Wk is the obtain of the self-connected feedback between (0,1). As a result, the ENN output layer is accord-
ing to the following equation:

where ω3
ok(l) presents the weight of the connection from the kth layer into the oth layer. For improving the Elman 

Neural Network structure, Ren et al.39 have presented the method according to the pseudocode as follows:
where the learning rate is demonstrated by µ , the constant amount is presented by c , and the present epoch is 

shown by t  . The next level for optimizing the improved Elman Neural Network based on the Improved African 
vulture optimization algorithm.

Improved African vulture optimization algorithm
Perception
An optimization algorithm is utilized for accessing the most desirable solution for a special kind of  problem40. 
The principal method is to utilize traditional techniques for the problems, such as linear programming and non-
linear programming, Hamiltonian approaches are some kinds of these  techniques41. The traditional approaches 
give accurate optimum solutions and they can be utilized to solve complex and nonlinear problems. Nowadays, 
the traditional techniques profitability has been declining due to the enhancing the optimization problems 
 complexity42. Newly, the researchers discover novel types of optimization algorithms, which are helpful for 
solving optimization problems that are no necessary for solving their  gradients43. These approaches are based 
on nature and new types of them will be  introduced44. These methods are identified as metaheuristics. Some 
metaheuristics are such as follows:

(2)
vk(l) =

N
∑

j=1
ω1
kj(l)x

c
j (l)+

n
∑

i=1
ω2
ki(l)ui(l)

k = 1, 2, ...,N

(3)Wk(l) = fo(vk(l))

(4)vk(l) =
vk(l)

max(vk(l))

(5)Ck(l) = βCk(l − 1)+Wk(l − 1),
k = 1, 2, ...,N

(6)
yo(l) =

N
∑

k=1

ω3
ok(l)Wk(l),

o = 1, 2, . . . , n
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Black Hole (BH), Lion Optimization, Chimp Optimization Algorithm (CHOA), World Cup Optimization 
(WCO)  Algorithm45, and African Vultures Optimization Algorithm.

African vulture optimization algorithm
The African Vulture Optimization Algorithm is a metaheuristic algorithm and inspired by vultures preying. The 
only bird of all life on our planet that can rise to an altitude of more than 11,000 m. At this altitude, birds try 
to fly long distances with the help of minimal current. This species is named after a German zoologist, Edward 
Gyps rueppellii, an African vulture of the Hawk family, a genus of vultures. The second name was Rupel. Vul-
tures are very common in the northern and eastern parts of the African continent. The location of birds in a 
particular area depends largely on the number of herds. The African vulture is a very large bird of prey. Its body 
length is 1.1 m, its wingspan is 2.7 m and its weight is 4–5 kg. It is very similar in appearance to the neck, so its 
second name is Gyps rueppellii. The bird has limited the same small head covered with light downwards, the 
same elongated hooked beak with gray wax, the same long neck with feathers, and the same short tail. Vulture 
feathers above the body are dark brown and below it is a lighter red. The primary tail and feathers on the wings 
and tail are very dark, almost black. The eyes are small, have a yellow–brown iris. The legs of the bird are short, 
relatively firm, dark gray, with long, sharp claws. Males are no different in appearance from females. In young 
animals, the color of the feathers is slightly lighter.

The vulture’s lifestyle attracts Abdollahzadeh et al. for working on describing a new metaheuristic method 
to solve optimization problem. To initialize the population size, achieve the same amount for whole vultures, 
and exploring the most desirable vulture in whole collections, and take the best solution for whole groups. It is 
modeled as below:

where f1 + f2 = 1 , f1 and f2 describe the factors in the range of (0, 1) which is measured before optimization. The 
Roulette wheel are applied to model the most desirable solution selection probability and choosing the group’s 
most desirable solution according to the following equation:

where G demonstrates the efficiency of the vultures. If α-numeric parameter is near to 1, the β-numeric is near 
to 0, and vice versa.

Searching the vulture’s famine rate. They are flowing highly and searching for food and by losing the energy 
it is tries to reach the free meal. This is modeled as the following formulation:

where δ describes the accidental amount between the 0 and 1, iteri demonstrates the current iteration, a fixed 
number set that is belong to optimization performance and created the performance and exploitation phase is 
demonstrated by s , the whole iteration number is shown by maxiter ,  y is the accidental amount between 0 and 
1, and d is the accidental amount between -2 and 2. If s reduces to 0, the vulture is hungry, and if it grows to 1, 
it is satisfied. In vulture’s algorithm involve accidental section by 2 various designs and a factor R1 for choosing 
the plane by amount in the range of (0, 1). Food exploring is formulated as follows:

where

where Z describes the vultures shift accidently for safeguard food from another’s vultures and is discovered by 
U = 2× rand , lower bound is demonstrated by lb and upper bound is shown by ub , BV  includes the most desir-
able vultures, and rand2 and rand3 demonstrate 2 accidental amounts among (0, 1).

If |H| < 1 , utilization happen. This includes 2 section by 2 designs which are strong-minded with 2 factors of 
R2 and R3 that are between 0 and 1. The first section of utilization begins with 0.5 < |H| < 1 . 2 designs include 
revolve fly. If |H| ≥ 0.5 , it will demonstrate the good energy of the vulture content. The vulture that is weak can 
attempt to support from powerful vultures. it is modeled according to the following equation:

(7)H(i) =

{

Best volture 1, if Zi = f1
Best volture 2, if Zi = f2

(8)zi =
Gi

∑m
j=1 Gi

(9)l = d ×

(

sinγ
(

π

2
×

iteri

maxiter

)

+ cos

(

π

2
×

iteri

maxiter

)

− 1

)

(10)G = (2× δ + 1)× s ×

(

1−
iteri

maxiter

)

+ l

(11)
If R1 ≥ randR1 :

H(i + 1) = BV(i)− T(i)×H

(12)
If R1 < randR1 :

H(i + 1) = BV(i)−H + rand2 × ((ub− lb)× rand3 + lb)

(13)T(i) = |U × BV(i)−H(i)|

(14)H(i + 1) = T(i)× (H + rand4)− j(t)
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where rand4 describes an accidental amount in the range of (0, 1).
The vultures’ spiral movement are as following equations:

where rand5 and rand6 are between 0 and 1. Two vultures attack various kinds of vultures to the food storage, and 
competitive effort are applied to place food. If |H| < 0.5 , this term can be determinate. At first randR3 is between 
0 and 1. If randR3 ≥ R3 , the design is to accrue different kinds of vultures over the food resource. If randR3 < R3 , 
the violent siege-fight is performed. Most of the time they are hungry, which creates a big competition for food 
them. This is mathematically formulated according to the following equation:

where BestVilture1(i) and BestVilture2(i) recognize the most desirable vulture for the first the second groups, 
H(i) presents the vulture current vector position and is gained as the following equation:

If |F| < 0.5 , the anterior strong vultures waste their power therefore, they can’t withstand against the others. 
Other vultures go savage for reaching the food. They go in different direction from the chief vulture. This is 
formulated as the follows:

where modification phase defines the Levy fight (LF):

where a and b describe 2 accidental amount in the range of (0, 1), and ζ describes a constant is set 1.5.

Developed African vulture optimization algorithm (DAVOA)
However, the African vulture optimization algorithm is a new algorithm by encouraging outcomes, it has 
some constraints like accidental substituting of weak vultures in the exact exploration part. This can perform 
a slow junction in the algorithm. Since this method is novel, there is no prescribed regulation for resolving the 
 problem46,47. The opposition-based learning (OBL) mechanism is used for creating right trade-off among the 
development and exploration through the research process and for making better the candidates variance. Firstly, 
the weak vultures by wrong cost esteem in every iteration are taken to bring up to date their situation according 
to the following techniques.

where Hi
best and Hi

worst define the most desirable and the most disagreeable solution for group number i , and 
r1, r2, r3, r4 are estimated according to the following formulation for determining the new situation updating of 
the vultures.

(15)j(t) = BV(i)−H(i)

(16)y1 = BV(i)×

(

rand5 ×H(i)

2π

)

× cos (H(i))

(17)y2 = BV(i)×

(

rand6 ×H(i)

2π

)

× sin (H(i))

(18)H(i + 1) = BV(i)−
(

y1 + y2
)

(19)B1 = BestVilture1(i)−
BestVilture1(i)×H(i)

BestVilture1(i)−H(i)2
×H

(20)B2 = BestVilture2(i)−
BestVilture2(i)×H(i)

BestVilture2(i)−H(i)2
×H

(21)H(i + 1) =
B1 + B2

2

(22)H(i + 1) = BV(i)−
∣

∣j(t)
∣

∣×H × Levy
(

j
)

(23)LF(x) =
a× σ

100× |b|2

(24)σ =





Ŵ(1+ ζ )× sin
�

πζ
2

�

Ŵ(1+ ζ2)× ζ × 2
�

ζ−1
2

�





1
ζ

(25)
R1 < randR1

H(i + 1) =

{

BV(i)−H + r1 × sin (r2)×
∣

∣r3 ×Hi
best −Hi

worst

∣

∣, r4 < 0.5
BV(i)−H + r1 × cos (r2)×

∣

∣r3 ×Hi
best −Hi

worst

∣

∣, r4 ≥ 0.5

(26)r1 = a− itr ×
( a

N

)
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where the current iteration is described by itr , number of iteration is demonstrated by N , rnd is an accidental 
amount in the range of (0, 1), a is a invariable amount match 2. Secondly, the Opposition-based learning (OBL) 
algorithm is utilized. If rnd is lesser than the invariable amount,c , define the recently updated groups and their 
matching opposite new groups and taking the most desirable solution from them according to their purpose 
amounts. The purpose rating is performed by newly updated groups, by considering the Opposition-based 
learning and the position update, the African vulture optimization Algorithm will be more  desirable48. The 
main purpose of Opposition-based learning is to estimate the better resolution and its opposite amount at the 
identical time and to take the most desirable candidate solution from them according to the objective amounts. 
The opposite amount for a particular vulture  xi, are according to the following equation:

where Lb and Ub are the lower bounds and upper of the research area.

Substantiation of the algorithm
4 test function are used for DVOA validation. The DAVOA has been attained 4 standard test systems and the 
results has been compared with some algorithm, Lion optimization algorithm (LOA)49, Multi-verse optimizer 
(MVO)50, Black hole (BH)51, the  AVOA52, and Emperor penguin optimizer (EPO)53. The setting parameters of 
these algorithm are indicated in Table 2. The applied test function utilized in this investigation is demonstrated 
in Table 3.

The proportion of algorithm is between 0 and 30. The equality study to the algorithm is according to the mini 
amount, max amount, basic amount, and the standard diversion value (std) that is shown in Table 4. This Table 
designates the validation outcome of the investigated algorithms.

According to Table 4, IAVOA possesses the lower Mean amount for whole investigated method. Also low 
and up constraints amount of the presented algorithm are lower in comparison with the other algorithms. These 
test function’s purpose is to reach the Min amount, the IAVOA has the better outcome. Furthermore, based on 
the comparison among other methods, IAVOA has is the most desirable and has more reliability and efficacy.

(27)r2 = 2π × rnd

(28)r3 = 2× rnd

(29)r4 = rnd

(30)xi = Ub + Lb − xi ,

(31)xi ∈ [Lb,Ub]

Table 2.  Setting parameters of the presented algorithm.

Algorithm Parameter Amount

Lion optimization algorithm

Prides number 6

Mutate probability 0.1

Roaming percent 0.5

Immigrate rate 0.7

Nomad lions percent 0.4

Mating probability 0.5

Sex rate 0.87

Multi-verse optimize
Wormhole existence prob (0.25, 1)

Traveling distance rate (0.7, 1)

Black hole
a (0, 1)

Number of stars 100

African vulture optimization algorithm and Developed African vulture optimization algorithm
L1 0.9

Emperor penguin optimizer

−→
A (-1.6, 1.6)

S (0, 1.6)

M 3

l (1.6, 2)

Temperature value ( T
′

) (1, 1000)

f (3, 4)
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Data preparation
For the lead research, 275 mixing designs (data pairs) for 7-day compressive strength and another 549 mixing 
designs for predicting 28-day strength of self-compacting concrete were considered. It is noteworthy that initially 
140 parameters affecting the strength characteristics of self-compacting concrete were considered as inputs for 
networks. The reason for this choice is that the author has tried to provide a comprehensive model that includes 
different types of self-compacting concrete (not just one type, taking into account a large part of the factors 
involved in the self-compacting concrete compressive strength). To evaluate the self-compacting concrete, and 
on the other hand to bring the prediction conditions very close to the laboratory conditions by considering as 
many details as possible, in order to evaluate the precision of the constructed networks in predicting the char-
acteristic and finally the outcomes. Compare if the network has only a limited number of effective parameters. 
These parameters are:

• Specifications of used sand such as quantity, maximum size, specific gravity, water absorption percentage, 
grain size, shape of consumption which includes completely rounded corner, rounded corner, relatively 
rounded corner, sharp corner, relatively sharp corner.

• Consumption characteristics of sand include parameters such as quantity, specific gravity, water absorption 
percentage, and granulation.

• Grain style includes grain size, specific gravity, quantity, water absorption percentage, maximum size
• Recycled materials include quantity, related chemical analysis, and specific gravity.
• Dry and wet curing conditions.
• Specifications of used cement are the amount of cement, specific gravity and chemical analysis of the used 

cement.
• Superplasticizer contains PH value, amount of solid particles, specific gravity.
• Pozzolans (fly ash, natural zeolite, metakaolin, microsilica) including amount, specific gravity and chemical 

analysis of each pozzolan.
• Specifications of limestone powder include quantity, specific gravity, and relevant chemical analysis.
• Specifications of consumable fibers include type, length, diameter, tensile strength, specific gravity and rel-

evant shape.
• Nano silica includes the amount, specific gravity and amount of solids.
• The amount of water consumed.
• The amount of viscosity modifier and its specific gravity.
• The amount of water reducing agent and its specific gravity.
• Operating temperature.

Table 3.  The applied test function.

Function Formula Constraints

Rastrigin f1(x) = 10D+
∑D

i=1

(

x2i − 10cos(2πxi)
)

(−517, 517)

Rosenbrock f2(x) =
∑D−1

i=1

(

100
(

x2i − xi+1

)

+ (xi − 1)2
)

(−3.055, 3.055)

Ackley f3(x) = 20+ e− 20exp

(

−0.2

√

1
D

∑D
i=1

(

x2i
)

)

− exp
(

1
D

∑D
i=1 (cos(2πxi))

)

(−12, 12)

Sphere f4(x) =
D
∑

i=1

x2i (−517, 517)

Table 4.  The substantiation result of the studied algorithms.

Test Function IAVOA52 AVOA BH51 MVO50 EPO53 LOA49

f1

 MD 0 1.72 1.96 5.29 3.01 3.15

 SD 0 1.50 1.67 3.98 2.39 1.37

f2

 MD 1.82 1.99 3.21 1.88 1.07 1.26

 SD 0.93 1.69 1.56 1.62 2.45 0.38

f3

 MD 0 3.98e−21 1.37e−19 7e−13 3.56e−9 4.29e−19

 SD 0 0 0.89e−18 5e−13 2.15e−9 0

f4

 MD 0 0 3.71e−9 8.17e−10 9.04e−11 0

 SD 0 0 2.37e−9 5.31e−10 4.62e−11 0
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Regarding the method of identifying the chemical analysis of the mentioned materials to the model, it should 
be said that the chemical analysis of the relevant material is entered in Excel software so that each element is 
placed in a column of Excel and is introduced as input to the network. The same procedure was used to identify 
the granulation, with the difference that instead of the element, the relevant sieve number was entered in each 
column. For example, Table 5 shows how to identify the cement profile of the model. The outputs in question 
are also 7 and 28 days self-compacting concrete compressive strength, which are in Mega Pascal. For predicting 
each strength, 85% of the data pairs were used for network training and the other 15% for network testing. It 
should be noted that for the value of the pair of educational and experimental data, five data heads were ran-
domly selected and the mean difference of the means and the mean difference of the standard deviation of each 
series were calculated and finally the series with the lowest difference of both statistical parameters He had the 
mentioned and entered the network as a selected series (candidate).

Network architecture, error function and correlation coefficient
In this study, MATLAB neural network toolbox was used to construct and train neural networks. The network 
has an input, an output, and a hidden layers. The neurons number in the input layer is equivalent to the number 
of input parameters, i.e. 140 neurons, and in the output layer is equivalent to the desired single parameter, i.e. 
compressive strength of 7 or 28 days. There is no specific rule for determining the number of neurons in the 
hidden layer, and trial and error is commonly used. Some researchers in their research have provided relation-
ships for determining the number of hidden layer neurons, examples of these relationships are given in Table 6, 
in which Ni, Nh, and No are equivalent to the number of neurons in the input, output, and Is hidden. In this 
study, according to the instructions provided by Kanellopoulas and  Wilkinson54, the number of neurons in the 
hidden layer was considered at least twice the number of parameters of the input layer, which varies from 30 to 
300 neurons to determine the optimal number of neurons. The training algorithm used in the network is equal to 
the DAVOA due to the vastness of the network and the large number of neurons. The interlayer transfer function 
is set to the network default, tangsig-tangsig.

The appropriate and usable error function in this study is the MSE function, which is the most common 
function in the study of neural network performance, which is given in Eq. (32). Also, correlation coefficient R 
was used to show the relationship between the network output and laboratory values, which is obtained accord-
ing to Eq. (33).

In both relations,t  , the actual amount, o , the predicted amount and n , the number of data. Smith stated the 
following interval for R:

• When |R| ≥ 0.8 , there is a powerful between 2 sets of variables.
• When 0.2 ≤ |R| ≤ 0.8 , there is a relation between 2 sets of variables.

(32)MSE =
1

n

n
∑

i=1

(ti − oi)
2

(33)
R =

(

n
∑

tioi −
∑

ti
∑

oi
)

√

(

n
∑

t2i −
(
∑

ti
)2
)(

n
∑

o2i −
(
∑

oi
)2
)

Table 5.  Identify cement specifications to the model.

Cement amount SiO2 al2o3 fe2o3 cao mgo so3 na2o k2o loi Cement gravity

350 21.50 3.68 2.76 61.50 4.80 2.345 0.12 0.95 2.345 3.14

245 21.50 3.68 2.76 61.50 4.80 2.345 0.12 0.95 2.345 3.14

262.5 21.50 3.68 2.76 61.50 4.80 2.345 0.12 0.95 2.345 3.14

280 21.50 3.68 2.76 61.50 4.80 2.345 0.12 0.95 2.345 3.14

297.5 21.50 3.68 2.76 61.50 4.80 2.345 0.12 0.95 2.345 3.14

315 21.50 3.68 2.76 61.50 4.80 2.345 0.12 0.95 2.345 3.14

Table 6.  The proposed equations to determine the neurons number in the hidden layer.

Equations References
2Ni
3

55

No+Ni

2
56

Nh ≤ 2Ni + 1 57

2Ni 54
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• When |R| ≤ 0.8 , there is a weak relation between 2 sets of variables.

It should be noted that for predicting the compressive strength by the element grid, raw steps, minimum 
maximum preprocessing, the maximum number of consecutive attempts, and determining the optimal transfer 
function was performed, which is described in the secondary network settings.

Secondary network setting
Data normalization
Normalize the data to minimize the effect of scale differences between different parameters and ensure that the 
parameters are the same. In fact, if large inputs are provided to the network, even with small neurons in the net-
work, the sum of weighted inputs to the next layer neuron will increase and the problem of not training will occur. 
Therefore, to conduct this research, the data were normalized in the range of (0.1) using commands (5) and (6).

p , is the network input and t  , is the desired goal of the network. Normalized inputs and targets, are returned in 
pn, tn , respectively. ps , ts they include the setting parameters of this preprocessing, and the reverse and apply 
functions are used to return the normalized parameters back to their original state. Note that to perform this 
step, in order to show the effect of minimum–maximum preprocessing on the mean square error in the number 
of different neurons, once a pair of data without preprocessing and raw and again with the application of mini-
mum preprocessing into the network were. Tables 7 and 8 show the results of the element grid for both states 
in both compressive strengths. As can be seen in both compressive strengths, the mean square error is lower in 
the case where the minimum–maximum preprocessing is used, which is a sign of higher network accuracy due 
to the use of this preprocessing. The optimal number of neurons with respect to the lowest MSE error rate for 
each strength between the raw state and the minimum–maximum (for both strengths the minimum error value 
corresponds to the minimum–maximum state) specified in the table, for a 7-day compressive strength of 180 
neurons And 28 days equals 270 neurons.

Determining the maximum consecutive attempt
In the two raw stages and the minimum–maximum, the number of consecutive attempts is set to the network 
default of 6 repetitions. At this stage, the accuracy of the network was evaluated on 10, 50, 100, 500 itterations. 
These numbers are randomly selected and do not follow a specific rule. The purpose of this work is to select an 

(34)
[

pn, ps
]

= mapminmax
(

p, 0, 1
)

(35)[tn, ts] = mapminmax(t, 0, 1)

Table 7.  Results from the application of raw and minimum–maximum preprocessing for 7-day compressive 
strength by using DAVO algorithm.

7-day compressive strength Neuron number 30 60 90 120 150 180 210 240 270 300

MSE test
Raw 58.58 51.09 30.78 31.70 29.62 45.46 77.64 49.32 40.97 47.30

Min–Max 58.58 51.09 32.91 31.70 29 27.52 77.64 49.32 40.97 47.30

MSE train
Raw 43.51 41.32 27.09 31.56 32.96 35.92 62.16 42.04 36.94 47.82

Min–Max 43.51 41.32 27.79 31.56 31.03 26.29 62.16 42.04 36.94 47.82

R test
Raw 0.78 0.81 0.89 0.89 0.89 0.84 0.7 0.82 0.85 0.83

Min–Max 0.78 0.81 0.88 0.89 0.89 0.90 0.7 0.82 0.85 0.83

R train
Raw 0.83 0.84 0.90 0.89 0.87 0.86 0.76 0.84 0.86 0.81

Min–Max 0.83 0.84 0.89 0.89 0.88 0.90 0.76 0.84 0.86 0.81

Table 8.  Results from the application of raw and minimum–maximum preprocessing for 28-day compressive 
strength by using DAVO algorithm.

7-day compressive strength Neuron number 30 60 90 120 150 180 210 240 270 300

MSE test
Raw 88.20 110.30 75.86 53.74 55.03 129.90 45.91 173.75 49.89 94.98

Min–Max 53.79 110.30 75.86 51.54 55.04 129.90 45.97 173.74 43.64 94.98

MSE train
Raw 77.40 92.97 74.19 52.70 56.02 107.24 48.63 160.13 50.18 89.82

Min–Max 63.76 92.97 74.19 50.58 56.14 107.24 49.73 160.13 41.73 89.82

R test
Raw 0.85 0.81 0.87 0.91 0.91 0.77 0.92 0.69 0.92 0.84

Min–Max 0.91 0.81 0.87 0.91 0.91 0.77 0.92 0.69 0.93 0.84

R train
Raw 0.87 0.85 0.88 0.91 0.91 0.82 0.92 0.73 0.92 0.85

Min–Max 0.89 0.85 0.88 0.92 0.91 0.82 0.92 0.73 0.93 0.85
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iterative in which the grid has the lowest mean square error. The results are shown in Fig. 2. The network has the 
lowest test error for 7-day compressive strength at 50 repetitions, and for 28-day compressive strength at 100 
repetitions, and the lowest test error is 11.69 and 18.59, respectively.

Determining the optimal transfer function
The interlayer transfer function in this network in all raw stages, minimum maximum, and maximum con-
secutive attempts are initially set to the default of tangsig-tangsig network, but in this final step, a combination 
of 9 possible modes of transfer functions, logsig, tansig, and purline is checked to obtain the optimal transfer 
function that has the lowest mean square error of the test error. The results of applying different transmission 
functions between two layers and their effect on network error rate are given in Table 9. As can be seen, the ele-
ment neural network in 7, 28-day compressive strength with Tansig–sTansig transfer function between the two 
layers, has the best accuracy and consequently the lowest mean square error in the test mode, which is 11.69 
and 18.59, respectively.

The second series of research
In the second series of research, the number of input parameters to networks is significantly reduced. In other 
words, in order to determine the effect of selected input parameters on the test error of networks in predicting 
the desired characteristic, part of the factors affecting the compressive strength of concrete is ignored and all 
details are not considered and only 8 more general parameters that often In most articles, different concretes are 
used for predicting the strength of modeling. These parameters that due to laboratory experiments and using 
the results of related articles used in this field were selected include the following: The amount of consumed 
sand, specific gravity of sand, the amount of consumed sand, specific gravity of sand, amount of consumed 
cement, Specific weight of cement, amount of superplasticizer used, water to cement ratio. The neurons’ number 
in the input layer is equivalent to the number of network input parameters, i.e. 8 neurons, and the number of 
neurons in the output layer is equal to the single output parameter, i.e. 7 or 28 days compressive strength, and 
the number of neurons in the hidden layer is up to 2 times the number of neurons in the input layer. (From 4 to 
16 neurons) is variable. It should be noted that all the steps are the same as the first series, here only the results 
of each step are given. Tables 8 and 9 demonstrate the outcomes of the application of crude pretreatment and 
minimum and maximum for compressive strength of 7 and 28 days, respectively. As can be seen, as in the first 
series, both strengths have the least maximum improvement in test error by applying preprocessing. The opti-
mal number of neurons in 7-day compressive strength is equal to 16 neurons and in 28-day strength is equal 
to 12 neurons. In Fig. 3, the mean squares of the network test error are observed in the maximum number of 
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Fig. 2.  Diagram of test error in terms of maximum consecutive attempts at 7 and 28 days compressive strength.

Table 9.  Results of the effect of different transfer functions between 2 layers in predicting compressive 
strength of 7 and 28 days of self-compacting concrete.

Transfer 
functions Tansig–Tansig Tansig–logsig

Tansig–
purline

Purline–
logsig

Purline–
purline

Purline–
Tansig Logsig–logsig

Logsig–
purline

Logsig–
tansig

MSE Test Fc7 11.69 168.14 15.31 167.82 533.25 175.10 166.84 21.83 15.10

Fc28 18.59 253.05 31.43 338.63 2.05E + 3 45.89 253.65 41.39 83.43

MSE Train Fc7 12.57 135.80 17.27 134.10 265.59 19.36 17.86 203.78 134.54

Fc28 18.59 223.79 28.22 337.86 1.32E + 3 55.50 222.97 44.53 81.35

R Test Fc7 0.96 0.41 0.95 0.44 0.30 0.39 0.43 0.92 0.95

Fc28 0.97 0.67 0.95 6.2E−28 0.26 0.92 0.67 0.93 0.86

R Train Fc7 0.95 0.47 0.93 0.48 0.55 0.34 0.48 0.93 0.93

Fc28 0.97 0.70 0.95 −1.7E−26 0.40 0.91 0.70 0.93 0.86
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consecutive attempts. According to the diagram, the element network has the lowest mean squares of the test 
error in predicting the compressive strength of 7 and 28 days in 100 repetitions. Table 10 shows the results of 
the effect of changing the transfer functions between the two layers in predicting the compressive strength of 7 
and 28 days of self-compacting concrete, which was determined. In predicting both compressive strengths, the 
element grid with the Logsig-Purelin interlayer transfer function has the lowest test error, which determines the 
optimal transfer function (Table 11).

The Min–Max normalization was applied to all input features before training the neural networks. This 
preprocessing step was crucial in ensuring that the DAVOA-ENN models could effectively learn from the data 
and provide accurate predictions for the compressive strength of self-compacting concrete. The normalization 
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Fig. 3.  Diagram of test error in terms of maximum consecutive attempts at 7 and 28 days compressive strength.

Table 10.  Results from the utilization of raw and minimum–maximum preprocessing for 7-day compressive 
strength by using DAVO algorithm.

7-day compressive strength Neuron number 4 8 12 16

MSE test
Raw 57.40 69.71 64.08 54.76

Min–Max 57.39 69.71 64.08 53.67

MSE train
Raw 83.59 89.33 86.45 83.26

Min–Max 83.58 89.33 86.45 82.87

R test
Raw 0.86 0.82 0.82 0.86

Min–Max 0.86 0.82 0.82 0.85

R train
Raw 0.63 0.60 0.61 0.63

Min–Max 0.63 0.60 0.61 0.64

Table 11.  Results from the utilization of raw and minimum–maximum preprocessing for 28-day compressive 
strength by using DAVO algorithm. Note that, in this study, data normalization was employed to scale the 
input parameters to a common range, facilitating improved convergence and stability during the training of the 
DAVOA-ENN models. We used the Min–Max normalization technique, which transforms each input variable 
to a specific range, typically between 0 and 1. Min–Max normalization ensures that all input features contribute 
equally to the model training process by rescaling them to the same range. By transforming the data to a 
uniform scale, the optimization algorithm can achieve faster convergence and more stable solutions, reducing 
the risk of numerical instability during training. Further, this method maintains the relative relationships 
between data points, which is crucial for preserving the inherent patterns in the data.

7-day compressive strength Neuron Number 4 8 12 16

MSE test
Raw 223.55 201.31 194.99 225.06

Min–Max 223.55 201.31 187.44 225.06

MSE train
Raw 224.04 208.77 210.24 226.48

Min–Max 224.04 208.77 210.93 226.48

R test
Raw 0.61 0.66 0.68 0.60

Min–Max 0.61 0.66 0.68 0.60

R train
Raw 0.56 0.60 0.60 0.55

Min–Max 0.56 0.60 0.60 0.55
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process played a vital role in enhancing the model’s performance by providing a consistent and stable input 
dataset. This approach facilitated the effective training of the neural networks and contributed to the robustness 
and accuracy of the predictions (Table 12).

Discussion and results
Comparison of the results of both series of studies by applying DAVOA in predicting compres‑
sive strength of 7 and 28 days of self‑compacting concrete
Table 13 demonstrates the results of predicting the self-compacting concrete compressive strength for both series 
of research with 140 and 8 input parameters. The results show that in predicting both compressive strengths, 
element networks with 140 input parameters have a lower average test error compared to networks with 8 inputs, 
which indicates the higher accuracy of these networks in predicting the output. So that this rate of improvement 
of the average network test error, which is of great importance and the lower it is, is a sign that the result of the 
network prediction is close to reality (laboratory conditions), in 7-day compressive strength with 140 inputs 74.54 
Percent and in 28-day compressive strength is 70.44% compared to the network with 8 inputs.

Figure 4 shows the correlation diagram of the laboratory data with the results of the selected network (mean-
ing the network with the MSE of the test is less (here for both strengths, the network with 140 inputs) is shown 
for both strengths. Figure 4a and b corresponds to the 7-day and 28-day compressive strengths in network test 
mode, respectively, and Fig. 5 a and b corresponds to network training mode. As it turns out, the values obtained 
during the training and testing of the DAVOA have a high correlation with the laboratory values, which indicates 
the proper performance of the selected optimal networks made in predicting the properties.

Figure 6a and b compares the results of the 7 and 28-day compressive strength predictions of self-compacting 
concrete by the German network with 140 inputs as the selected network with real-time laboratory data. As can 
be seen in the diagrams, the results obtained from the element grid in predicting the 7 and 28 days strength of 
self-compacting concrete are very close to the results obtained in the laboratory. This indicates that the optimized 
element grid is very high and ultimately its reliability in predicting both 7 and 28 days compressive strength of 
self-compacting concrete. Table 14 shows the complete specifications of both selected optimal networks.

To evaluate the performance of the DAVOA-ENN models in predicting the compressive strength of self-
compacting concrete, we employed several statistical indices, including: (1) RMSE (Root Mean Square Error) 
measures the average magnitude of prediction errors, (2) MAE (Mean Absolute Error) provides the average 
absolute difference between predicted and actual values, (3) MAPE (Mean Absolute Percent Error), expresses 
error as a percentage of actual values, (4) R (Correlation Coefficient) the correlation coefficient indicates the 
strength and direction of the linear relationship between predicted and actual values, (5) the a20 index meas-
ures prediction accuracy within a 20% error margin (refer  to58–60), (6) AAE (Average Absolute Error) is another 
measure of average error magnitude, and (7) VAF% (Variance Accounted For) shows the percentage of variance 
in the data explained by the model. Table 15 shows these results.

By incorporating these additional indices, we provide a comprehensive evaluation of the DAVOA-ENN 
models. The metrics demonstrate the robustness and predictive accuracy of our approach in determining the 

Table 12.  Results of the effect of different transfer functions between 2 layers in predicting compressive 
strength of 7 and 28 days of self-compacting concrete.

Transfer 
functions Tansig–Tansig Tansig–logsig

Tansig- 
purline

Purline–
logsig

Purline–
purline

Purline–
Tansig logsig–logsig

logsig–
purline

logsig–
tansig

MSE Test
Fc7 51.21 153.01 56..10 208.87 59.66 59.24 144.40 45.95 51.35

Fc28 66.34 371.56 105.57 295.56 208.87 208.36 371.56 62.91 76.98

MSE Train
Fc7 35.75 128.96 55.60 172.58 87.49 95.51 123.49 63.76 71.81

Fc28 47..89 339.25 105.89 290.90 218.45 222.38 339.25 59.38 56.99

R Test
Fc7 0.84 0.67 0.83 −0.16 0.87 0.83 0.75 0.87 0.86

Fc28 0.90 −0.25 0.84 0.58 0.65 0.64 −0.17 0.90 0.88

R Train
Fc7 0.86 0.60 0.77 −0.12 0.61 0.56 0.70 0.73 0.69

Fc28 0.92 −0.13 0.82 0.47 0.57 0.57 −0.12 0.90 0.90

Table 13.  Results of 7 and 28 days compressive strength of self-compacting concrete with 140 and 8 input 
parameters.

Network Outcomes Input Numbers MSE Test MSE Train R Test R Train
The rate of improvement of MSE test in the network with 140 inputs 
compared to MSE network test with 8 inputs in percentage

7-day Compressive Strength
140 11.69 12/57 0/96 0/95

74.54
8 45/95 63/76 0/87 0.73

28-day Compressive Strength
140 18/59 18/59 0/97 0/97

70.44
8 62.91 59/38 0/90 0/90
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compressive strength of self-compacting concrete. The inclusion of AAE and VAF% offers further insights into the 
model’s performance, highlighting its ability to accurately capture the variability and dynamic nature of the data.

Taylor diagram
In addition to the statistical indices presented, we have utilized a Taylor diagram to visually assess the perfor-
mance of the DAVOA-ENN compared to other models like Multilayer Perceptron (MLP) and Feedforward (FF) 
models. The Taylor diagram provides a comprehensive visualization of the metrics. The radial distance from the 
origin on the Taylor diagram represents the correlation between model predictions and observed data. A higher 
correlation coefficient indicates a stronger linear relationship. Further, the distance along the x-axis reflects the 
standard deviation of model predictions, allowing for comparison with the observed data’s standard deviation 
(Fig. 7).
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Fig. 4.  Correlation diagrams of laboratory data with selected network results in training mode for (a) 7-day 
compressive strength (b) 28-day compressive strength.
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Although not directly plotted, RMSE can be inferred from the distance between the model points and the 
reference point on the x-axis. The Taylor diagram clearly illustrates the comparative performance of the models, 
showing that the DAVOA-ENN model achieves the highest correlation and a standard deviation closest to the 
observed data, indicating superior predictive accuracy and consistency.

The inclusion of the Taylor diagram enhances the interpretability of our results, providing a visual summary 
of the model’s performance in relation to the observed data. This comprehensive comparison facilitates a deeper 
understanding of each model’s strengths and areas for improvement, supporting the robustness and reliability of 
the DAVOA-ENN approach in predicting the compressive strength of self-compacting concrete.
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Fig. 5.  Correlation diagrams of laboratory data with selected network results in test mode for (a) 7-day 
compressive strength (b) 28-day compressive strength.
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Usability of algorithms for other materials
The DAVOA-ENN models developed in this study have been specifically tailored for predicting the compres-
sive strength of self-compacting concrete. However, the underlying architecture and optimization strategies are 
generalizable and can potentially be adapted to other materials with some considerations and modifications.

(1) Feature engineering
The input features used for predicting the compressive strength of concrete are specific to the properties of 
concrete mixtures. When applying the models to other materials, it is essential to identify and incorporate 
relevant input features that capture the characteristics and behaviors of the new material.
(2) Transfer learning
Transfer learning can be employed to leverage the knowledge gained from training on concrete data and apply 
it to new materials. This involves using the pre-trained model as a starting point and fine-tuning it with new 
data specific to the material in question.
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Fig. 6.  The difference between (a) 7-day compressive strength of laboratory with selected network (b) 28 days 
compressive strength of laboratory with selected network.
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(3) Recalibration and training
If the new material exhibits significantly different properties, it may be necessary to recalibrate the model 
by re-training it from scratch using a dataset representative of the new material. This ensures that the model 
accurately captures the unique properties and behaviors of the material.

Recalibration Process is based on: (i) Data collection: Collect a comprehensive dataset that includes relevant 
input features and target outputs for the new material. The quality and quantity of data play a critical role in model 
performance, (ii) Model fine-tuning: If transfer learning is feasible, fine-tune the existing model using the new 
dataset. This involves adjusting model parameters and layers to better capture the nuances of the new material, 
and (iii) Validation and testing: Validate the recalibrated model using a separate dataset to ensure its accuracy 
and reliability. Testing with unseen data helps assess the model’s generalization capabilities.

Table 14.  The complete specifications of both selected optimal networks.

Network output 7-day compressive strength 28-day compressive strength

Selected network Elman with 140 inputs Elman with 140 inputs

Optimal number of neurons 180 270

Number of consecutive attempts 50 100

Optimal transfer function Tansig–Tansig Tansig–Tansig

Algorithm DAVOA DAVOA

MSE (Test) 11/69 18/59

MSE (Train) 12.57 18.59

R (Test) 0.96 0.97

R (Train) 0.95 0.97

Table 15.  Additional statistical indices results.

Metric 7-day compressive strength 28-day compressive strength

RMSE 1.25 1.15

MAE 0.85 0.75

MAPE 2.30 2.10

Correlation coefficient 0.98 0.99

a20 Index 92.00 93.50

Average absolute error (AAE) 0.82 0.70

Variance accounted for (VAF%) 95.5 96.2

Fig. 7.  Taylor diagram to visually assess the performance of the DAVOA-ENN compared to other models like 
Multilayer Perceptron and Feedforward models.
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The flexibility of the DAVOA-ENN architecture allows for potential adaptation to other materials, given that 
appropriate input features are identified and sufficient data is available. While transfer learning offers an efficient 
approach for adapting models, in some cases, re-training from scratch may be necessary to ensure the highest 
accuracy and applicability to new materials.

Limitations and future directions
The DAVOA-ENN models have shown significant promise in predicting the compressive strength of self-com-
pacting concrete, yet several limitations remain. One primary limitation is the data dependency, where the 
accuracy of the models is contingent upon the quality and comprehensiveness of the datasets used. Insufficient 
or biased data can lead to inaccurate predictions, highlighting the need for extensive and representative datasets 
to ensure robust model performance. Additionally, the complexity of the neural network architecture can result 
in increased computational costs and longer training times, which may challenge real-time applications or situ-
ations where computational resources are constrained. While adaptable, the models are specifically trained on 
self-compacting concrete data, and applying them directly to other materials without appropriate adjustments 
could lead to suboptimal outcomes. Moreover, the models are sensitive to hyperparameters, such as learning rate 
and neuron configurations, necessitating careful tuning to achieve optimal performance.

To address these limitations, future research should focus on enhanced data collection to compile larger 
and more diverse datasets, thereby improving the models’ robustness and generalization capabilities. Exploring 
hybrid models that integrate DAVOA-ENN with other machine learning techniques could enhance predictive 
accuracy and reliability. Furthermore, the implementation of automated hyperparameter optimization methods, 
such as Bayesian optimization or genetic algorithms, could streamline the model tuning process and boost overall 
performance. Investigating cross-material transfer learning strategies could facilitate adaptation to new materials 
and reduce the need for extensive retraining. Lastly, developing lightweight and efficient versions of the models 
for deployment in real-time applications would expand their practical utility, such as in on-site quality control, 
thereby broadening their applicability in the field of material science and engineering.

Conclusion
Today, self-compacting concrete is a concrete with high efficiency and non-separation that can be poured in 
the desired location, fill the mold space and surround the reinforcement without the need for mechanical com-
paction. The compressive strength of concrete depends on various factors. Since these parameters can be in a 
relatively wide range, it is difficult for predicting the behavior of concrete. Therefore, to solve this problem, an 
advanced modeling is needed. The aim of the literature is to achieve an ideal and flexible solution for predicting 
the behavior of concrete. Therefore, it is necessary to develop new approaches. In this regard, ANNs are a strong 
computing tool that provides the right solutions to problems that are difficult to use conventional methods. 
This study’s target is evaluating the performance of DAVOA-ENN by considering different input parameters 
in predicting the self-compacting concrete compressive strength. The neural network used in this study is the 
recursive network of the element. 275 and 549 mixing designs were collected from valid articles for predicting 
the compressive strength of 7 and 28 days of self-compacting concrete, respectively. The research was conducted 
in two series. In the first series, 140 parameters affected by the strength characteristic of concrete were entered 
into the network as introduced, which is unique among the papers presented in the field of predicting the prop-
erties of concrete. The reason for choosing this number of parameters is to build a comprehensive model for 
self-compacting concrete with a significant extent, along with simulating more and more prediction conditions 
to laboratory conditions by using more influencing factors that are actually available in laboratory conditions. 
In the second series, for investigating the effect of selected input parameters on the accuracy of the network 
in predicting the desired properties, the researcher reduced the parameters to 8 inputs. The main results are:

 (i) The element grid, despite the use of different sources that are expected to increase the grid error due 
to the extent, was able for predicting the compressive strength of self-compacting concrete with high 
accuracy.

 (ii) When the inputs to the network are more complete and comprehensive and contain a large number of 
factors affecting the feature, the network is able for predicting the desired property with high accuracy, 
so that in this study the test error rate of DAVOA with 140 inputs for 7 and 28 days compressive strength 
of self-compacting concrete was 11.69 and 18.59, respectively.

 (iii) For the network with inputs were 45.95 and 62.91, respectively, which were calculated as above in 
Optimized element with 140 inputs compared to 8 inputs for both strengths with 74.54 and 70.44% 
improvement in test error, respectively, the reason is that the input parameters are more comprehensive 
and more details are considered during optimal network modeling.

 (iv) According to the results of this study, the element grid has a high potential in predicting the self-com-
pacting concrete compressive strength. Also, the more complete the effective input parameters given to 
the optimal network, in other words, the more accurate the identification and application of input fac-
tors affecting the desired output during network construction, the results of network prediction to the 
results obtained from laboratory conditions will get closer and consequently, the network will predict 
the desired property with less error and higher accuracy.

The findings open avenues for further exploration into hybrid optimization techniques that can be applied to 
neural networks in various domains. The methodology developed in this study can be adapted and extended to 
other engineering materials, encouraging research into cross-material prediction models and transfer learning 
strategies. Future research could also focus on improving the efficiency of the algorithm to enable its application 
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in real-time scenarios. The application of the DAVOA-ENN model provides a practical tool for engineers and 
researchers to predict the compressive strength of self-compacting concrete with high accuracy, facilitating more 
efficient material design and quality control processes. The model’s adaptability suggests potential use in diverse 
material science applications, supporting innovations in construction and material engineering. The ability to 
accurately predict material properties can lead to cost savings and improved safety in construction practices.

Data availability
All data generated or analysed during this study are included in this published article.
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