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Studies on host genomics have revealed the existence of identifiable HIV-1 specific protective factors 
among infected individuals who remain naturally resistant viraemia controllers with little or no evidence 
of virus replication. These factors are broadly grouped into those that are immune associated (MHC, 
chemokines, cytokines, CTLs and others), linked to viral entry (chemokine co-receptors and ligands), 
act as post-entry restriction elements (TRIM5a, APOBEC3) and those associated with viral replication 
(cytokines and others). These features have been identified through multiple experimental approaches 
ranging from candidate gene approaches, genome wide association studies (GWAS), expression 
analysis in conjunction with functional assays in humans to primate based models. Several studies have 
highlighted the individual and population level gross differences both in the viral clade sequences as well 
as host determined genetic associations. This review collates current information on studies involving 
major histocompatibility complex (MHC) as well as non MHC genes in the context of HIV-1 infection 
and AIDS involving varied ethnic groups. Special focus of the review is on the genetic studies carried out 
on the Indian population. Further challenges with regard to therapeutic interventions based on current 
knowledge have been discussed along with discussion on documented cases of stem cell therapy and very 
early highly active antiretroviral therapy (HAART) interventions. 
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Introduction

 The human immunodeficiency virus (HIV-1) 
infection induces a wide range of immune responses 
in humans and depending on the level of immune 
resistance elicited, the host may or may not develop 
acquired immunodeficiency syndrome (AIDS). Only 
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a few can resist virus spontaneously and contain its 
replication to undetectable levels without any therapy 
and these are classified as ‘elite controllers’. However, 
most individuals tend to progress at either slow or 
fast rates (classified as ‘slow’ or ‘fast progressors’, 
respectively), if not treated with antiretroviral therapy 
(ART) to AIDS. 
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 The arena of host genetics has progressed 
immensely owing to the recent advancements in 
analytical approaches, development of high throughput 
next generation sequencing platforms, genome and 
proteome wide microarrays, expression profiling 
screens, highly sensitive and specific immunological 
assays and other tools for gene function readouts. Several 
international consortia studies have utilized multiline 
approaches based on candidate genes in case-controls 
studies involving large cohorts. Further, genome wide 
association studies (GWAS), siRNA/miRNA (small 
interfering/micro RNA) screenings, and their meta-
analyses have been performed in different populations 
to understand the gross variability observed in genetic 
propensity towards HIV-11,2. However, the genetic 
prototype of natural viraemia controllers that empowers 
antiviral resistance remains largely enigmatic. A more 
comprehensive analysis involving different ethnic 
groups could provide a better understanding of the 
mechanisms underlying host pathogen interaction.

 Genomic architecture of HIV-1 infection relates 
to a complex network of genes and their cumulative 

influence on predilection (or resistance on the contrary) 
to HIV infection and its progression to AIDS. Multiple 
host genetic factors regulate individual variations in 
acquisition of HIV-1 infection and disease progression2. 
Investigations into the host determinant factors in 
individuals who can resist viral infection or delay 
the rate of disease progression could help identify 
putative ‘antiviral resistance factors’ which would 
eventually lead to more efficient anti-HIV therapeutic 
approaches. 

 Despite several achievements in research, therapy 
and management against HIV/AIDS during the last 
more than three decades (Fig. 1), attempts to generate 
an effective preventive or therapeutic vaccine have not 
been successful so far.

 This review collates the essence of several studies 
on the role of host determined factors in the progression 
and transmission of HIV-1 infection, with a view to 
ascertain the genetic architecture of the disease based 
on studies on specific functional genes. These include 
(i) virus entry gatekeepers (CCR2, CCR5), (ii) their 

Fig. 1. ‘HIV clock’ showing major landmarks in research and therapy relating HIV/AIDS pandemic since its inception apparently in early 1980s’.  
ART, antiretroviral therapy; HSCT, hematopoietic stem cell transplantation; GWAS, genome-wide association studies; HPV, human papilloma virus.



ligands (SDF-1, RANTES, MIP1a), (iii) post-entry 
restriction factors (TRIM5a, APOBEC3), and (iv) 
immune response genes of the major histocompatibility 
complex (MHC), cytokines and others that synchronize 
an effective immune response. A later section describes 
evolutional medicine lessons from primate studies and 
concludes with an overview of the genomic portrait of 
HIV-1 infected individuals from different geographical 
regions of India. 

Variability of host responses

 All individuals are not equally susceptible to HIV 
infection and they exhibit gross variability in terms 
of their viral load set-points and course of chronic 
progression to AIDS2-4. Depending upon the variability 
in their CD4 T cell counts following seroconversion, 
levels of viraemia and symptoms manifested, HIV-1 
infected individuals can be categorized into different 
progression phenotypes3,4 as summarized in Table I. 

 Most individuals when infected with the virus, 
if untreated, tend to progress towards fatal AIDS 
and are referred to as ‘progressors’ or ‘viraemia non-
controllers’. However, the rates of progression could 
either be rapid (development of AIDS within 2-3 years) 
or slow (takes more than 3 years to develop AIDS) and 
this is reflective of host determined factors. Most of the 
latter group of individuals turn aviraemic on treatment 
with antiretroviral therapy (ART) and can suppress 
their viraemia levels to <75 copies/ml3,4. 

 A privileged small subset of naturally resistant 
individuals is known to exist who possess effective 
immune surveillance against HIV-1. They can remain 
aviraemic for periods beyond 10 years without the 
aid of antiretroviral therapy and are referred to as 
long term non progressors (LTNPs). A minor group 
of LTNPs (~1%) can retain viral loads to below 
detectable levels (<50 copies/ml) and these are referred 
to as ‘elite controllers’. Similarly, individuals who are 

Table I. Definition of HIV-1 infected progression phenotype groups

Group Symptoms ART CD4 
counts/ml 

Plasma VL 
RNA copies/ml 

Viraemia episodes 
RNA copies/ml 

Po
te

nt
ia

l 
LT

N
P

Viraemia Controllers Asymptomatic for >10 years 
after sero-conversion

None > 400 < 2000 Rare, non consecutive, 
> 2000

Elite Controllers Asymptomatic for >10 years 
after sero-conversion

None > 400 Undetectable 
(<50) for > 1 yr

Rare, non consecutive, 
up to 1000 

V
ira

em
ia

 N
on

-
co

nt
ro

lle
rs

Chronic progressors Symptomatic chronic phase 
leading to AIDS

Yes <350 > 2000 in > 
50% samples 

Common 
> 2000

Rapid progressors Symptomatic ; development 
of AIDS within 3 yr
(e.g., Women married < 5 yr; 
Men with sero-conversion 
<5 yr)

Within 
< 3 yr

< 350 
at least 
twice

>2000 Frequent
> 2000

H
EP

S

Exposed Uninfected 
(EUs) Discordant 
couples

Asymptomatic for >1 yr
(Donor partner is 
symptomatic with CD4 < 350 
copies/ml)

None > 400 < 2000 Less common

Exposed Uninfected 
(EUs) CSWs/IDUs

Asymptomatic for >1 yr 
despite being in profession 
for > 3 yr

None > 400 < 2000 Less common

HEPS, highly exposed persistently seronegative; ART, antiretroviral therapy; LTNPs, long term non progressors; CSWs, commercial 
sex workers; IDUs, intravenous drug users; VL, viral load
Source: Refs 3, 4
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‘intermediate viraemia controllers’ can maintain viral 
loads up to <2000 copies/ml despite no ART3,4. 

 Another group of naturally resistant individuals are 
those who encounter virus repeatedly but do not develop 
AIDS despite lack of any therapeutic intervention for 
several years and remain naturally resistant. Such 
‘highly exposed persistently seronegative (HEPS)’ 
or ‘exposed uninfected’ (EUs) individuals include 
discordant couples, commercial sex workers and 
intravenous drug users and these have been widely 
studied in different populations1-4. 

 An in depth understanding of the immunoprotective 
mechanisms among resistant individuals who are 
genetically programmed to be ‘viraemia controllers’ 
offers a prudent approach to identify and grade genes 
that could serve as ‘guardians’ against the virus. To that 
extent, an International Viremia Controllers Consortium 
has recently been established with the primary aim 
of determining the immunogenetic mechanisms that 
underlie natural resistance to HIV-1 infection 5. Indeed 
a better understanding of the various host genes that 
confer protection against HIV infection is of immense 
translational value in disease management, control of 
viraemia and finally towards a more robust vaccine 
design. Role of important gene families representing 
viral entry mediators or restriction factors, or those 
involved in innate/acquired antiviral immune responses 
are dealt with in details in the following sections. 

Immune response genes of the MHC

 The major histocompatibility complex (MHC) 
represents a highly polymorphic, gene dense component 
of the human genome, located on chromosome 6 
(6p21.3) whose major function is antigen presentation. 
By presenting specific viral epitopes, the human 
leukocyte antigen (HLA) class I genes instruct cytotoxic 
T lymphocyte (CTL) mediated immune pressure against 
the virus and thus has an important impact on the 
consequences of viral adaptive evolution. Conversely, 
the virus tends to evolve in an attempt to escape HLA 
peptide binding signatures of the CTLs, although it 
may or may not be conducive to viral fitness. Studies 
focused on comparative evolution have suggested that 
the non human primates like chimpanzees experienced 
a selective sweep of certain MHC class I repertoire to 
survive through the historic SIV/HIV-1 (Simian/human 
immunodeficiency virus) like retroviral epidemic in the 
past6,7. 

 A number of HLA class I and class II alleles and 
haplotype associations have been reported in relation to 

genetic susceptibility to HIV-1 infection, transmission 
and disease progression in different population 
groups8-10. Among those, at least three HLA-B alleles 
viz. HLA-B*27, B*57 and B*35 have consistently 
been shown to exert a dominant effect on HIV-1 
viral escape and disease outcome in various human 
populations11. For example, HLA-B27 that shows a 
strong association with ankylosing spondylitis and 
other spondyloarthropathies, has been illustrated to be 
protective against HIV infection (Fig. 2). Similarly, 
HLA-B*57 which is responsible for abacavir associated 
hypersensitivity (B*57:01), also confers protection 
and is associated with delayed disease progression 
alongwith gradual decline in viraemia. 

 The role of HLA-B*35 has been extensively studied 
in several populations and it may either be protective or 
predisposing depending upon the sequence variations 
of its peptide binding motifs13. Moreover, it has been 
shown that the HLA associated outcome also depends 
on the viral epitopes being targeted14. For example, gag 
NY10 epitope at position 253-262, has been shown to 
be targeted by CTLs more efficiently in clade C than in 
clade B infected individuals carrying HLA-B*35:01. 
The difference in immunogenicity of these clade 
specific epitopes has been attributed to a single residue 
substitution of Asp 260 Glu. The latter leads to steric 
hindrance and affects relative binding affinity between 
HLA-B*35:01 and the peptide resulting in loss of CTL 
response14. 

 Vaccine genomic approaches have screened 
host genetic determinants of T cell responses in the 
MRKAd5 HIV-1 gag/pol/nef Step trial and found 
that the polymorphism in MHC (particularly HLA-B) 
showed the strongest association among all the genetic 
factors evaluated with response to the HIV-1 gag 
protein15. 

Role of HLA-C

 The functional importance of HLA-C in HIV 
infection has recently been revisited16. Earlier 
studies failed to establish a consistent association of 
HLA-C alleles with HIV-1 infection, largely due to 
variation in linkage disequilibrium of HLA-C with 
HLA-B in different populations. For example, HLA-
B*08:01 is linked strongly with HLA-C*07:01 in the 
Caucasian population but with C*07:02 in the Indian 
population17. 

 Unlike HLA-A and HLA-B molecules, expression 
of HLA-C is not inhibited by viral Nef18 and is, 
therefore, particularly important in priming of CTLs in 
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HIV-1 infection. HLA-C is also important because it 
has a longer half-life than other class I counterparts. 
It functions as a ligand for the inhibitory killer cell 
immunoglobulin like receptor (KIRs) and its continued 
expression protects antigen presenting cells (APCs) 
from natural killer (NK) cell lysis. High expression 
of HLA-C promotes effective CTL recognition and 
maturation. 

 The level of expression of HLA-C is regulated 
by multiple polymorphisms in HLA-C sequence. It 
has been demonstrated that an insertion of a single 
nucleotide G at 263SNP (ins263 or rs67384697-G) 
in the 3’UTR region of HLA-C results in creation of 
a binding site for miRNA (miR-148a) that leads to a 
rapid degradation of HLA-C. Loss of expression of 
HLA-C along with HLA-A and B therefore may result 
in a decrease in CTL recognition and lysis of HIV 
uninfected cells19-21. 

 Another important SNP is at -35 kb (rs9264942) 
with C/T alleles. The -35kb C allele is a high 
expressor allele as compared to T. The HLA-C alleles 
C*08:01/02/04, *12:02/03, *01:02, *02:02, *06:02, 
*05:01 and *14:02 carry the C allele at this SNP 
and are high expressor alleles conferring lower odds 

ratio (OR). On the contrary, other HLA-C alleles that 
include *03:03/04, *04:01, *07:01/02, *15:02/05/06, 
*16:01/02/04 and *17:01 are low expressor C alleles 
that contribute relatively higher OR towards the 
development of full blown AIDS 20,22. It may be 
mentioned that the -35kb C allele is in strong linkage 
disequilibrium with the 3’UTR deletion while -35 kb 
T allele shows linkage with the insertion of G in the 
latter in several populations. The -35T/ins haplotype 
creates miRNA binding site and downregulation of 
HLA-C expression. On the other hand, HLA-C alleles, 
particularly those carrying aromatic amino acids (Phe 
or Tyr) at position 67 buried deep in α1 helix (also in 
a few HLA-B alleles) can associate with gp120 of the 
virus as evident through L31 mab binding 23. Recently, 
it has been shown that specific HLA-C alleles like 
C*03/04/07/12 are able to bind the virus efficiently 
leading to enhanced HIV-1 infectivity22. 

 In recent years, the relative importance of HLA-C 
in HIV-1/AIDS has been further demonstrated through 
a set of independent GWAS24. These studies have shown 
that the SNP (rs 9264942) that lies in close proximity to 
HLA-C regulates its expression and controls viraemia 
efficiently24. Fig. 3 provides an overview of the human 

Fig. 2. Association of three HLA-B alleles viz. HLA-B27, B57 and B35 with susceptibility to HIV-1/AIDS. The alleles B27 and B57 are 
protective while B35Px alleles are disease predisposing. It is possible that the protective nature of B27 and B57 may decline in time since the 
virus is continually trying to evolve escape mutants and change its immune landscape depending upon the HLA signatures of the host. The 
HLA system which is the human MHC, contains polymorphic class I (HLA-A, B, C), class II (HLA-DR, DQ and DP) and a set of central 
genes that include complement, tumour necrosis factor (TNF), MHC class 1 polypeptide-related sequence A (MICA) and other genes (For 
details of the MHC gene products in man please see Ref. 12).
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MHC along with the location of important single 
nucleotide polymorphisms (SNPs) associated with 
HIV/AIDS as defined through GWAS studies.

 It has been suggested that specific HLA alleles that 
provide antiviral protection when present together in 
an individual could cooperate and confer even greater 
protective effects by targeting a greater breadth of viral 
proteome that results in lower viraemia and higher 
CD4 T counts25. 

Studies on MHC in viraemia controllers

 Collaborative efforts of the International HIV 
controllers studies5,26 have presented evidence to 
suggest that the observed variable immune responses 
against the virus are a consequence of the binding 
ability of crucial HLA amino acid residues directly 
involved in peptide presentation. Studies conducted in 
Caucasian populations have revealed the importance of 
amino acid substitutions in the HLA-B peptide binding 
groove, particularly residues at positions 67, 70 that 
line the ‘pocket B’ and position 97 in ‘pocket C’ of the 
peptide binding groove. Such substitutions have been 
shown to be associated with an overriding effect on 
virus loads among progressors and controllers. 

 The selective advantage contributed by the 
protective HLA alleles ultimately depends upon their 
overall population frequencies. For example, the most 
frequent HLA alleles may act as ‘common restriction 
elements’ for the virus. It is conceivable that circulating 
viral strains gradually tend to break the protective barrier 
conferred by common HLA alleles by undergoing 
specific escape mutations. However, since the virus 
does not encounter rare HLA alleles often, it may lose 
its fitness against the latter more easily. Hence, the rare 
HLA alleles may turn out to be more advantageous as 
compared to those that are more common HLA in a 
population8. This points towards the need of escape 
and fitness guided vaccination approaches.

 The International HIV Controllers Study Group 
has also performed genome wide association analyses 
among 974 controllers and 2648 progressors among 
European populations26. The results of the study 
indicated that the only SNPs that reached statistically 
significant levels of association in the two cohorts were 
those in the extended MHC and the CCR5-CCR2 locus. 
Together, these two loci contributed 23 per cent of the 
observed variance of host control. 

Fig. 3. Gene map of the human MHC on chromosome 6p21.3 showing various single nucleotide polymorphisms (SNPs) identified in the 
HLA class I region that are associated with HIV-1/AIDS through genome wide association studies (GWAS) studies. Multiple gene loci are 
implicated in HIV-1 susceptibility and viraemia control.
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 Another important role of MHC in HIV-1/AIDS 
is in the context of drug induced hypersensitivity 
reactions27. Pharmacogenomic studies have shown 
that atleast two drugs commonly used as a part of the 
HAART therapy are associated with drug induced 
hypersensitivity (DIH). These include the use of 
abacavir that induces DIH in patients carrying the HLA-
B*57:01 allele28. The US Food and Drug Administration 
(FDA) has made HLA testing mandatory before its use 
and those carrying this allele are prohibited from using 
it. Similarly, nevirapine induced drug reactions have 
been shown to have a strong association with HLA-
DRB1*01:01 (and B*35:05, Cw*04)29. While these 
are well established genetic associations that must be 
prescreened before administering these antiretroviral 
drugs to HIV infected patients, there could be others in 
untested populations.

Genes that code entry gatekeepers

 Molecular events involved in the process of viral 
entry into host cells are highly intricate. Briefly, HIV-1 
engages its envelope proteins (gp120, gp41) sequentially 
and exploits host cell surface co-receptors CCR5 or 
CXCR4 along with CD4 to gain entry into the cell. 
Cell surface density of vacant chemokine co-receptors 
CCR5/ CXCR4 may act as gatekeepers to the virus. On 
the contrary, their saturation with the corresponding 
ligands (MIP1a/b, Regulated upon activation normal T 
cell expressed and secreted (RANTES) for CCR5 and 
SDF-1 for CXCR4, respectively) could obstruct viral 
entry and retard its subsequent transmission1-4,8,10.

(i) Chemokine co-receptors

CCR5: Genetic variability in the CCR5 co-receptor has 
been of considerable interest and it is so far the only 
genetic locus illustrated with translational value against 
HIV-1. A natural knockout deletion of 32 nucleotide 
bases (∆32) renders this receptor non functional and 
blocks the virus from gaining entry. However, this 
naturally protective polymorphism is not so frequent 
and its prevalence shows a declining trend on transition 
from the North Europe (10 to 16%), southeast towards 
Mediterranean region (~10 to 4%) and gradually 
disappears among African and East Asian populations30. 
Incidentally, the protective CCR5∆32 allele is almost 
absent in the Indian population31.

 The CCR5 promoter region embraces multiple 
SNPs that regulate its cell surface expression and hence 
influence viral entry. Several studies have shown that 
the CCR5 haplogroup HHE favours HIV-1 infection 
and development of AIDS in multiple populations 

including Caucasians, Thais and the North Indians32. 
Similarly, the haplogroup HHD is associated with fast 
progression among the African populations. Because of 
the population specific variations, the genetic influence 
on virus transmission and disease progression also vary 
in a race specific manner.

CCR2: The CCR2 gene is located in the vicinity of 
CCR5 on chromosome 3 and both the loci show strong 
linkage disequilibrium. A particular SNP (G190A or 
V64I) has been reported to be associated with slower 
progression to AIDS. The protective A allele at this SNP 
is found at a frequency of ~12 per cent in north Indians33 
and 3-17 per cent in south Indians34. These studies and 
those by others have suggested that although CCR2 is 
an important genetic marker, the influence of CCR2 
V64I polymorphism on susceptibility to HIV may not 
be direct. It is now clear that it might affect the pace of 
progression in part or entirely through its linkage with 
other variants, particularly in the CCR5 promoter32.

(ii) Chemokine ligands 

 MCP1: The monocyte chemoattractant protein-1 
(MCP-1/CCL2) is a potent chemokine that mediates 
macrophage activation and recruitment. It is a ligand 
for CCR2 and has been reported to be associated 
with encephalitis and dementia among HIV infected 
individuals. The MCP-1 -2518 G allele in the promoter 
region has been reported to be associated with higher 
MCP-1 expression and with reduced risk of HIV-1 
acquisition35. On the other hand, the same genotype 
was found associated with faster disease progression 
and development of AIDS associated dementia 
in HIV infected European, African and Hispanic 
Americans36, thus highlighting the race specificity of 
the associations. 

 It has been shown that the ‘G’ allele occurs with a 
frequency of 23-25 per cent among Caucasians (25.8% 
in Germans, 25% in Italians, 23.9% in Hungarians 
and 23.8% in Czechs)37. On the other hand, it occurs 
with a considerably higher frequency of 50-65 per cent 
among Asian populations (65% in Koreans, 63.8% in 
Japanese and 51% in Chinese population)38. 

 Studies carried out by our group (unpublished 
data) on chemokine ligands among north Indians are 
summarized in Fig. 4. The ‘G’ allele of MCP-1 occurs 
at a frequency of 28 per cent among north Indians. The 
allelic and genotypic frequencies of -2518MCP-1 A/G 
were found to be comparable between HIV +ve subjects 
and healthy controls. These findings are consistent 
with a previous study from south India, in which the 
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frequency of ‘G’ allele was reported to be 34 per cent, 
and showed no association with HIV susceptibility and 
development of tuberculosis39. Further, a cumulative 
analysis of MCP-1 and its ligand CCR2 genetic variants 
together did not reveal association of this receptor-
ligand genetic axis with susceptibility towards HIV 
infection in north Indians.

 SDF1 (CXCL12): The stromal cell–derived factor 
1 is the only chemokine ligand known for the HIV-1 
co-receptor CXCR4. Transition from G to A at position 
+801 in the 3′ untranslated region of the CXCL12β gene 
transcript has been associated with delayed progression 
to AIDS40 and with HIV-1 resistance in seronegative 
high-risk individuals41. This might be due to the 
overproduction of SDF1 in certain tissue compartments 
thereby deregulating the CCR5-CXCR4 switch. In 
contrast, other studies have reported an association of 
A allele to poor survival of AIDS patients42 or no effect 
on HIV disease progression43. 

 In our studies, the SDF-1 allelic and genotypic 
frequencies were found to be similar in HIV +ve 
subjects as compared to healthy controls, and among 

concordant versus discordant couples, suggesting that 
the variant might not have any role in HIV susceptibility/
resistance or transmission (unpublished data). The 
observed SDF1-3’A frequency (27.5%) and its lack of 
association with HIV susceptibility, viral acquisition 
and transmission in our results are in conformity with 
a previous report from north India44. The SDF1-3’A 
frequency ranges from 17-35 per cent in south Indians, 
Thais and 17-22 per cent among many other populations 
worldwide45. We observed a relatively lower frequency 
of ‘A’ allele in rapid progressors (8.8%) as compared 
to the total HIV +ve cohort (24.3%) or LTNPs (25%) 
or EUs (25.9%). These results indicate that this allele 
might confer resistance to disease progression. Our 
results are in conformity with the earlier reports 
suggesting an association of this allele with delayed 
onset of AIDS40,45.

CCL5/RANTES: This chemokine is a ligand for CCR5 
and therefore may inhibit viral entry by competitive 
binding and CCR5 down-modulation. The promoter 
genotype -403GA-28CC has been shown to be 
associated not only with HIV-1 susceptibility but also 

Fig. 4. A comparison of frequencies of genetic polymorphisms in CCR5 chemokine ligands (RANTES, MIP1a), CCR2 ligand (MCP1) and 
CXCR4 ligand (SDF-1) among the healthy north Indian population and HIV-1 infected individuals. The three significant findings in MIP1α 
associations and their odds ratios respectively are shown inside an insert on right lower side panel of the figure (Source: unpublished data). 
*P<0.05; Healthy vs HIV-1 seropositive individuals.
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delayed onset of AIDS in European Americans (EA)46. 
Similarly, RANTES haplotypes comprising -403A 
and -28G were found to be associated with lower 
susceptibility to infection in a Chinese cohort47,48 and 
slower disease progression in the Japanese and Thai 
cohorts49. In our studies, the allelic and genotypic 
frequencies of RANTES -403 G and A alleles were 
found to be comparable between HIV +ve subjects and 
healthy controls and among concordant and discordant 
couples, suggesting that these variants might not 
confer HIV susceptibility/resistance or influence 
transmission among north Indians (unpublished data). 
These results are in conformity with a previous report 
from north India44. The ‘A’ allele was, however, found 
to be relatively lower in the LTNP cohort (16.7%) as 
compared to the rapid progressors (RPs) (26.5%), EUs 
(29.6%), total HIV +ve subjects (27%) and healthy 
controls (28%). These trends suggest a lack of protection 
conferred by the ‘A’ allele towards disease progression. 
This is in accordance with reports in African Americans 
which also suggest no effect of these variants on HIV-1 
infection and AIDS progression50.

MIP-1- α: The macrophage inflammatory protein-
1-alpha is produced by stimulated T lymphocytes, 
macrophages, neutrophils and monocytes. This 
chemokine contributes to acute cellular immune 
responses via recruitment and activation of macrophages 
and T cells inducing the production of inflammatory 
cytokines. A biallelic dinucleotide (TA) repeat exists 
within the promoter region at -906 of the MIP-1A 
gene51. In the North Indian population, we observed 
a statistically significant increase in the frequency of 
(TA)6 in HIV infected patients (75.1%) as compared to 
the healthy controls (67%). Conversely, the frequency 
of the other variant of this repeat motif, namely (TA)4 
occurred with a significantly lower frequency in HIV 
+ve subjects in our study (unpublished data). Similarly, 
a relatively lower frequency of (TA)4 was observed in 
the LTNP cohort (8.3%) as compared to RPs (26.5%), 
EUs (24.1%), total HIV +ve (24.9%) and healthy 
subjects (33%). These results suggest a direct role of 
the MIP1α variants in HIV susceptibility/ resistance. 
Alternatively, the observations might reflect on linkage 
disequilibrium of this polymorphism with another as yet 
unknown genetic marker. Incidentally, our observations 
made in the north Indian population are in conformity 
with those reported among the Japanese52. 

 We also evaluated the role of genetic polymorphism 
of MIP-1α +459C/T in HIV infection. The homozygous 
TT genotype was found with a significantly lower 

frequency in HIV +ve subjects (5.45%) as compared to 
healthy controls (11.6%), suggesting its possible role in 
protection or linkage with some other genetic marker. 
The +459 T frequency was also found to be lower in 
the LTNP cohort (8.3%) as compared to RPs (32.2%), 
EUs (29.6%), total HIV +ve (26.85%) and healthy 
subjects (32.6%) (unpublished data). These results are 
in accordance with a recent study conducted in African 
Americans in which a haplotype TT (comprising 
MIP-1α +459 C/T linked with MIP-1α +113 C/T) 
was found to be associated with a significantly lower 
risk of HIV-1 acquisition as compared to the ancestral 
haplotype CC (unpublished data). Further, the allelic 
and genotypic frequencies observed here are similar 
with those reported in European, African and Hispanic 
Americans.

Comparative genomics

 Zoonotic infection studies of SIV among non 
human primate models particularly chimpanzees, 
Sooty mangabeys and African green monkeys have 
provided important information on the co-evolution of 
SIV and potential host genes that led to development 
of resistance to progression to AIDS. It is known that 
the chimpanzees can be infected with HIV-1/ SIVcpz 
virus but do not progress to AIDS like disease. It is 
believed that they experienced a selective sweep 
resulting in marked reduction in their MHC class I 
allelic and haplotypic repertoire in the past caused by 
an HIV-1/SIV like retrovirus pandemic6. Similarly, 
there is evidence for unique patterns of natural selection 
among non MHC genes in chimpanzees that include 
relative conservation in CCR5 promoter, CXCR4 and 
CX3CR1 genes, high CNVs in CCL3L1 and long 
term persistence of advantageous alleles, e.g., in T cell 
transmembrane immunoglobulin and mucin 1 (TIM1). 
A strong positive selection has been suggested among 
genes for post entry restriction factors like APOBEC 
family, TRIM5a and others1,2. Our studies have shown 
that the CCL3L1 copy numbers in north Indians 
(2.34)53 are relatively lower than those observed in 
the Japanese6 and other populations53. Incidentally, 
these copies occur with a far greater number in the 
chimpanzees (>10) and could, therefore, be considered 
as one of their immuneprotective mechanisms against 
the virus.

 Lessons learnt from primate studies could help 
identify analogous genes that can interfere with 
cross species transmissions and allow nonpathogenic 
outcomes. Another advantage of such studies could 
be in the context of Paleovirology where the genome 
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data gathered could be utilized to reconstruct extinct 
viruses and ancestral states of present day virus and 
then extrapolate how ancestral viruses were evaded by 
the host specific restriction factor(s).

Post-entry restriction factors

 Infection by HIV-1 depends on a number of host 
cell factors, some of which can act as viral restriction 
elements with species specific variations. The TRIM 
and APOBEC3 families are explicit examples of such 
factors and a clear understanding of their interactions 
with HIV-1 could have important implications for 
designing effective therapeutics. In this context, 
several attempts are being made to develop additional 
antiretroviral drugs and other mechanisms of 
enhancing their anti HIV-1 restriction activity against 
the virus.

 TRIMs (Tripartite - motif containing super 
family) represents antiviral restriction factors that act 
as stringent post-entry replication blocks in a species 
specific manner. For example, member TRIM5a from 
rhesus monkeys can restrict HIV-1 production after viral 
entry. The human TRIM5a, however, can restrict HIV-1 
only weakly but can restrict N topic murine leukemia 
virus (MLV) more potently. Sequence variants in this 
molecule have been extensively studied with respect 
to their anti HIV activity. Functional polymorphisms 
in exon 2, particularly 43Tyr carrying haplotypes have 
been linked with reduced susceptibility to HIV-1 in 
French, Japanese and Indian populations54, although 
its antiviral activity is relatively lower and may be 
attributed in part to differences in the viral clades. 
A further study on variants in the linker region of 
TRIM5a has revealed that a SNP rs11038628 (249D) 
is associated with HIV-1 susceptibility and attenuated 
activity in the Indian population55.

Fig. 5. A correlation of prevalence of TIM1 haplotypes and CD4 T cell counts in the north Indian population. The panel (a) shows % 
frequencies of TIM1 haplotypes among healthy and HIV-1 seropositive individuals. Panel (b) shows higher CD4T counts among individuals 
carrying D3A haplotypes among patients. Panel (c) shows two possible outcomes of lower levels of TIM1 expression among individuals 
carrying D3A, one favouring HIV-1 replication and the other favouring slower progression. 
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 APOBEC3 (Apolipoprotein B mRNA-editing 
enzyme, catalytic polypeptide-like3) is an endogenous 
restriction factor for HIV-1 and HBV and has seven 
family members. All APOBEC3 family members have 
one (3A, 3C, 3H) or two (3B, 3D, 3E, 3F, 3G) cytidine 
deaminase motifs that possess antiviral activity. 
The APOBEC3G deaminates dC to dU resulting in 
lethal G to A hypermutations in the virus; but can be 
counteracted by the viral vif dependent proteasomal 
degradation. Variations in APOBEC3 genes might 
enhance resistance to vif and influence antiviral activity. 
A recent study has shown that an African variant of 
APOBEC3G H186R is associated with high viral load 
and progression to AIDS56,57. Similarly, a deletion of 
29.5 kb from the 5th exon to 8th exon of APOBEC3B 
leads to complete loss of APOBEC3B and this has 
been reported to be associated with increased risk of 
HIV-1 infection and disease progression56. 

 Studies carried out by our group have revealed that 
this deletion is present in the north Indian population 
at a relatively higher frequency (~15%) as compared 
to those observed in European Americans (7.5%) or 
the African Americans (3.9%)57. However, both in our 
studies as well as those carried out by the Japanese, 
this deletion polymorphism is not associated with an 
increased risk to HIV-1 infection. 

 TIM (T cell transmembrane immunoglobulin 
and mucin) family of molecules regulate Th1/ Th2 

responses and are crucial in regulating both host 
immune responsiveness as well as viral replication. 
TIMs have been under strong selective pressure 
and their genes exhibit high non synonymous: 
synonymous substitution ratios. The TIM family has 
been one of the targets of selective sweep caused 
by SIV in chimpanzees as evident by the loss of 
polymorphism in this species. The TIM1 receptor 
is expressed preferentially on Th2 cells and is a co-
activator of Th2 immune responses. Its mucin domain 
has undergone extensive overdominant selection 
and a particular haplotype D3-A has been associated 
with relatively higher CD4 T cell counts among 
HIV-1 infected individuals in several populations 
including Indians (Fig. 5a and 5b), Japanese and 
the Thais58. As explained in Fig. 5c, this haplotype 
is associated with low level of expression of TIM1 
which indicates lower Th2 promotion; or enhanced 
Th1 responses in converse. The latter could 
favour CD4 T cell proliferation and thus support  
HIV -1 replication on one hand and augment CTL 
responses on the other albeit depends upon additional 
viral and host factors. 

 It has been reported that an upregulation of TIM3 
in HIV-1 progressive patients leads to apoptosis of CD8 
T cells59. However, individuals carrying HLA-B27 or 
B57 protective alleles show no such upregulation of 

Points to remember 
The observed differential responses in patients with HIV-1 infection strongly suggest a genetic basis of susceptibility to infection 1. 
and progression to AIDS.

Viraemia controllers are able to resist HIV-1 infection due to their specific genetic architecture and presence of unique 2. 
prototypes.

Non human primates have experienced HIV-1/SIV like viral endemic in the past and evolved as a virtue of specific non synonymous 3. 
substitutions in immune associated genes.

Resistance factors among viraemia controllers and primates like chimpanzees hold the key for identifying crucial genetic markers 4. 
that are protective in humans.

Some genetic factors may be protective against HIV, but may predispose to other pathological conditions. The best example is that 5. 
of HLA-B*57 which confers protection to HIV infection but is associated with drug induced hypersensitivity following abacavir 
therapy. 

The resistance empowered by protective factors, 6. e.g., HLA may eventually be evaded by the virus because keeps evolving into 
escape mutant forms. 

Multiline consortia studies are needed to delineate such protective markers among HLA and non HLA genes like 7. TIM1, TRIM5a, 
APOBEC3, chemokines, etc. Such studies would be helpful in improving our basic understanding about the mechanisms involved 
so that these biomarkers could eventually be translated into clinical practice. 

Stem cell therapy offers a bright possibility of curing HIV-1 infection. However, further studies with stringent follow ups are 8. 
necessary to reach a consensus.
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TIM3 and, therefore, these cells are able to evade Treg 
cell suppression59,60.

Genomic portrait of HIV-1 studies in the Indian 
population

 Numerous reports are now available on the 
Indian population regarding the influence of genetic 
factors with reference to HIV-1 infection and AIDS. 
A compendium of these studies is summarized in  
Table II.

Is a ‘cure’ from HIV-1 infection possible?

 The first documented case of a ‘cure’ from HIV 
infection came from the Charité Universitätsmedizin 
Berlin, Germany, in February 200776,77. The 40 year 
old Caucasian male had a 10 year history of HIV 
infection and a more recent diagnosis of acute myeloid 
leukaemia (AML). He had been taking HAART for 
the previous four years which included efavirenz 600 
mg, emtricitabine 200 mg and tenofavir 300mg. At the 
time of AML diagnosis, his CD4+ count was 415 cells/
µl and HIV-1 RNA was undetectable. He was offered 
allogeneic haematopoietic stem cell transplantation 
(HSCT), seven months after diagnosis. The HSCT 
donor was HLA compatible for A, B, C, DR and DQ 
alleles and also homozygous for CCR5Δ32 allele. The 
HAART was interrupted soon following the HSCT. 
On a follow up of five years, the patient showed no 
detectable plasma HIV levels. There was a progressive 
improvement in his circulating and gut mucosal CD4 T 
cell counts over the ensuing five years. Interestingly, the 
patient exhibited a high frequency of activated memory 
CD4+ cells. These were shown in ex vivo experiments 
to be the favoured targets for infection by any CXCR4-
tropic HIV-1 strains. This report demonstrates that 
although the recovered T cell population is resistant to 
CCR5-mediated HIV cell entry, these are not resistant 
to CXCR4-mediated cell entry by X4 tropic HIV. While 
this case study indicates the scope of gene therapy as a 
possible cure for HIV, it also raises issues of enhancing 
sensitivity of currently employed viral assays, risks 
from long lived non haematopoietic cell reservoirs, 
and restraints of X4 viruses. These are critical issues 
and hopefully answers to some of these would become 
available on long term follow ups.

 The second report was recently relayed from 
Harvard Medical School, Boston, USA, about two HIV 
patients who later developed Hodgkins lymphoma 
and underwent allogeneic HSCT from HLA matched 
donors78. The main difference in these patients from 
the Berlin patient was that the donors in Boston were 

not carrying CCR5 Δ 32 deletion. Although, it is too 
early to comment, the good news is that the patients 
appear to be free of the HIV disease so far and are not 
dependent on HAART therapy.

 The third recent report is from the University 
of Mississipi Medical Center, Jackson, USA, about 
an infant and a similar report of a group of 14 adult 
individuals, who were all given an early treatment and 
were able to resist infection79-81. These reports highlight 
the importance of identifying potential HIV patients at 
very early in their infection stage so that they could 
benefit from directed HAART interventions. 
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