
Developing the IVIG biomimetic,
Hexa-Fc, for drug and vaccine
applications
Daniel M. Czajkowsky1, Jan Terje Andersen2, Anja Fuchs3, Timothy J. Wilson3, David Mekhaiel4,
Marco Colonna3, Jianfeng He1, Zhifeng Shao1, Daniel A.Mitchell5, GangWu6, Anne Dell6, Stuart Haslam6,
Katy A. Lloyd4, Shona C. Moore4, Inger Sandlie2,7, Patricia A. Blundell4 & Richard J. Pleass4

1Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China, 2Centre for
Immune Regulation (CIR) and Department of Immunology, Oslo University Hospital Rikshospitalet, P.O. Box 4956, Oslo N-0424,
Norway, 3Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA,
4Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK, 5Clinical Sciences Research Laboratories,
Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK, 6Department of Life Sciences, Imperial College London,
South Kensington Campus, London SW7, 7CIR and Department of Biosciences, University of Oslo, N-0316 Oslo, Norway.

The remarkable clinical success of Fc-fusion proteins has driven intense investigation for even more potent
replacements. Using quality-by-design (QbD) approaches, we generated hexameric-Fc (hexa-Fc), a,20 nm
oligomeric Fc-based scaffold that we here show binds low-affinity inhibitory receptors (FcRL5, FccRIIb, and
DC-SIGN)with high avidity and specificity, whilst eliminating significant clinical limitations ofmonomeric
Fc-fusions for vaccine and/or cancer therapies, in particular their poor ability to activate complement. Mass
spectroscopy of hexa-Fc reveals high-mannose, low-sialic acid content, suggesting that interactions with
these receptors are influenced by the mannose-containing Fc. Molecular dynamics (MD) simulations
provides insight into the mechanisms of hexa-Fc interaction with these receptors and reveals an unexpected
orientation of high-mannose glycans on the human Fc that provides         greater accessibility to potential binding
partners. Finally, we show that this biosynthetic nanoparticle can be engineered to enhance interactionswith
the human neonatal Fc receptor (FcRn) without loss of the oligomeric structure, a crucial modification for
these molecules in therapy and/or vaccine strategies where a long plasma half-life is critical.

F c-fusion proteins are a well-established class of therapeutics1, in fact presently exhibiting the greatest growth
rate of all biologics in the United States2. Notwithstanding this success though, there is great interest in
identifying novel approaches to improve their efficacy and safety while expanding their range of potential

clinical applications to other areas such as vaccines3 and replacements for intravenous immunoglobulin (IVIG)
therapy1,4. However, onewell-recognized drawback of the present Fc-fusion design formany of its potentially new
applications is its monomeric structure: it is not able to cross-link multiple receptors with the high affinity
required for enhanced function.

In particular, several diseases are known to be regulated by the activity of low-affinity inhibitory Fc receptors,
including those on the surface of human B cells, such as FccRIIb5 and FcRL56 and those on macrophages and
dendritic cell (DC) surfaces, such as FccRIIb7 and dendritic cell-specific intercellular adhesion molecule-3-
grabbing non-integrin (DC-SIGN)8,9. Of note, DC-SIGN is a C-type lectin and indeed there is a strict requirement
of glycosylation for its association with IgG9,10. In particular, a number of studies have implicated a2,6-sialylation
of the Fc-glycans as critically important for this interaction with DC-SIGN, although there is recently a great deal
of debate on this issue10–13.

Intriguingly, each of these receptors is also targeted by pathogens in their attempt to inhibit immune responses
involved in their removal14–16. Taken together, FccRIIb, FcRL5, and DC-SIGN may thus limit immune cell
activation against chronic pathogens or self-reactive antigen, and approaches that have the potential to target
these receptors with high affinity/avidity may prove beneficial in therapies, including IVIG, aimed at controlling
pro-inflammatory disease1,4.

We also note that the monomeric structure of present Fc-fusions also prevents their interaction with
complement17,18, which significantly limits their application in cancer therapies where complement activation
may be desirable19. Multimerization would also be expected to significantly enhance their interaction with the
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salvage neonatal Fc-receptor (FcRn), a crucial association that sig-
nificantly prolongs the plasma half-life and likewise therapeutic and/
or vaccine activity of any Fc-containing protein1,20.
We have recently developed an effective strategy to oligomerize

monomeric Fc into well-defined hexameric oligomers (hexa-Fc) and
demonstrated their binding to high-affinity Fc receptors1,18. Here we
characterize the functional characteristics of this unique biosynthetic
nanoparticle with several important immune effector systems,
including low affinity B- and dendritic cell (DC) receptors,
complement, and FcRn. We show that the binding to these effectors
is strong, as expected from its oligomeric architecture, and thereby
firmly establish this novel Fc nano-scaffold as an extremely prom-
ising alternative for future therapeutic and vaccine approaches.

Results
Binding of hexameric IgG1-Fc to human leucocytes. As a first step
to evaluate the interaction of hexa-Fc (Figure S1) with human
immune cells, we determined whether hexa-Fc binds to human
circulating B cells and monocytes. In particular, CD191 B cells
from peripheral blood mononuclear cells of healthy human
volunteers were screened by flow cytometry analysis (FACS).
Despite high background binding of the anti-human IgG detecting
reagent, most likely due to direct interactions with the IgG B cell
receptor (BCR) and/or pre-bound IgG found on B cells, we could
detect binding of hexa-Fc (Figure S2A). We also observed a robust
association of hexa-Fc to CD141low and to a lesser extent to CD141high

monocytes from these same individuals (Figure S2B). The increased
binding of hexa-Fc to CD141 monocytes may arise as a consequence
of additional type 1 and type 2 FccRs expressed by monocytes,
including FccRI, FccRIIa, and FccRIIIa, when compared to
circulating CD191 B cells that only constitutively express FccRIIb
and FceRI21.

FcRL5 and FccRIIb are receptors for hexameric IgG1-Fc. Human
B cells are known to express two FccRs for IgG, FccRIIb and
FcRL55,6,22. To determine if these receptors could contribute to the
interaction of hexa-Fc with B cells, and to overcome issues of
background binding observed with isolated B cells, we evaluated
the extent of binding of hexa-Fc to 293 cells transiently expressing
these proteins or control CD200R and FcRL4 receptors by FACS6.
We also studied the ability of heat-aggregated IgG to bind to the cells
as a positive control and to provide some structural insight into the
nature of these interactions. We found that both hexa-Fc and heat-
aggregated IgG each bound significantly to the FcRL5- or FccRIIb-
expressing cells, whereas no binding was observed to cells expressing
either control receptor (Figure 1A).We note that amore pronounced
binding of hexa-Fc to FccRIIb- than FcRL5-expressing cells was
consistently observed, while the extent of expression of these
receptors was the same (Figure 1C and Figure S3).

Binding preferences of FcRL5 and FccRIIb for hexa-Fc and heat-
aggregated IgG. We hypothesized that simultaneous expression of
both FcRL5 and FccRIIb would lead to enhanced binding of heat-
aggregated IgG or hexa-Fc. Although a marked improvement in
binding of hexa-Fc was observed to the FcRL5/FccRIIb double
transfectants than to cells singly expressing FcRL5, the binding was
nomore than observed with FccRIIb single- or FcRL4/FccRIIb double-
transfectants (Figure 1B). Two binding peaks were commonly observed
for heat-aggregated IgG and/or hexa-Fc that most likely represent
differences in receptor expression and/or differences in avidity of
binding that arise from valence dependent interactions. The findings
suggest that the binding of hexa-Fc to FccRIIb was preferred over that
to FcRL5. In contrast, heat-aggregated IgG bound to the transfectants
in a predominantly FcRL5-dominated manner, as the binding to
FcRL5/FccRIIb double transfectants was comparable to that of cells
singly expressing FcRL5 and greater than to the FccRIIb single-

transfectants. Further support of these receptor preferences is
evidenced by the blocked binding of heat-aggregated IgG to cells first
incubated with the anti-FcRL5 blocking mAb 509F6, whereas binding
of hexa-Fc was less affected with this treatment (Figure S3).

Interactions with FcRn.Hexa-Fc was previously shown not to bind
human FcRn (and Figure 2A)18. The binding site for FcRn on IgG is
localized at the Cc2-Cc3 junction and involves Ile253, His310,
His433 and His43523,24. The pKa of histidine is 6.0–6.5 allowing
the histidine residues to become protonated below physiological
pH, enabling salt bridge formation with acidic residues on the
FcRn, and explaining the strict pH dependence of IgG-FcRn
interactions25. We reasoned that the lack of binding observed
previously with hexa-Fc was due to the presence of leucine at 310
rather than a histidine, as found in IgG1-Fc. At the time we
postulated that a histidine residue so close to the critical Cys309
might promote oxidation of the Cys309 and thereby jeopardize
oligomerization.
We therefore reinserted histidine at 310 to generate hIgG1-Fc-

CL309/310CH-TP and investigated the consequence of this muta-
tion on oligomerization and binding to human FcRn by ELISA
(Figure 2). In contrast to the parent molecule, hIgG1-Fc-CL309/
310CH-TP, bound human FcRn at pH 6.0 (Figure 2A), while having
no detrimental impact on the ability of these molecules to oligomer-
ize into hexamers (Figure 2B,C) or to interact with other effectors
(see below).

Hexa-Fc binds DC-SIGN in a valence dependentmanner.To test if
hexa-Fc could bind to other, non-classical Fc-receptors that are also
believed to be involved in controlling disease9, we investigated the
interaction of hexa-Fc with soluble recombinant human DC-SIGN
tetramers bymultichannel surface plasmon resonance analysis (MC-
SPR)26,27. Indeed, the sensorgrams show that hexa-Fc binds to DC-
SIGN with moderate affinity (KD of 1.26 mM) in a dose-dependent
fashion (Figure 3B). This interaction was stronger than that to
dimeric-Fc, likely owing to the greater valency of the hexa-Fc. We
also observed that the binding of hexa-Fc to DC-SIGN was stronger
than that of IVIGGammaGardH (Figure 3E). Finally, we note that we
did not detect any significant interactions between hexa-Fc and
SIGNR1 (Figure 3D), the mouse orthologue of the human DC-
SIGN, whereas the control HIV gp120, a well-studied DC-SIGN
ligand known to carry substantial amounts of N-linked high
mannose oligosaccharides, bound to both DC-SIGN and SIGNR1
(Figure 3AB), as previously reported8. The gp120 bound toDC-SIGN
and SIGNR1 with high affinity and slow off-rates were observed
consistent with the avidity associated with the clustering of
carbohydrate-recognition domains within oligomers26. For the DC-
SIGN-gp120 interaction, the KD was determined to be 4.39 nM
(kon 5 3.6 3 104 M21s21; koff 5 1.58 3 1024 s21). For SIGNR1-
gp120 interactions, the KD was 3.91 nM (kon 5 2.77 3 104 M21s21;
koff5 9.463 1025 s21). For hexa-Fc binding to humanDC-SIGN, the
overall affinity was lower when compared with gp120. This is to be
expected from the lower density of favoured high-mannose glycans
on the Fc polypeptide. However, the measured off-rate was still
relatively slow, indicating that once bound, the hexa-Fc-DC-SIGN
complex is stable. TheKDwasmeasured to be 1.26 mM(kon5 6.683
102 M21s21; koff 5 8.39 3 1024 s21). We note that the hIgG1-Fc-
CL309/310CH-TP mutant also bound DC-SIGN and that a
monomeric-Fc did not bind in these experiments (Fig. S4A).

IgM-Fc and IVIG enriched for oligomeric Igs also bindDC-SIGN.
As binding of hexa-Fc to DC-SIGN appeared to be partly owing to its
high valency, we hypothesised that DC-SIGN binding may be a
shared property of other oligomeric antibodies. To explore this
possibility, we investigated the binding of a CHO cell derived
recombinant (hexameric) IgM-Fc18 to DC-SIGN and SIGNR1
(Figure S5). The sensorgrams reveal that IgM-Fc binds to
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DC-SIGN with nanomolar affinity (KD of 0.26 mM). Further, in
contrast to hexa-Fc, the IgM-Fc also bound strongly to SIGNR1
(KD of 2.2 mM). To test if this binding could be recapitulated with
native antibodies, we investigated binding of PentaglobinH, a
clinically available IVIG preparation used in the treatment of
sepsis and enriched for oligomeric Igs (12% IgM, 12% IgA and
76% IgG by weight). In contrast to IgM-Fc, PentaglobinH bound
human DC-SIGN but not SIGNR1 (Figure S5), a finding that may
be attributed to differences in N-glycans or other undetermined
posttranslational modifications that arise when expressing proteins
in CHO cells.

Hexa-Fc and IVIG exhibit differential glycosylation patterns.
Since the interaction of IVIG with FcRL522, FccRIIb28 and DC-
SIGN9,11,29 has been attributed to direct and/or indirect effects of
sialic acid on the Fc, we next investigated the nature of the N-
glycans on hexa-Fc and compared them with two different IVIG
preparations (GammaGardTM or Malawian IVIG) and the dimeric-
Fc (Figure 4). MS analysis of hexa-Fc revealed a paucity of sialylated
structures but enrichment for highmannose glycans (Man5GlcNAc2,

Man6GlcNAc2) (Figure 4D). This glycan profile is also consistent
with observations that DC-SIGN binds high mannose structures.
MS/MS fragmentation was performed on ions whose masses were
consistent with the presence of fucose in order to determine whether
hexa-Fc contains terminal antennal fucose residues such as in the
Lewis X antigen which can also bind DC-SIGN. These experiments
ruled out antennal-linked fucose. For example, MS/MS of m/z 2244
shows a core rather than terminal location for the fucose (Figure S6),
indicating that the DC-SIGN binding affinity for hexa-Fc is likely the
result of increased avidity binding mediated by mannose. The MS
analysis also revealed hexa-Fc to be richer in larger multi-antennary
and polylac containing N-glycans (for example m/z 2693, 3143 and
3504) which would present more terminal galactose when compared
to IVIG N-glycans (Figure 4D).

DC-SIGN binding of hexa-Fc is critically dependent on the
presence of N-linked glycans. To confirm that the interaction
between DC-SIGN with hexa-Fc and IgM is dependent on the
presence of N-glycans, these carbohydrates were removed from
hexa-Fc, IVIG, and human IgM with peptide N-glycosidase

Figure 1 | Hexa-Fc binds Fc-receptors with high avidity. (a) Hexa-Fc binds to FcRL5 and FccRIIb (CD32b). Binding of either heat-aggregated IgG1 (left

panel) or hexa-Fc (right panel) to cells expressing FcRL5 (orange trace), FccRIIb (blue trace), CD200R control (grey trace) or FcRL4 control (green trace).

Binding to CD200R and FcRL4 (human IgA receptor) are included as two negative controls. Data are representative of duplicate experiments. (b)

Improved binding of hexa-Fc when FccRIIb and FcRL5 are simultaneously expressed on the surface of 293 cells. Binding of heat-aggregated IgG1 (left

panel) or hexa-Fc (right panel) to FcRL5/FccRIIb double transfectants (orange trace), FcRL5 single transfectants (red trace), FcRL4/FccRIIb double

transfectants (green trace) and FccRIIb single transfectants (blue trace). CD200 transfected controls are omitted from the overlays for clarity. Cell surface

expression of receptors was confirmed using FITC-conjugated anti-FLAG M2 mAb or anti-FccRIIb antibodies (as shown in Figure S3). Data represent

duplicate experiments.
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(PNGase) F (Figure S7), and their resulting ability to bind human
DC-SIGN investigated by enzyme-linked immunosorbent assay
(ELISA) (Figure S8A). De-glycosylated hexa-Fc was indeed unable
to bind DC-SIGN, demonstrating that binding by hexa-Fc was fully
dependent on a PNGase F susceptible glycan(s). By contrast, there
was ,50% and ,30% residual binding seen with PNGase F treated
human IgM and IVIG, respectively (Figure S8A).
To provide further information about the identity of the glycans

on hexa-Fc mediating this interaction with DC-SIGN, we first exam-
ined the effects of treating hexa-Fc with the endoglycosidase, Endo S,
which earlier work showed removes complex-type N-linked glycans
(as expected for those containing sialic acid) but not oligomannose

glycans from native (not denatured) human IgG30. We found that
Endo S treatment did not affect binding of hexa-Fc to DC-SIGN
(Figure S8B), which suggests that the hexa-Fc/DC-SIGN interaction
is mediated by oligomannose glycans. We also performed experi-
ments using Endo H, which specifically cleaves oligomannose gly-
cans but not complex glycans30, although this activity often requires
denaturation of the glycoprotein to enable access of this enzyme to
the attached glycans. Indeed previous work has shown that Endo H
does not remove glycans from native human IgG, a finding that we
also confirm here for hexa-Fc (Fig. S7)30. We found that Endo H
treatment did not reduce binding of hexa-Fc to DC-SIGN (Figure
S8B), whichmay reflect a lack of enzyme accessibility for the attached

Figure 2 | Mutant CL309/310CH forms higher order oligomers, including hexamers, and binds human FcRn. (a) Titrated amounts of hexa-Fc or the

mutant CL309/310CH were coated onto wells of an ELISA plate. Binding of GST-fused human FcRn at pH6.0 as indicated was visualized using an

HRP-conjugated anti-GST Ab. The values represent the average of triplicate determinations (6SD) from two independent experiments. (b) 5 mg of

purified Fc and 5 ml SeeBlue2 pre-stained molecular weight markers were run under non-reducing or reducing conditions into 4–12% bis-Tris-

acrylamide gradient gels and transferred to nitrocellulose. The human Fc was detected using a goat anti-human IgG conjugated to alkaline phosphatase.

(c) 5 mg of the CL309/310CHmutant run under non-reducing conditions as in (b) and stained with Coomassie blue. (d) Size-exclusion chromatography

(SEC) analysis on Superdex-200 10/300GL column showing the CL309/310CH mutant runs with an approximate molecular weight of 324 kDa (green

trace). LH309/310CL control (red trace), irrelevant protein G fraction for LH309/310CL control (blue trace). Elution profiles of molecular weight

standards are indicated by the black trace.
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glycans, as observed here for hexa-Fc (Fig. S7) and previously for
IgG30–32. Indeed, binding of hexa-Fc, and to a lesser extent IVIG to
DC-SIGN increased in the presence of Endo H, a finding that may
reflect non-enzymatic aggregation of IgG caused by Endo H in the
current ELISA-based assay.
We also examined the effects of deleting the N297 glycosylation

site by mutagenesis to alanine (N297A mutant, Figure S4D). This
modification led to proteins unable to bind DC-SIGN (Figure S4A)
or activate complement (Figure S4C). The N297A mutant is still
capable of forming higher order oligomers (Figure S4E), as is known
for aglycosylated polymeric IgG33, confirming that binding to DC-
SIGN and C1q is critically dependent on the presence of the glycan
and not the increased valence of the Fc per se.

Hexa-Fc binds complement C1q and activates complement via the
classical pathway. A common mode of action of anti-tumour
monoclonal antibodies is complement-dependent cytotoxicity
(CDC), in which direct interaction of surface Ag-bound IgG with
complement C1q triggers cell death through CDC19. Noncovalent
interactions between Fc segments of IgG have recently been shown
to result in the formation of ordered IgG hexamers after antigen
binding on cells19,34. These IgG hexamers recruited and activated
the complement cascade and could be further engineered into
therapeutic IgGs for enhancement of complement activation and
killing of target cells19. By nature of its oligomeric structure, we
wondered if hexa-Fc may also activate complement and thereby

open up the scaffold for oncology- or vaccine-directed approaches.
Binding of C1q and activation of the classical complement pathway
was assessed using ELISA. Hexa-Fc bound C1qmore efficiently than
either IVIG or IgM (Figure 5, upper panel), a finding that was also
reflected in their ability to activate complement to its terminal C5b-9
components (Figure 5, lower panel). The hIgG1-Fc-CL309/310CH-
TP mutant also bound C1q and enabled C5b-9 deposition as
efficiently as the wild-type hexa-Fc molecule (Figure S4B). A
monomeric-Fc control or an oligomeric control lacking N297
glycans did not bind C1q or permit C5b-9 deposition in these
same experiments (Figure S4B,C).

Modelling of hexa-Fc binding to inhibitory receptors, FcRL5 and
DC-SIGN. The results described above indicated two observations
that, based on previous work, were somewhat unexpected: namely,
the binding of FcRL5 to hexa-Fc demonstrated that this interaction
did not require the presence of Fab or F(ab9)2 domains22 and the
binding of hexa-Fc to DC-SIGN appeared to be mediated by
mannose-containing glycans9. We sought structural insight into
these observations by extensive all-atom molecular dynamics
(MD) simulations.
For the former, we first generated a model of human FcRL5 based

on its high homology to FccRI35, whose structure is known36.
Following extended equilibration simulations (.40 ns), the model
was found to adopt an architecture of stable secondary and tertiary
structure consistent with expectations based on the FccRI model

Figure 3 | Binding of hexa-Fc to human DC-SIGN by multi-channel surface plasmon resonance analysis (MC-SPR). Association and dissociation

curves of Igs binding to recombinant human DC-SIGN immobilized on a sensor chip. Hexa-Fc (panels b,d), IVIg GammaGard (panel e), dimeric-Fc

(panel f) or gp120 control (panels a,c) were injected at doubling dilutions as indicated into flow at time 0, and replaced with buffer at 300 sec. Data are

representative of duplicate experiments.
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Figure 4 | N-glycan profile of hexa-Fc and two different IVIg preparations. MALDI-TOF mass spectra of permethylated N-glycans of (a) IVIg from

Malawians, (b) IVIg GammaGard, (c) dimeric Fc, and (d) hexa-Fc were obtained from the 50%MeCN fraction from a C18 Sep-Pak column (methods).

Annotated structures are according to the Consortium for Functional Glycomics guidelines. All molecular ions are [M1 Na]1. Putative structures are

based on composition, tandem MS/MS, and biosynthetic knowledge. Due to the presence of heterogeneous multiantennary structures with extended

LacNAc repeats, the annotations are simplified throughout by using biantennary structures with the extensions listed in parentheses. Structures that show

sugars outside a bracket have not been unequivocally defined. Circled in red is the sugar modeled in the MD simulations.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 9526 | DOI: 10.1038/srep09526 6



(Figure 6A). One notable difference though is the relative disposition
of the D1 and D2 domains, which exhibits a hinge angle of,35u in
the FccRI crystal structure yet is,50u in this FcRL5 structure (Figure
S9). We verified with simulations of a similar duration that the D1–
D2 hinge angle in FccRI maintains a lower value (,30u) for the
duration of the simulations (Figure S9). However as discussed prev-
iously36, the D1-D2 hinge angles of low affinity FccRs, FccRII and
FccRIII, are also much larger than FccRI (52u–55u), and such a
sharply bent D1/D2 structure might only be a feature of high affinity
FccRs. Hence, a larger D1/D2 hinge angle in the low affinity FcRL5 is
consistent with other low affinity FccRs, and its observation in the
equilibrated FcRL5 model here thus provides further support for its
accuracy.
We then placed this equilibrated FcRL5 structure in the analogous

position of FccRIII in the known structure of FccRIII37 and per-
formed extensive equilibration simulations (.120 ns). For compar-
ison, we also performed similarly long simulations on the Fc/FccRIII
complex. Despite the lack of Fab domains, FcRL5 remained in con-
tact with the Fc domain for the duration of the simulations
(Figure 6B,C, see supplementary movie 1). As with FccRIII37,
FcRL5 interacted with both Fc heavy chains, one predominantly in
the D1/D2 junction and the other within the D2 domain, although
the number of these associations were significantly lower than in the
FccRIII/Fc complex (Figure S10). In particular, the heavy chain
interaction with the D1/D2 junction in FcRL5 was markedly weaker
than in FccRIII complex (see supplementary movie 2). Hence, these
findings suggest that indeed FcRL5 can interact with just the Fc
domain but this interaction is weaker than that of FccRIII/Fc.
As for the putative interactions between mannose-glycans and

DC-SIGN, as a first step towards a structural understanding of this
association, we noted that there were crystallographic data of a
human Fc domain with highmannose glycans38. Using this structure
as a template, we constructed a model of the human Fc domain
(mutated in two residues to enable oligomerization into the hexa-
Fc) containing the Man5GlcNAc2 glycan that MS identified here

(Figure 4) as attached to hexa-Fc18, and evaluated the structure with
equilibration MD simulations.
Immediately apparent with this initial structure however was the

limited accessibility of the mannose residues for any putative lectin:
the entrance to the internal cavity of the Fc domain (where the
glycans are located) is roughly elliptical, with dimensions of 2 nm
3 3.5 nm and the mannose residues are deeply buried within this
cavity (Figure 6D, upper panel). With each carbohydrate recognition
domain (CRD) of the tetrameric DC-SIGN shaped as a sphere of
3 nm diameter39, this Fc-glycan structure poses significant limita-
tions for potential interactions with DC-SIGN.
However, once equilibrated, the complex frequently adopted a

configuration in which the a1–6 branch mannose residues that are
expected to interact with DC-SIGN39 are located near the entrance to
the Fc cavity (Figure 6D, lower panel, see supplementary movies 3
and 4). During the simulation, both N-glycan chains essentially
adopt one of two configurations: one in which the di-N-acetylchito-
biose core, the central bmannose, and a1–6 branch residues are all in
close proximity to the Cc2 domain (similar to the glycan structures
observed in earlier crystallographic studies38,40,41) and a previously
uncharacterized configuration in which only the di-N-acetylchito-
biose core is close to the Cc2 domain. The a1–3 branch mannose
residue in both configurations is essentially always oriented towards
and frequently interacting with the other glycan chain. While one
glycan chain predominantly adopted only the former structure
(96.7% of the trajectory, see Methods), the other chain frequently
adopted the latter configuration (34.5% of the trajectory), and it is in
this latter configuration that the a1–6 branchmannose residues were
localized near to the entrance of the cavity (Figure S11). We verified
that at this location these mannose residues are indeed accessible to
potential interactions with DC-SIGN (Figure S12). We note that this
Fc structure can also be assembled into a barrel-shaped hexameric
architecture of the hexa-Fc following the structural principles prev-
iously described18 (Figure S1).

Discussion
Previous studies suggested that FcRL5 might be a receptor for
IgG42,43. However, binding of soluble monomeric IgG to FcRL5-
transfected 293 cells was not observed in FACS-based assays, indi-
cating that FcRL5 was likely to be a low- tomedium-affinity FcR, if at
all6. Our data clearly show that FcRL5 can bind complexed IgG1 and
that this interaction can occur in the absence of the Fab or F(ab9)2
regions, as hexa-Fc does not contain these domains. MD simulations
further show that this interaction can involve similar Fc regions as
implicated in the interaction with classical FccRs22,37,44, although the
number and strength of these associations is noticeably lower than at
least the FccRIII/Fc complex. This suggests that the observed signifi-
cant binding of FcRL5 to hexa-Fc is likely owing to the oligomeric
nature of the complex, which would explain the failure to observe the
aforementioned FACS-based assays with monomeric IgG6.
These findings are in agreement with two recent publications that

have studied the interaction of IgG with FcRL56,22. One of these
studies22 showed that a stronger interaction with monomeric IgG
may involve contributions from both the IgG Fc and IgG F(ab9)2,
unlike classical FccRs such as FccRIIb that only bind via the Fc44. Our
observation of a stronger interaction of hexa-Fc to FccRIIb than
FcRL5 may thus be owing to an inherently stronger interaction with
the Fc domain in FccRIIb compared to FcRL5. The finding that heat-
aggregated IgG binds more strongly to FcRL5 than to FccRIIb, also
consistent with previous work6,22, may thus be owing to the addi-
tional contact with F(ab9)2 that do not occur in the FccRIIb
interaction.
DC-SIGN signalling invokes IL-10 production which is of signifi-

cance in anti-inflammatory pathways45,46. Recent work showing
that DC-SIGN and SIGNR1 are important receptors in the efficacy
of IVIG in controlling autoimmune disease9,11 prompted us to

Figure 5 | Hexa-Fc binds C1q and activates the classical pathway. (a) C1q
and (b) C5b-9 deposition to antibodies as detected by ELISA.

The figure shows the mean of three independent experiments (6SD).
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investigate the interaction of these additional receptors with hexa-Fc
(Figure 3). Indeed, we found that hexa-Fc bound more strongly to
DC-SIGN thanmonomeric IgG, and that this interaction was wholly
dependent on N-glycans as their removal with PNGase F, or via
mutagenesis of N297 to alanine, resulted in molecules unable to bind
the receptor (Figures S4, S7 and S8). The interaction of IgG with DC-
SIGN has recently been ascribed to terminal sialylation of the N-
linked glycan at position 297 in the Fc9. Contrary to expectations
though, we found that the glycans attached to hexa-Fc were generally
more diverse, being rich in both terminal mannose and galactose,
and that terminal sialylation was rarely observed (Figure 4). Further,
the results with Endo S and H, although not completely definitive
(owing to the common requirement for glycoprotein denaturation of
Endo H), are consistent with the involvement of high mannose gly-
cans in this interaction.
Our tentative conclusion thatmannose but not sialic acid is critical

to binding of DC-SIGN by hexa-Fc is supported by the fact that a2,3
disialyl linkages applied by CHO (as with hexa-Fc) are apparently
not involved in amelioration of autoimmune disease by recombinant
Fc11,13,29. We also note that the role of sialic acid (but notmannose) in
ITP47 and binding by DC-SIGN or SIGNR1 has been questioned by
numerous recent studies10,12,47,48. Finally, our MD results provide a
structural means by which an interaction mediated via mannose
residues could occur, which appeared challenging based on available
crystallographic data of glycosylated-Fc40.
Hexa-Fc also binds C1q and leads to C5b-9 deposition when

coated down onto ELISA plates (Figure 5). This property may be
useful for vaccines as complement activation is crucial for antigen
retention on DCs and for the generation of long-lived memory B and
T cell responses49,50. Complement activation may also be very useful

in oncology settings if hexa-Fc can be specifically targeted to tumour
cells, as recently demonstrated with conventional mAbs19. Currently,
the presence of a fusion protein greatly interferes with the ability of
hexa-Fc to engage complement and FccRs18. The lack of binding to
FccRs and C1q is due to the fusion protein blocking access to the
FccR and C1q binding sites (the lower hinge region and the amino-
terminal region of Cc2 domains) or to a lack of receptor flexibility
when fused in the existing hinge architecture37,51,52. It has long been
considered that the hinge region serves as a spacer and mediates
segmental flexibility allowing the fusion protein to assume a variety
of orientations in space relative to the Fc52. Modifications to the
existing hinge e.g. use of the extended hinge from human IgG3,
may therefore move the fusion protein away from the critical
FccRs and C1q binding sites and thereby reinstate effector functions
to hexameric Fc-fusions that are critical for tumour cell killing and
clearance. However, where complement activation is neither desir-
able nor safe, e.g. when hexa-Fc is used as a biomimetic replacement
for IVIG therapy in autoimmune disease, mutations that disrupt C1q
binding e.g. K322A, P329A, P331Amay be introduced into the wild-
type molecule53.
A critical feature to the utility of oligomeric Fc-fusion proteins in

future drugs or vaccines will be their ability to interact or not with
FcRn. Here we have shown that His310 within the Cc2 domains is
critical to binding of hexa-Fc to human FcRn (Figure 2), although
whether this reinstates binding in the context of N-terminal fusions
remains to be tested. Additional work now needs to be undertaken to
determine if oligomeric Fcs and/or oligomeric-Fc-fusions will be
internalized, recycled, transcytosed or degraded. Previous work has
shown that FcRn is capable of transcytosing IgG immune-complexes
efficiently across epithelial cells for enhanced degradation and

Figure 6 | Structure of FcRL5, Fc/FcRL5, and glycosylated Fc domain determined from homology modeling and MD simulations. (a) Shown is the

structure of the FcRL5 model near the end of equilibration simulations, showing well formed secondary and tertiary structures that are expected

from the crystal structure of FccRI, which was used as the initial template. (b) Overview of the structure of the Fc/FcRL5 complex, with the Fc colored red

and cyan and the FcRL5 colored as in (a). The known structure of Fc/FccRIII was used to initially position FcRL5 in contact with the Fc domain. (c)

Detailed view of the contact region of the Fc/FcRL5 complex. The Fc residues that are frequently within 3Å of FcRL5 near the end of the equilibration

simulation are shown to give a sense of the number and scope of contact region. Although these proteins remained in contact for the duration of the

simulations, the contact was weaker than that in the Fc/Fc c RIII complex (Figure S10). (d) The upper panel is the initial structure of the glycosylated Fc domain,

the atoms of the complex are depicted as van derWaals spheres. Shown in blue is the hFc, while the colors for the sugars are as depicted in the schematic of

the Man5GlcNAc2 glycan shown on the left, where mannose residues are circles, the N-acetylglucosamines are squares, and the asparagine residue is an

oval. Two views of the complex, differing by 90u rotation about the long axis, are shown. The lower panel shows the monomer after,125 ns. In this, one

glycan chain remains closely associated with the Cc2 domain and remains buried within the cavity. However, the other chain has adopted a structure that

interacts with the Cc2 domain only via the di-N-acetylchitobiose core. In thismore loosely bound configuration, the a1–6mannose branch residues of the

glycan (circled in the schematic) are near to the cavity entrance, and therefore more accessible to potential interactions with lectins such as DC-SIGN.
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presentation23,54,55. Previous work using oligomeric IgG1mtp or
IgG4mtp with molecular weights .750 kDa has shown b-phase in
vivo half-lives comparable tomonomeric IgG356. Indeed, clearance of
these oligomeric IgGs resembles the clearance of IgM, with a-phase
half-lives two to four times longer than that of IgM.Given the smaller
size of hexa-Fc (,324 kDa), and with physical dimensions approx-
imating monomeric IgG (Figure S1C) it may reasonably be antici-
pated that the in-vivo half-life of hexa-Fc may be greater than that of
IgM. Where hexa-Fc is routed after FcRn binding remains to be
determined and is currently under investigation.
The nature of the fused protein may also potentially affect FcRn

binding and interactions with FcRn will therefore most likely need to
be determined for each unique fusion. The introduction into hexa-Fc
of additional mutations known to enhance or reduce interactions of
the Fc with FcRn may further enhance its translational potential57,58.
Hexa-Fc now provides a template molecule to further engineer
selective gain-of and/or loss-of function mutations, as demonstrated
here for FcRn, that allow the exisiting multimeric nanoscopic scaf-
fold to be tailored for optimal use in novel drugs and vaccines.

Methods
Production of the CL309/310CH mutant. The generation of hexa-Fc has been
previously described18. The CL309/310CH mutant was constructed by PCR overlap
extension mutagenesis from the wild-type vector (pFUSE-hIgG1-Fc-TP-LH309/
310CL) as the template using the internal mismatched primer mut-3:59-
ACCGTCTGCCACCAGGACTGG-39 and its complement to incorporate a CTC to
CAC substitution and Fcmut-1:59-ACCCTGCTTGCTCAACTCT-39 and Fcmut-
1:39-TTGATGAGTTTGGACAAACCA-59 as flanking primers. The N297A mutant
was similarly constructed from the same vector using the internalmismatched primer
mut-3:59-CTCGTCATGCGGTCGTGCATG -39 and its complement to incorporate
an AAC to GCC substitution and Fcmut-1:59-ACCCTGCTTGCTCAACTCT-39 and
Fcmut-1:39-TTGATGAGTTTGGACAAACCA-59 as flanking primers. PCR
products were then digested using BglII and NheI (New England Biolabs) and cloned
back into the wild-type vector to generate pFUSE-hIgG1-Fc-TP-CL309/310CH or
N297A. To verify incorporation of the desired mutation and to check for PCR-
induced errors, the entire coding sequence of the new expression plasmid was
sequenced on both strands. CHO-K1 cells (European Collection of Cell Cultures)
were transfected with plasmid using FuGene (Promega) and positive clones selected,
expanded and purified as previously described for hexa-Fc18. Monomeric-Fc,
dimeric-Fc, and IgM-Fc were generated as described previously and IgG1 Eu
numbering is used throughout18.

Complement binding assays. Antibodies were coated down to ELISA plates (Nunc)
in carbonate buffer pH9 (Sigma-Aldrich) at the indicated concentrations overnight at
4uC. Plates were then washed five times in PBS/0.1% Tween-20 (PBST) before adding
normal human serum (NHS) at 15100 in Veronal buffered saline containing 0.5 mM
MgCl2, 2 mMCaCl2, 0.05% Tween-20, 0.1% gelatin and 0.5% BSA and incubated for
2 h at room temperature as described previously18. After washing as above, plates
were incubated with a 15500 dilution of mouse anti-human C5b-9 (Serotec) or
peroxidase labeled sheep anti-human C1q (Serotec) in PBST/0.1% BSA for 1 h at
room temperature. For C5b-9 plates were additionally incubated in anti-mouse IgG
(Pierce) diluted 15500 in PBST/0.1% BSA for 1 h prior to washing and developing
with p-nitrophenyl phosphate substrate (Sigma). C1q ELISAs were developed with
3,39,5,59-tetramethylbenzidine dihydrochloride (Sigma) in phosphate citrate buffer
containing sodium perborate (Sigma). After 10 min, colour development was
stopped with 50 ml of 2 MH2SO4 and the absorbance at 450 nm read using an ELISA
plate reader.

Human FcRn binding assays. Microtiter wells (Nunc) were coated with titrated
amounts of the Fc (20.0- 0.1 mg/ml) in PBS and incubated over night at 4uC prior to
blocking with 4% skimmed milk (Acumedia) for 1 h at room temperature. The wells
were washed four times with PBS/0.005%Tween 20 (PBS/T) pH6.0 before addition of
GST-tagged human FcRn in 4% skimmedmilk PBS/T pH6.0 and added to the wells18.
After incubation for 2 h follwed by a washing as above, an horseradich peroxidase
conjugated polyclonal anti-GST from goat (GEHealthcare) was added and incubated
for 1 h. Wells were washed as above before 100 ml of 3,39,5,59-tetramethylbenzidine
substrate (Calbiochem) was added to each well and incubated for 45 min before
100 ml of 0.25 M HCl was added. The absorbance was measured at 450 nm using a
Sunrise TECAN spectrophotometer (TECAN, Maennedorf, Switzerland).

N-glycomic analysis. N-glycomic analysis was performed according to a protocol
described previously59. Briefly, 50 mg of each sample was reduced by dithiothreitol
(Sigma, Aldrich) and then carboxymethylated by iodoacetic acid (Sigma Aldrich).
Samples were subsequently dialyzed, freeze-dried and digested by trypsin (Sigma
Aldrich). The peptides/glycopeptides were purified using Oasis HLB Plus Short
cartridges (Waters). N-glycans were released from glycopeptides by PNGase F (Roche
Applied Science) and isolated from peptides using Sep-Pak C18 catridges (Waters).

The released N-glycans were permethylated, purified by Sep-Pak C18 cartridges
again, freeze-dried and dissolved in 10 ml 1,5-dihydroxybenzoic acid in 70% (v/v)
aqueous methanol; for MS/MS, 20 mg/ml 3,4-diaminobenzophenone in 75% (v/v)
aqueous acetonitrile). MALDI-TOF MS analysis using a Voyager-DETM STR mass
spectrometer (Applied Biosystems). The data were analyzed using Data Explorer
(Applied Biosystems) and Glycoworkbench60.

Immune cell binding assays. Peripheral blood mononuclear cells (PBMC) were
purified from buffy coats kindly provided by human volunteers using LymphoprepTM

(Axis-Shield) according to manufacturers instructions. All work was conducted after
approval by the ethical review committee of the Liverpool School of Tropical
Medicine. One hundred thousand PBMCs were incubated with 200 ml FACs buffer
(phosphate-buffered saline, 0.2% bovine serum albumin, 5% goat serum) containing
50 mg of hexa-Fc or buffer only as indicated for 1 h at room temperature. Cells were
washed twice with FACs buffer and incubated for 1 h at 4uC with 1/500 dilution of F
(ab9)2 goat anti-hIgG-Fc-phycoerythrin (PE), goat anti-hCD19-fluorescein
isothiocyanate (FITC)-conjugated (BioLegend) and goat anti-hCD14-APC-Cy7
(BioLegend) in 200 ml FACs buffer. After washing with FACs buffer, cells were
analyzed on a FACScan (BD Biosciences). Data acquisition was conducted with
CELLQuest software (BD Biosciences) and the analysis performed with FlowJo
version 9.1.

FcRL5 and FccRIIb binding assays. To test for hexa-Fc binding by FcRL family
members, cDNA encoding human CD200R, FcRL4, or FcRL5 were ligated into
pFLAG-CMV-3 (Sigma-Aldrich). cDNA encoding human FccRIIb was ligated into
pEF6 (Invitrogen)6. Proteins were expressed in 293 cells by transient transfection
using Lipofectamine 20006. Transiently transfected 293 cells were used for Ig binding
assays 36–42 h after transfection. Purified human IgG1 was obtained from Sigma-
Aldrich and hexa-Fc was purified as previously described18. For the heat aggregation
assay Igs were aggregated by heating to 60uC for 30 min. Igs were then diluted to
100 mg/ml in PBS/1% BSA. The 293 cells were incubated for 30 min on ice with the
Igs and washed four times, followed by incubation with biotin-conjugated goat F
(ab9)2 anti-human IgG (Southern Biotechnology) for 20 min on ice. Cells were
washed three times and incubated with FITC-conjugated anti-Flag Ab (M2; Sigma-
Aldich) or isotype control as used previously for 20 min on ice6. To detect FccRIIb-
expressing cells, a PE-conjugated anti-human FccRIIb Ab (Beckman Coulter) was
added to FccRIIb-transfected samples. Cells were washed twice and analyzed by flow
cytometry on a FACSCalibur (BD Biosciences) for Ab binding. Dead cells were
excluded by propidium iodide staining6,61.

Multichannel surface plasmon resonance analysis. Recombinant human DC-SIGN
tetramers were generated as described previously26. Recombinant SIGNR1 was from
R&D systems. Purified recombinant HIV gp120 was a kind gift of Dr Max Crispin
(University of Oxford). Soluble recombinant DC-SIGN and SIGNR1 proteins were
captured on GLM sensor chips (Bio-Rad laboratories) via amine coupling with sulfo-
N-hydroxysuccinimide/1-Ethyl-3-[3 dimethylaminopropyl]carbodiimide and all
sensorgrams using soluble-phase analytes of Ig preparations were recorded at 25uC
with the ProteOn XPR36 surface plasmon resonance biosensor (Bio-Rad
laboratories) at a flow rate of 25 ml perminute. Kinetic parameters for protein-protein
interactions were determined using the 151 Langmuir modeling algorithms included
in the ProteOn Manager software suite (Bio-Rad Laboratories). GammaGardTM and
PentaglobinTM were kindly provided by Baxter Healthcare and Biotest UK
respectively. The generation of IgM-Fc has been described previously18. Human
serum IgM and IgG (Sigma Aldrich).

Modelling hexa-Fc interactions with FcRL5 and DC-SIGN. The homology model
of FcRL5 was constructed with the automated homology modeling tools in
DeepView62, using the human FcRL5 (PDB accession no. Q96RD9) and the crystal
structure of the FccRI (PDB accession codes: 3RJD). The structure (and all models
here) was then solvated in TIP3 water63 and then minimized and equilibrated using
VMD/NAMD64 and the CHARMM36 force field65, in the constant pressure and
constant temperature (NPT, 295K, 1atm) ensemble. The temperature and pressure
were controlled by the Berendsen thermostat and barostate with a coupling time of
0.1 ps and 1.0 ps, respectively. The particle mesh Ewald algorithm was employed to
treat electrostatic interactions. The van der Waals interactions were treated with a
cut-off of 12Å, and the integration step was set to 2 fs. After ,10 ns, the protein
attained an equilibrated conformation, as judged by the root-mean-square deviation
of the protein backbone. The protein secondary and tertiary structures were evaluated
with VMD. A similar procedure was followed for the simulations of FccRI. The D1–
D2 hinge angle was determined by measuring the angle subtended by residues Val81,
Ala88, and Ala94 in FcRL5 and Ile96, Gly103, and Ser110 in FccRI. For the model
with Fc, the crystal structure of the FccRIII/Fc (PDB accession codes: 1E4K) was used
as a template. The equilibrated structure of FcRL5 was superimposed on the FccRIII
structure, aligning the D1 andD2 domains of FcRL5 with the corresponding domains
in FccRIII, using the least-squares fitting procedure in DeepView. The Fc domain
used in these simulations was the human Fc structure of the FccRIII/Fc complex.

For the simulations of the mannosylated IgG, the crystal structure of the human
IgG1 (PDB accession codes: 2WAH) was used as the template and initial structure for
the model, as it contained high mannose glycans. However the glycans present in this
structure (namely, Man9GlcNAc2) are not attached to hexa-Fc (Figure 4). Instead, we
studied the Man5GlcNAc2 glycan that is attached to hexa-Fc (circled in Figure 4D).
To generate the initial structure of the Man5GlcNAc2 glycans for these simulations,
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we manually removed the appropriate mannose residues from the Man9GlcNAc2
structure. This new glycan structure was then attached to both heavy chains of the Fc
domain. Finally, the hinge and two residue mutations that enable oligomerization
into the hexa-Fc18 were generated. The initial files for the simulation were obtained
with Glycan Reader66. The simulations ran for,150 ns, and the trajectory analyzed
after the protein had equilibrated after the first 30 ns. To distinguish between the two
configurations described in the text, the number of Cc2 domain residues with 3Å
(roughly, hydrogen-bonding distance) of glycan residues 2 through 6 (see Figure 6D)
was calculated throughout the trajectory. Those structures with 2 or fewer residues
within this distance were considered as the configuration more loosely associated
with the Cc2 domain.
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