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Abstract: Prostate cancer (PCa) represents the most commonly non-cutaneous diagnosed cancer in
men worldwide and occupies a very wide area of preclinical and clinical research. Targeted therapy
for any cancer depends on the understanding of the molecular bases and natural behaviour of the
diseases. Despite the well-known effect of androgen deprivation on PCa, many patients develop
resistance either for antiandrogen therapy or other new treatment modalities such as checkpoint
inhibitors and chemotherapy. Comprehensive understanding of the development of PCa as well as
of the mechanisms underlying its progression is mandatory to maximise the benefit of the current
approved medications or to guide the future research for targeted therapy of PCa. The aim of this
review was to provide updates on the most recent mechanisms regarding the development and the
progression of PCa. According to the current understanding, future treatment strategies should
include more predictive genetic and biomarker analysis to assign different patients to the expected
most appropriate and effective treatment.

Keywords: prostate cancer progression and tumorigenesis; biomarkers; growth factors; inflammation;
oxidative stress; androgen deprivation therapy
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1. Introduction

Prostate cancer (PCa) represents the most common cancer among men after cutaneous
melanoma, occupying the second place with regard to male cancer mortality worldwide [1].
In United States, more than 170,000 new cases are diagnosed every year due to PCa, while
more than 31,000 people die because of this aggressive type of cancer [2]. In the near future,
the number of new cases is expected to rise, especially in accordance with the fact that life
expectancy is globally increasing [3]. One of the main challenges in the management of PCa
is the unexpected behaviour of the disease in some patients. Patients with low International
Society of Urological Pathology (ISUP) grade are usually responsive to treatment, while
others with high ISUP grade display progression and metastasis with poor prognosis [4].

In view of the well-known androgen sensitivity of PCa, patients with metastatic or
recurrent disease, despite the treatment, are usually subjected to androgen deprivation
therapy (ADT), consisting of luteinizing hormone releasing hormone (LHRH) agonists or
LHRH antagonists [5]. Despite the effective suppression of androgen signals, many PCa
patients will eventually transform into castration-resistant PCa (CRPC), which is charac-
terised by a high rate of metastatic disease (mCRPC) and a poor prognosis. Eventually, it
causes symptoms and, in the worst case scenario, death among PCa patients [6].

Recently, both chemotherapy and immunotherapy have been given an evolving role
in the management of PCa. Indeed, docetaxel chemotherapy administered to patients
with mCRPC has represented the standard therapy since 2004, with a minimal survival
benefit [7]. Yet, recent data from two landmark randomised studies (CHAARTED and
STAMPEDE) displayed that combination of docetaxel and ADT in patients without pre-
vious ADT resulted in more than one year overall survival benefit compared to ADT
alone [8,9]. Immunotherapy was introduced among several options for men with mCRPC
in earlier times; however, the clinical benefit of immunotherapy remains inconclusive in
unselected patients. In the new era of immune checkpoint inhibitors (ICIs), these new
medications such as programmed cell death protein 1 (PD-1)/programmed death-ligand 1
(PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors have been
showing promising results through the stimulation of anti-tumoral immunity. In fact, there
is a growing body of evidence that shows how the use of ICIs could be more beneficial
in PCa patients belonging to a specific sub-group characterised by high PD-L1 tumour
expression or high tumour mutational burden [10].

There is currently a dearth of clarity regarding the cellular pathways and molecular
underpinnings of PCa progression. Shedding more light on the molecular pathways
driving the genesis and progression of PCa is critical for the identification of potential
therapy targets as well as to decrease the mortality of this disease.

2. Histological Background of the Prostate Gland

The prostate gland has three primary glandular areas that are not identical in terms of
histological and molecular aspects: the peripheral zone, the core zone, and the transition
zone [11]. The transition zone is the primary location of formation of prostate hyperplasia,
while the core zone is relatively resistant to cancer and other disorders. Several significant
non-glandular regions are also localised in the anteromedial section of the gland [12].
Secretory epithelium lines both ducts and acini in all zones. There is a layer of basal cells
underlying the secretory lining in each zone. Their presence differentiates between benign
and malignant glands [13].

The gland has a stroma that is made up with connective tissue and smooth muscle
fibres. The prostatic stromal contains several components that are anatomically and physi-
ologically important for the gland’s proper function. Changes in several of these stromal
variables could contribute to the development and progression of PCa. Indeed, prostate
tumour development and metastasis are dependent on the interaction of neoplastic cells
with stromal components [14]. Fibroblasts play an important role in the prostatic stroma.
These cells maintain epithelial cells intact by continually modifying and interacting with
diverse components inside the organ [15]. Fibroblasts contribute to the production of
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extracellular matrix through the secretion of collagen types I and III, and are also important
for tissue healing by regulating the formation of granulation tissue and the transition into
myofibroblasts. In the case of prostatic neoplastic transformation, stromal smooth muscle
cells are replaced by cancer-associated fibroblasts (CAFs), which are specialised fibroblasts.
Cancer stroma is also responsible for the increase of the expression of fibroblast-specific
markers such as vimentine, fibroblast specific proteins (FSPs), and alpha-smooth muscle
actin (α-SMA), while the expression of demine is decreased [16]. CAFs represent the main
source of angiogenesis and alteration factors of extracellular matrix components, including
transforming growth factor beta (TGF-β), interleukin-6 (IL-6), growth differentiation factor
15 (GDF15), and fibroblast growth factor (FGF) [17]. The hypothesised activity of CAFs
due to its contact with tumour cells leads to the development of an unregulated “reactive
stroma,” which stimulates cancer cell proliferation and aggressiveness, also influencing
treatment response [18].

3. Growth Factors Involved in Prostate Cancer
3.1. Insulin-like Growth Factor (IGF)

Different in vitro and in vivo preclinical studies have highlighted the role played
by IGF system in the development of PCa, but despite the promising data, most of the
clinical studies failed to demonstrate a direct link between the activity of the members of
IGF family and the progression of PCa [19]. However, IGFs could play a role in certain
group of patients depending on several factors. For instance, a recent comprehensive
systematic review and meta-analysis suggested a link between milk ingestion and PCa
through the modulation of IGFs [20]. Another clinical study linked the prognosis of PCa to
the overexpression of IGFR-1 receptor in transmembrane serine protease 2-erythroblast
transformation-specific-related gene (TMPRSS2-ERG) (T2E) gene-negative subgroup of
patients [21].

3.2. Vascular Endothelial Growth Factor (VEGF)

This factor plays a key role in PCa growth by stimulating angiogenesis and forma-
tion of new vascularisation [22]. There are many receptors involved in the regulation of
VEGF pathway; however, VEGFR1 and VEGFR2 are the main receptors involved in PCa.
These two subtypes of receptors are more expressed in PCa compared to benign prostatic
hyperplasia (BPH) [23]. In malignant conditions, and due to the rapid growth, malignant
cells could be compressed by surrounding cells and this can induce hypoxia, that in turn
leads to VEGF upregulation through the release of hypoxia-inducible factor 1 (HIF-1) [24].
Despite the potential role for VEGF in PCa, clinical trials considering the use of VEGF
inhibitors did not show clinical benefit for PCa patients [22].

3.3. Platelet-Derived Growth Factor (PDGF)

PDGF represents a potent mitogen for the proliferation of fibroblasts and smooth
muscle cells, both types of cells part of the prostate stroma. It could also play a role
in the angiogenesis process [25]. Since PDGF receptor α (PDGFRα) has been detected
in a significant amount in bone metastasis due to PCa, a role for the expression of this
receptor in the progression of PCa as well as skeletal metastasis has been proposed [26].
Experimental preclinical studies reported the inhibition of PCa growth and progression in
mice following the administration of imatinib, a tyrosine kinase inhibitor, in combination
with paclitaxel [27]. In contrast, clinical studies revealed no clinical benefits, or even
acceleration of disease progression. These controversial results lead to the hypothesis that
PDGF can play the role of homeostatic factor in bone metastases and that the regulation of
pericytes’ activity by PDGFRα could represent a gatekeeper for metastases [28].

3.4. Fibroblast Growth Factor (FGF)

FGFs represent a group of cell proteins produced by macrophages involved in the
physiological development of cells. Any abnormality in their function can be the cause
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of aberrant growth or tumorigenesis [29]. There are two types of FGFs: paracrine and
endocrine. Paracrine FGFs act as growth factors by activating the tyrosine kinase pathway
through direct binding to the extracellular FGF receptors. Meanwhile, the endocrine
FGFs circulate in the serum forming complexes with co-receptors, finally binding to the
extracellular FGF receptors [30]. It has been shown by using PCa cell lines that FGF
receptors display a heterogeneous pattern of expression. For instance, fibroblast growth
factor receptor 2 IIIb (FGFR2IIIb) was detectable in LNCap cells that displayed androgen-
dependent growth paralleled by a relatively low potential of cell proliferation. In contrast,
this receptor was undetectable in PC3 cells that displayed androgen-independent growth
and high potential of cell proliferation [31]. Some clinical trials employing FGF inhibitors
have shown promising results, as it has been seen for the treatment of mCRPC with
dovitinib and nintedanib [32].

3.5. Transforming Growth Factor β (TGF-β)

TGF-β is a multifunctional factor with three different receptors (types I, II, and III)
directly involved in the modulation of its activity [33,34]. This grown factor plays a role
in the angiogenesis process through the stimulation of both VEGF and connective-tissue
growth factors (CTGF) in epithelial cells and fibroblasts [35]. Poor prognosis and higher
grade of PCa has been noticed in patients with decreased or missing expression of TGF-β
receptors types I and II; however, the value of this observation is limited by the low number
of patients involved in the study [36].

3.6. Epidermal Growth Factor (EGF)

The ability of EGF to enhance cellular growth is mediated by the interaction with its
receptor EGFR [37]. The activation of EGF signalling could be involved in PCa metastasis
and progression through the suppression of ETS variant transcription factor 6 (ETV6), a
tumour suppressor gene [38]. A recent study by employing a xenograft model showed
that the disruption of ETV6 leads to TWIST1-dependent progression and resistance to
EGFR tyrosine kinase inhibitors in PCa; on the basis of the results of this study, the authors
proposed that ETV6 might represent a possible marker for predicting the efficacy of an
EGFR-targeted therapy [39].

4. Effect of Inflammatory Modulators on PCa

Chronic inflammation is the physiological response of the tissue after the exposure
to various forms of tissue injury [40]. This inflammatory reaction results in a sequence of
chemical reactions and release of cytokines targeting the elimination of the causative factors
and the restoration of the normal tissue architecture [41]. However, when the noxious
element persists and/or the tissue is repeatedly exposed to it, the inflammatory reaction
persists, moving from an acute to a chronic response; by doing so, permanent damage and
alteration of the microenvironment occurs, leading to an uncontrolled proliferation of cells
and enhanced genomic instability [42]. Cytokines are able to stimulate the proliferation of
malignant cells as well as to affect the apoptotic process. Furthermore, they can enhance
cancer cell migration causing metastasis [43]. Chronic inflammation represents a well-
known risk factor for certain solid organ malignancies due to the related DNA damage. It
has been shown that men with chronic prostatitis could have a higher risk of developing
high grade PCa, even though it can be considered an association rather than a causative
relationship [44].

There are many factors, either internal or external, that can initiate the inflammatory
process in the prostate, as in the case of E. coli, which can reach the prostate through
intraprostatic reflux of urine, or bacteria responsible for sexually transmitted diseases such
as Neisseria gonorrhoeae. Dietary elements and lifestyle-risk factors are potential initiators
of prostatic inflammation [45].

In PCa, chronic inflammation directly correlates with higher detection of proliferative
inflammatory atrophy (PIA) lesions [46]. The PIA lesions observed at prostate level are
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often associated with increased acute or chronic inflammatory cell infiltration. Some of
these lesions are characterised by an increased number of epithelial cells, while inflam-
matory cells are missing. Different phenotyping studies revealed an association between
the existence of these lesions and prostatic intraepithelial neoplasia (PIN) and prostatic
adenocarcinoma [47,48]. Surprisingly, these lesions are usually present in the peripheral
zone of the prostate, which is the main site of PCa initiation [44].

Anti-inflammatory medications or ingestion of natural gradients with anti-inflammatory
properties have been associated with the reduction of PCa risk. In REDUCE trial, aspirin
and non-steroidal anti-inflammatory drugs (NSAIDs) were associated with lower risk
of PCa in men with negative prostate biopsy [49]. The use of statins, able to inhibit 3-
hydroxy-3-methyl-glutaryl-coenzyme A (HMGCoA), has been linked to a lower risk of
advanced and aggressive PCa [50]. Two additional natural molecules characterised by
anti-inflammatory activity, soy and green tea [51], have been associated with a reduced risk
of PCa, possible due to their content of anti-inflammatory compounds such as genistein
and daidzein [52].

5. Oxidative Stress in PCa

Oxidative stress has been defined as the imbalance occurring between the production
reactive oxygen species (ROS) and cell antioxidant defences [53]. A plethora of publications
has shown that the increased production of ROS and reactive nitrogen species (RNS) is
linked to aging processes and to the etiopathogenesis of aging-related diseases, such as
Alzheimer’s disease and cancer [53–55]. In particular, oxidative stress has been associated
with PCa development and progression as well as to the response to the therapy. Oxidative
stress has also been identified as one of the factors negatively modulating the develop-
ment of an aggressive phenotype. In PCa, the most abundantly reported reactive species
produced are represented by superoxide, hydroxyl radical, and nitric oxide (NO) [56,57].
It has also been observed an increased production of peroxynitrite, representing a very
reactive and toxic reaction product of superoxide and NO [58]. The reduced expression of
glutathione-S-transferase P1 (GSTP1) and nuclear factor-erythroid 2 p45-related factor 2
(Nrf2), two factors strictly related to the well-functioning of cellular antioxidant machin-
ery [59], has also been frequently observed in PCa [60]. In addition to the above, it has been
found that androgens are able to induce oxidative stress in both non-cancerous and PCa
cells through the interaction with androgen receptor [61,62].

6. Immunogenic Basis of PCa

The immunogenic landscape of the PCa microenvironment is still not completely
understood. The immune system can affect PCa through cellular infiltration or secretion
of immune modulatory substances. Interferon-1 (INF-1) is essential for establishing an
effective anti-tumour immune response, which can be obtained through a number of
mechanisms such as cytokines production (e.g., tumour necrosis factor) [63]. However, its
role in PCa is still not clear. INF-1 signalling is affected by the activity of the transcription
factors signal transducer and activator of transcription 1 (STAT-1) and STAT-3. Cancer
cells are made resistant to radiation and chemotherapy by a sub-population of globulins
activated by unphosphorylated STAT-1 following sustained IFN-1 exposure [64]. When
mice with only phosphatase and tensin homolog (PTEN) gene deficiency were compared
to prostate-specific STAT-3- and PTEN-deficient animals, the latter showed accelerated
cancer development and metastasis [65]. The conflicting results regarding the function of
IFN-1 could be due to the variations in signal length and STAT activation.

In addition to the role played by cytokines, immune cellular infiltration in PCa has
been investigated. The numerosity of tumour-infiltrating lymphocytes is functionally
important and correlates with the clinical outcome observed in several types of tumours.
CD3+ T cells have been associated with lower biochemical recurrence survival, while
inflammatory lesions displayed more CD4+ T cells compared to CD8+ T cells, which are
more prominent in normal prostatic tissue [66]. It has also been shown that intralesional
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infiltration with mast cells is associated with better prognosis and less aggressive behaviour
of PCa [67]. However, other studies have shown longer progression-free survival with
minimal infiltration with mast cells [68]. These controversial results could be related to
the variety of cytokines produced by mast cells which might have different impact on
PCa [69]. Compared to T cells and mast cells, limited data are available regarding the role
of B-lymphocytes in PCa. With this regard, a study reported that B-lymphocytes activate
STAT-3, which is an enhancement of the progression of CRPC [70].

In the current era of ICIs, PCa represents one of the cancer types that have been
investigated with these novel drugs targeting PD-1, PD-L1, and CTLA-4 receptors [71]. It
has been reported that mCRPC expresses a low level of PD-L1 receptors, which can be a
limiting factor for significant response to ICIs. PD-L1 expression level might predict the
response of mCRPC to enzalutamide, a second-generation anti-androgen medication [72].
Despite different studies on this topic, the predictive role of PD-L1 expression for response
to IC is still under debate, especially in view of the heterogeneity of the results obtained
considering different types of cancers [73]. Ipilimumab, an anti-CTLA-4, has been also
investigated in mCRPC, showing a reduction of prostate-specific antigen (PSA) levels by
more than 50% without significant side effects [74]. In addition, it displayed better clinical
response when combined to ADT or radiotherapy, compared to the monotherapy [75].

7. Main Genes Involved in PCa

Patients with a family history of PCa represent about 9% of all PCa patients. Some
families might have a higher risk of developing PCa due to genetic causes. The risk of
developing PCa can vary from 2 to 11 times higher than normal, depending on the number
of first-degree relatives diagnosed with PCa [76]. Understanding the genetic bases of
PCa is fundamental for both identifying people with a higher risk and for expecting the
behaviour of the disease in already diagnosed patients. A few dozen multiple genome-wide
association studies (GWAS) identified more than 170 genetic variants. In this review, we
highlighted the main genes involved in familial PCa [77] (Table 1).

Table 1. Summary of the main genes involved in prostate cancer.

Gene Location Percentage Normal Function Abnormality

BRCA2 13q12 13% Tumour suppressor Mutation

HOXB13 17q21-22 3% Tumour suppressor G84E mutation

NKX3.1 8p21 75% Negative regulator of epithelial cell growth in prostate Downregulation to
complete loss

MYC 2p24 50% Multiple functions including cell cycle, cell growth,
and apoptosis regulation Overexpression

PTEN 10q23 40% Tumour suppressor Loss

ERG 21q22 50% Transcriptional regulator Fusion with
TMPRSS2

FOXA1 14q21 41% Transcriptional regulator Mutation

7.1. BRCA1 and BRCA2

Both BRCA1 and BARCA2 are tumour suppressor genes located on chromosome
17q12–21 and 13q12–13, respectively. Around 3% and 10% of breast and ovarian cancer
patients, respectively, present heredity mutation of these genes [78]. For people presenting
a BRCA1 mutation, the Breast Cancer Linkage Consortium (BCLC) reported an increase
in PCa risk in men aged <65 years, whereas no risk increase was observed for men aged
≥65 years [79]. According to the InforMing the Pathway of Chronic Obstructive Pulmonary
Disease Treatment (IMPACT) trial, the BRCA2 gene mutation carries a higher risk of de-
veloping early onset PCa and more aggressive disease [80]. Furthermore, first-degree
male relatives of women having breast or ovarian cancer are at higher risk of develop-



J. Clin. Med. 2021, 10, 5127 7 of 13

ing PCa [81]. Patients with BRCA2 mutation might show less response to taxane-based
chemotherapy [82].

7.2. HOXB13

The gene HOXB13 encodes a transcription factor that belongs to the homeobox gene
family. It normally acts as a tumour suppressor gene to protect from cancer [83]. G84E
mutation of HOXB13 gene has been found in about 3% of familial and early onset PCa.
Patients who carry this HOXB13 mutation are at higher risk of disease recurrence after
definitive treatment [84]. Additionally, germline HOXB13 G84E mutation has been associ-
ated with other cancers such as rectosigmoid and non-melanoma skin cancers, as shown in
a recent study considering subjects from the U.K. Biobank [85].

7.3. NKX3.1

NKX3.1 is a transcription factor protein composed of 234 amino acids expressed in the
prostate. It is a PSA-regulated homeobox gene, located on chromosome 8p21. Numerous
primary prostatic adenocarcinomas show positive staining for NKX3.1 protein, while it
is completely lost in about 75% of metastatic disease [86]. This protein displayed almost
100% sensitivity and specificity as in vitro biomarker for metastatic prostatic carcinoma. It
has been utilised as a diagnostic marker for PCa and other metastatic diseases originating
in the prostate [87].

7.4. MYC

The MYC family represents a group of three different proto-oncogenes, namely, c-myc
(MYC), l-myc (MYCL), and n-myc (MYCN). Since c-myc was the first gene discovered, it is
usually identified as MYC [88]. Mutations of MYC were observed in very early stages of
PCa as well as in PIN. On the basis of animal studies, MYC mutation could be responsible
of initiation of PIN, followed by progression to adenocarcinoma [89]. Pre-clinical studies
suggested that MYC-targeted therapy might be a novel approach for the treatment of
CRPC [90,91].

7.5. PTEN

PTEN is a classical tumour suppressor gene located in the 10q23 region of chromosome
10. Deletion and/or mutation of PTEN was detected in about 40% of PCa, correlating
with more aggressive forms of the disease [92]. Its clinical applications are still under
investigation; however, it could be used as a prognostic marker to help in triaging patients
undergoing active surveillance or radical treatment. Furthermore, patients with PTEN loss
could be more responsive to ICIs [93].

7.6. TMPRSS2–ERG Fusion

TMPRSS2 is a cell surface protein encoded by a gene located on chromosome 21 and
mainly expressed by endothelial cells part of the respiratory and digestive tracts [94]. Until
now, the exact biological function of TMPRSS2 is unclear. ERG is an oncogene, located
on chromosome 21, that plays a key regulatory role of cell proliferation, differentiation,
angiogenesis, inflammation, and apoptosis [95]. TMPRSS2–ERG fusion was found in about
50% of PCa cases and associated with the upregulation of ERG gene, more aggressive
disease, and higher mortality [96]. Preclinical studies suggested that TMPRSS2–ERG
fusion could have a regulatory role on androgen receptors pathway, also reducing the
responsiveness of PCa to new antiandrogens such as enzalutamide [97].

7.7. Forkhead Box A1 (FOXA1)

FOXA1 gene encodes for forkhead box protein A1, also known as hepatocyte nuclear
factor 3-alpha (HNF-3A). Some studies have shown a particular role for FOXA1 in the
postnatal development of the prostate [98]. Furthermore, FOXA1 is able to influence
androgen receptor (AR) signalling through direct interaction, regulating the development
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and survival of normal prostate and PCa cells [99]. FOXA1 also regulates the epithelial-to-
mesenchymal transition (EMT) in an AR-independent manner [100]. It has been shown that
mutations in the coding sequence and cis-regulatory elements of FOXA1 cause functional
changes in PCa [101]. A recent study demonstrated that the inhibition of the associated
cofactor LSD1 changes the methylation status of FOXA1, resulting in chromatin dissociation
and tumour suppression, even in treatment-resistant PCa [102].

8. Mechanism of Resistance to ADT

ADT is a main treatment component for advanced and metastatic PCa and is intended
to either prevent testosterone production or to directly prevent it from acting on PCa
cells [103]. About 20% of patients might develop resistance to ADT within a few years
of starting the treatment [104]. Even with very low testosterone level and despite the
administration of the novel second-generation antiandrogens, some patients can still
encounter the progression of the disease. Therefore, complete understanding of ADT
resistance by PCa represents a very dynamic area for researchers [105]. PCa growth and
progression are driven mainly through stimulation of AR signalling; indeed recent studies
have suggested that, despite the significant reduction in testosterone level, AR signalling is
still involved in disease progression. Therefore, blocking of this pathway is the main aim
for most of the new therapeutic agents acting against advanced and metastatic PCa [106].

The resistance to the treatments showed by PCa could be due to an adaptive mecha-
nism of microenvironment. In addition, PCa cells might be able to produce androgens and
modify the AR, which allows the maintenance of the signalling even in the presence of low
serum testosterone [107] (Figure 1).
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Figure 1. Illustration of the theory of intracellular production of androgen and stimulation of
modified ARs occurring despite the low serum testosterone and the blockage of normal ARs.

In addition to the previous theories, other genetic abnormalities could explain the
progression of the tumour despite AR blockage; to name a few, the AR gene mutation
and/or overexpression, the expression of AR splicing variants, and the upregulation of
transcriptional co-activators [108]. In a study carried out by Korpal et al., it has been
demonstrated as the F876L mutation in AR confers genetic and phenotypic resistance to
MDV3100 (enzalutamide) in LNCaP androgen-sensitive human prostate adenocarcinoma
cells. In particular, F876L mutation in AR was associated with a reduced AR response to this
drug and sustained cell proliferation despite the therapy [109]. Studies employing CRPC
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xenografts have shown that several genes involved in the androgen synthesis pathway,
including CYP17A1, are over-expressed during hormonal therapy [110]. It has also been
demonstrated that AR mutations can be found in up to 30% of CRPC patients under
ADT; interestingly, the treatment with new antiandrogens could enhance their incidence
favouring the clonal selection of tumour cells through the suppression of AR signalling,
also increasing AR somatic mutations and the consequent abnormal transcription [111].

9. Conclusions

Development and progression of PCa have been deeply explored but not completely
understood. This tumour involves numerous inflammatory, immunological, and genetic
pathways that significantly affect the directions of targeted therapy. On the basis of the
current understanding of the natural behaviour of PCa, the use of patients’ genetic profiling
might help to optimise the administration of a personalised and effective therapy, also
predicting the patients’ response before starting the treatment.
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