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Clear cell renal cell carcinoma (ccRCC) was a common cancer type diagnosed with frequent metastases, harboring an unfavorable
therapeutic response, and results in a poor prognosis. More promising therapeutic targets are urgently required for treating
ccRCC. This study was conducted to explore the role of oxidative phosphorylation in ccRCC development and reveal its
clinical potential. We first identified oxidative phosphorylation-related clusters based on consensus clustering and validated
their diversity in the genome instability, environmental infiltration, and immunosuppression by Gistic, ESTIMATE, GSVA,
and TIDE web tools. We also compared their prognostic and clinical feature differences and predicted the IC50 level between
the clusters using pRRophetic. Subsequently, we performed weighted gene coexpression network analysis to select cluster-
related genes and performed functional analysis for them. The cluster-related genes were adopted to construct a risk score and
nomogram for predicting patient prognosis with predictive accuracy evaluated. Finally, we performed lentivirus to induce
ccRCC cell PTPRG overexpression and conducted western blot experiments to detect the critical protein expression of
oxidative phosphorylation, apoptosis, cell cycle, and epithelial-mesenchymal transition processes. Also, the cell cycle and
apoptosis level were evaluated by flow cytometry. As a result, we discovered that both the C1 cluster and high-risk group
predicted patient survival with high accuracy and characterized lower survival rates, lower oxidative phosphorylation levels,
higher immune infiltration, and malignant clinical features. Besides, we observed that overexpression of PTPRG activated
oxidative phosphorylation and inhibited apoptosis. Its overexpression also depressed the epithelial-mesenchymal transition and
promoted G1/S cell cycle arrest. Comprehensively, we confirmed the anticancer role of oxidative phosphorylation in ccRCC
cells and discovered its association with immune and immunosuppression. PTPRG was also identified as a potential
therapeutic target due to its multiple anticancer effects. We believe this study discovered a novel mechanism of ccRCC
pathological progression and will provide promising targets for therapeutic strategy development.

1. Introduction

Renal cell carcinoma (RCC) is derived from the renal epithe-
lium and is the most common cancer type in the kidney. The
RCC consists of three major subtypes including clear cell
RCC (ccRCC), papillary RC, chromophobe RC, and other
rare subtypes with lower morbidity [1]. The ccRCC is the
main subtype of renal cell carcinoma, taking over approxi-

mately 70 percent of all RCC subtypes. Though ccRCC can
be treated at an early stage by routine strategies like surgical
resection, the lethal metastases from the primary locus can
be observed in a third of patients diagnosed with ccRCC [2],
which usually causes an unfavorable prognosis without an
effective approach to reverse.

The molecular characteristics of ccRCC have been
widely investigated to affect the cancer process. For instance,
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Figure 1: Continued.
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the loss of chromosome 3p and VHL mutation has been
found to frequently occur in ccRCC. These events caused
the accumulation of HIF1/2α and trigged the hypoxia-
related pathways [3]. Apart from the 3p chromosome loss
and VHL mutation, the BAP1 mutation that occurred in
10% of the ccRCC has been proven a predictor of aggressive
cancer cell phenotype. Based on these, the hypoxia-related
pathway mutations have been discovered as a critical factor
that interplays with many cancer hallmark changes, such
as metabolic dysregulation and aberrated angiogenesis, to
assist cancer progression, and the approaches targeting these
mutations have achieved improved survival rates for the
patients with ccRCC [4]. However, not all patients with
ccRCC responded to the current therapeutic approaches.
More discoveries of the ccRCC pathological mechanisms
and promising strategies are still urgently required.

Oxidative phosphorylation is a common type of metabo-
lism and is the main approach adopted by cells to produce
sufficient ATP to support their growth. Compared with
cancer-associated glycolysis, a hypoxia-related aberrate
metabolism shifting cancer metabolism towards oxidative
phosphorylation [5] has shown the ability to reverse the
metastatic feature both in vivo and in vitro. However, many
studies also demonstrated that oxidative phosphorylation is
also an important risk feature with tumor-supportive roles
in various cancers [6]. Therefore, oxidative phosphorylation
seems to be a double-edged sword in cancers, and its extra
role in the cancer process is still confusing. Currently, no
clear evidence has presented the effects of oxidative phos-
phorylation on ccRCC cell progression, and an investigation
of it is urgently required. Since hypoxia has been confirmed
as a typical feature in ccRCC, the hypoxia-associated meta-
bolic style like glycolysis also contributed [7] to cancer devel-
opment. We preliminarily assumed a positive role of
oxidative phosphorylation in ccRCC.

In this study, we identified oxidative phosphorylation-
based subtypes and risk groups and investigated their prog-
nostic value for ccRCC patients. Their cancerous biological
diversity was explored via functional analyses, and the
immunological heterogeneity as well as their potential as
indicators of immunotherapeutic effects were evaluated.
Importantly, we experimentally validated the influence of
targeting the risk score key gene on ccRCC cell oxidative

phosphorylation and its roles in affecting their malignant
phenotypes. We believe this study promoted the under-
standing of oxidative phosphorylation in ccRCC and pro-
vided a novel target that will benefit the development of
promising therapeutic strategies.

2. Materials and Methods

2.1. Data Acquisition. We retrieved the clear cell renal cell
carcinoma (ccRCC) cohort from The Cancer Genome Atlas
(TCGA) with their RNA sequencing data and clinical infor-
mation. We also downloaded the oxidative phosphorylation,
Gene Ontology (GO), and Kyoto Encyclopedia of Genes and
Genomes (KEGG) data sets from Gene Set Enrichment
Analysis (GSEA). The oxidative phosphorylation-related sig-
nature (OPS, HALLMARK_OXIDATIVE_PHOSPHORY-
LATION_v7.5.1.gmt) was selected as the input signature of
our study analyses.

2.2. Division of Oxidative Phosphorylation-Related Clusters.
We utilized the OPS as the input signature to perform a con-
sensus clustering by the R package “ConsensusCluster” to
divide the cohort into different clusters and used the PCA plot
to test their data distance. We then plotted the Kaplan-Meier
curve to evaluate the prognostic diversity of the clusters. We
then used the “gistic2” R package [8] to estimate the copy
number variation (CNV) of the clusters, as well as their intra-
tumor heterogeneity, tumor mutation burden (TMB), cancer-
testis antigen (CTA) score, and homologous recombination
defect (HRD) differences [9]. Subsequently, the gene set varia-
tion analysis (GSVA) [10] was run to compare the hallmark
gene set variation between the clusters.

2.3. Immunological Environment and Immunosuppressive
Estimation. The “ESTIMATE” R package accessed the global
immunological environment to calculate the immune score,
stromal score, and tumor purity [11] differences of the clusters.
The variation of 28 types of immunocyte infiltration levels was
evaluated by the ssGSEAmethod. TIDE (Tumor Immune Dys-
function and Exclusion) [12] was used to determine levels of T
cell dysfunction and immunosuppression in tumors, consisting
of TID, IFNG, dysfunction, and exclusion score.
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Figure 1: Consensus clustering and genomic instability analyses. The consensus clustering heat map (a), consensus CDF, and the relative
change in area under the CDF curve (b) for the TCGA ccRCC cohort clustering. (c) The PCA plot depicts the sample distribution in the low
dimension space divided by the clusters. (d) The Kaplan-Meier curve exhibited the time sequencing survival rate differences between the
clusters. (e) The heat maps exhibiting the gene copy number amplification and deletion in each site of the chromosomes in each cluster.
(f) Comparison of the genomic instability-related indexes between the clusters.
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Figure 2: The immunological variation between subtypes. (a) Comparison of the immune score, stromal score, and tumor purity between
the clusters. (b) The GSVA results in the immune cell infiltration levels of the clusters. (c) Comparison of TIDE analysis results between
clusters including TIDE, IFNG, T cell dysfunction, and exclusion scores.
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Figure 3: Continued.
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2.4. Clinical Exploration of the OPS Clusters.We evaluate the
clinical value of the OPS clusters by comparing their differ-
ences in patient survival status, age, gender, tumor stage,
and grade. For treatment consideration, we analyzed the
IC50 of the drugs from the GDSC database using the R pack-
age “pRRophetic” [13] and selected several target drugs with
a lower IC50 value in the C1 cluster. Further, we performed
the weighted gene coexpression network analysis (WGCNA)
based on the 25% top DEGs to identify the genes with a close
correlation with the OPS clusters, and the inner gene corre-
lation significance with the module was presented.

2.5. Functional Enrichment of the Cluster-Related Gene Sets.
We applied the gene sets selected from the WGCNA module
with the highest correlation with the phenotype to the func-
tional analyses based on the GO (biological process, cellular
component, and molecular function) and KEGG databases.
These gene sets were obtained from the GSEA online database.

2.6. Construction of a LASSO-Based OPS Risk Score. We fur-
ther filter the genes using the least absolute shrinkage and
selection operator (LASSO) regression [14] to reduce the
model complexity. The genes with the lowest deviance were
selected to construct the risk score with their corresponding
coefficients. The risk survival table presented the gene expres-
sion trend and survival status for patients arranged by their
risk in both the training and validation cohort. The patients
were divided into the low-risk and high-risk groups cut by
the median risk score. We then plotted the Kaplan-Meier
curves to access the prognostic value of the risk score and used
ROC to evaluate the discrimination of the risk score for pre-
dicting patient survival. Also, we evaluate the risk score’s capa-
bility of separating patient survival under clinical groups,
including high/low age; female/male; G1, G2/G3, and G4
grades, and stage II/stage III and stage IV.

2.7. Clinical Significance of the Risk Score and the Nomogram
Establishment. We plotted a Sanky plot to visualize the corre-
lation among patient survival status, clusters, and risk groups.
The risk score and the clinical parameters were applied to the
univariate Cox analysis, and the parameters passing the uni-
variate test were further input to the multivariate Cox analysis.
We collected the two tests that were combined to establish a
clinical nomogram to predict the 1-, 3-, and 5-year overall sur-
vival of ccRCC patients. A calibration curve was used to eval-
uate the calibration of the nomogram in predicting survival
events. Besides, the clinical feature diversity between the risk
groups was presented in the pie charts.

2.8. Cancerous and Immunological Heterogeneity between
Risk Groups. The immunological heterogeneity was analyzed
using ESTIMATE to calculate the environmental component
inside the tumors to obtain the immune score, stromal score,
and tumor purity for the risk groups. The enrichment degree
of the cancer-related pathway and the 28 immunocyte infiltra-
tion was estimated using the ssGSEA calculation, and their
correlation with the risk was presented. Then, the differences
in the immune cell enrichment level differences were com-
pared in the boxplot. Also, we performed ssGSEA to compare
the glycolysis and the hypoxia to seek whether the hypoxia
level was changed and the glycolysis was affected.

2.9. Cell Culture and Lentiviral Infection. We cultivated the
786-0 ccRCC cells in the cell incubator maintained at 37°C,
5% CO2 concentration, and the cells were fed with DMEM
containing 10% FBS. We then collected the cells of the loga-
rithmic growth phase to perform the experiments. The pur-
chased PTPRG overexpression lentivirus was applied to
infect the cells. After being seeded in the 12-well plates with
medium, the cells were infected by the lentivirus and infec-
tion reagents for 16 hours, and the mixed medium was then
replaced with fresh DMEM. After 48 hours, puromycin was
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Figure 3: Clinical feature and WGCNA selection of the cluster-related genes. (a) The differences in clinical features between clusters C1 and
C2. (b) Comparison of the GDSC compound IC50 of three drugs between clusters. (c) Correlation heat map of the WGCNA module-
phenotype correlation (left) and the scatter plot showing the correlation between gene significance and module membership (right).
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Figure 4: Continued.
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added to screen the stable cells with fluorescent expression.
The cells were then defined as the PTPRG-overexpression
group (OE) and the control group (OE-NC).

2.10. Western Blot Analysis. We harvested the cell lyzed in
the RIPA lysis. The lysed cells were treated with ultrasound
sonication on ice and a metal bath, followed by a loading
buffer mixture to prepare for electrophoresis. After electro-
phoresis and membrane transfer, the proteins on the mem-
brane were blocked by skim milk for an hour. Then, we
incubated the membrane overnight with the corresponding
primary antibody (antibody brands listed in Supplementary
Material S1). The next day, the membrane was washed with
TBST three times and incubated by the secondary antibody
and finally applied for chemiluminescence after TBST wash-
ing three times again.

2.11. CCK8 Assay. The harvested cells were resuspended with
DMEM containing 10% FBS and seeded in the 96-well plates
under 37°C, 5% CO2. After the cell adhered to the plate bottom,
fluid was replaced with 100μl DMEM containing 10% CCK8
reagent inside each well, and all cells were cultivated in the incu-
bator under the same conditions. The microplate reader exam-
ined each well’s optical density at 0h, 24h, 48h, and 72h.

2.12. Flow Cytometry Detection of Cell Cycle and Apoptosis.
For cell cycle detection, we digested and washed the cells with
cold PBS and fixed them using 75% ethanol overnight. The

fixedcellswere centrifugedat1,000 × g for 5minat4°C, and the superna-
tant was removed. The cells were resuspended using PI/RNase diluted in
thestainingbufferaccordingtotheprotocolof thetestingkit (BeyotimeBio-
technology, Nantong, China). After incubation for 30min from light, the
cells were detected using the cytoFLEX Flow Cytometry System (Beck-
man-Coulter). As for apoptosis, the digested cells were washed with PBS
and resuspended using binding buffer according to the apoptosis detection
kit protocol (Beyotime Biotechnology, Nantong, China), after incubation
with annexin-V and PI for 10min from light, and the detection was per-
formed using the Flow Cytometry System.

2.13. Statistical Analyses. The bioinformatic analyses were
performed on the R platform. Consensus clustering divided
the samples into clusters. Kaplan-Meier curves were plotted
to evaluate the patient survival rate, and the results were tested
by log-rank test. ROCwas used to evaluate the survival predic-
tion discrimination. Student t-tests compared the normally-
distributed continuous parameters between two groups. Pear-
son’s correlation coefficient quantified the correlation between
genes and the WGCNA module. ANOVA compared the
grouped results of the normally distributed parameters. P <
0:05 was considered statistically significant.

3. Results

3.1. OPS-Related Clusters Presented Different Prognosis and
Genomic Status. We obtained the OPS gene sets from GSEA
and used them to conduct consensus clustering, which
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Figure 4: Construction of the risk score and its prognostic value. (a) The LASSO regression plot of the model partial likelihood deviance
change (upper) and the regression coefficients (lower). (b) The heat map of the patient status time and key gene expression ranked by
their risk score in the training (left) and the independent cohort (right). The Kaplan-Meier curves (c) and the ROC results (d) estimate
the prognostic value of the risk score. (e) The Kaplan-Meier curve showing the survival analysis results under different clinical feature
conditions presents the independent prognostic value of the risk score.
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identified two clusters by the best K value according to the
consensus CDF (Figures 1(a) and 1(b)). The PCA plot
showed that the two clusters were separated when trans-
formed into low dimensions (Figure 1(c)). We then evalu-
ated the prognostic value of the clusters; the patients with
the C1 cluster gained a lower survival rate (Figure 1(d)).

Subsequently, we explored the CNV differences between
patients with different clusters. Obviously, the C1 clusters
harbored higher gene amplifications than the C2 cluster
(Figure 1(e)). When applying multiple indexes to evaluate
their genome instability, the C1 cluster exhibited higher
intratumor heterogeneity, aneuploid, TMB, CTA score, and
HRD, demonstrating lower genomic instability in the C1
cluster. Moreover, we observed low levels of several path-
ways like oxidative phosphorylation and metabolism-
associated pathways and various highly enriched cancerous
or immunological pathways including IL6 JAK STAT3,
TNFA, hypoxia, and glycolysis signaling pathways by the
GSVA of cancer “hallmark” gene sets (Supplementary Mate-
rial S2A), suggesting the association between the clusters and
cancer immunology and glycolysis.

3.2. The Clusters Presented Higher Immunological Infiltration
and Immunosuppressive Feature. The ESTIMATE calculation
was conducted to explicit the differences in the environment
component between the clusters. We found that the C1 cluster

presented a higher immune score and stromal score and lower
tumor purity (Figure 2(a)). This was consistent with the GSVA
results of the immune cell infiltration that most of the immuno-
cytes were highly enriched in the C1 cluster (Figure 2(b)). Nota-
bly, MDSCs and regulatory T cells were also highly enriched in
the C1 cluster, suggesting its potential immunosuppressive sta-
tus. A further comparison of the TIDE-related indexes also
demonstrated that the C1 cluster exhibited higher TIDE, T cell
dysfunction, and immune exclusion levels (Figure 2(c)).

3.3. Patients with the C1 Cluster Presented a Higher Level of
Unfavorable Clinical Features. To validate whether the clusters
indicated clinical significance, we compared the clinical features
of patients between the clusters.We observed that the C1 cluster
was characterized by a significantly higher proportion of
patients with dead status, male gender, and advanced stage
and grade (Figure 3(a)). To develop potential drugs, we
searched the GDSC to locate the drugs with a lower IC50 in
the C1 cluster. As a result, three drugs, axitinib, sunitinib, and
sorafenib, presented a lower IC50 significantly (Figure 3(b)).

We then performed WGCNA to filter the 25% top-
variated genes firmly associated with the clusters. The genes
were grouped into eight modules, and four modules presented
a positive correlation with the cluster, and three modules
exhibited a negative association; we selected the brown mod-
ule with the highest correlation coefficients for downstream

KIRC Status Age Gender Stage Grade

High

Low

p = 2.2e−23 p = 0.24 p = 0.14 p = 3.3e−15 p = 1.3e−13

Male

Alive
Dead
<65
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Female

I

II
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G1
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(f)

Figure 5: Establishment of the clinical nomogram. (a) The “Sanky” plot of the association among patient survival status, clusters, and risk
groups. The forest plots of the clinical features were filtered by the univariate (b) and multivariate (c) Cox regression. (d) Constructed
clinical nomogram consists of age, stage, grade, and risk score for predicting patient overall survival. (e) Calibration curve for validating
the calibration of the nomogram’s predictive ability for patient survival. (f) The differences in the clinical features between the low-risk
and high-risk groups.
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analysis, and this module presented a good correlation between
the inner genes and the module phenotype (Figure 3(c)).

3.4. The Clusters-Related Genes Presented Different Biological
Involvement. We performed functional enrichment analyses
to investigate the biological activities that the genes with the
highest correlation with clusters engaged. The KEGG path-
way enrichment results exhibited the association between
the genes and the tight junction. The enrichment results of
the GO biological process, cellular component, and molecu-
lar function also presented the enrichment migration and
adhesion junction-related gene sets (Figures 3(d)–3(g)),
indicating that cluster-related genes were associated with cell
migration and intercellular interactions.

3.5. Identification of an OPS Risk Score with Prognostic Value.
The cluster-associated genes were input to the LASSO regres-
sion [14] to construct a risk score. The 23 genes showing the
lowest deviation were retained (Figure 4(a)). The 23 gene
expression decreased as the risk arose in the training cohort,
and most of them showed a similar trend in the independent
cohort (Figure 4(b)). The risk score’s capability to predict
patient survival was tested, and the high-risk group predicted
a lower survival rate in both the training and independent
cohort (Figure 4(c)), and their performance estimation results
confirmed its predictive accuracy (Figure 4(d)). Also, we
noticed that the risk score can predict patient survival indepen-

dent of age, gender, tumor grade, and stage (Figure 4(f)), indi-
cating the important prognostic value of the risk score.

3.6. Potential for Clinical Application of the Risk Score. The
“Sanky” plot showed the phenotype correlation among
patient status, cluster, and risk group; most of the high-risk
group patients harbored C1 cluster feature and dead status
(Figure 5(a)). The univariate and multivariate Cox analyses
screened out several independent predictors, including age,
stage, grade, and risk score (Figures 5(b) and 5(c)). They
were gathered to construct a clinical nomogram to predict
the overall survival of one year, three years, and five years
with a good calibration (Figures 5(d) and 5(e)). Also, the
high-risk group patients were characterized by more dead
cases, high stage, and grade (Figure 5(f)), indicating their
unfavorable events.

3.7. The High-Risk Group Showed Diverse Immune Cell
Infiltration and Cancer Hallmark-Related Pathway Enrichment.
ESTIMATE was used to evaluate the environmental component
differences between the risk groups. Similar to the C1 cluster, the
high-risk group also exhibited higher immune score, stromal
score, and lower tumor purity (Figure 6(a)). Also, we usedGSVA
to calculate the enrichment of cancer hallmarks and cancer anti-
tumor immunity cycle gene sets [15]. The risk score was posi-
tively associated with the cell cycle and a series of nuclei-
repair-related gene sets. For the antitumor immunity cycle, the
risk score was positively correlated with recruiting MDSC and
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Figure 6: Immune infiltration and cancer hallmark heterogeneity between risk scores. (a) Evaluation of the environmental component
differences between risk groups by immune score, stromal score, and tumor purity. (b) The correlation between patient risk, cancer
hallmark gene set expression (right), and anticancer immunity cycle gene sets (left). (c) The immune cell enriches differences between
risk groups presented in a box plot.
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macrophage while negatively associated with recruiting CD4 and
CD8 positive cells (Figure 6(b)). The box plot also exhibited the
highly enriched MDSC and macrophage in the high-risk group
(Figure 6(c)). These suggested the environmental complexity
and possible immunosuppressive status in the high-risk group.
Besides, we compared the level of glycolysis and hypoxia
between the clusters and risk groups by ssGSEA, while no differ-
ences were observed (Supplementary Materials S2B and S2C).

3.8. Overexpression of PTPRG Increased the Oxidative
Phosphorylation and Inhibited Cell Apoptosis.We used lenti-
virus transfection to investigate the role of PTPRG overex-
pression in ccRCC cells. The western blot result showed a
significantly increased PTPRG protein expression of the
OE group (Figure 7(a)). To explicit whether PTPRG overex-
pression activated the oxidative phosphorylation of ccRCC
cells, we detected the protein levels of ATP5A1, MTCOX2,
ND1, SDHB, and UQCRC2, and we observed the increased
expression of ND1, SDHB, ATP5A1, and especially MTCOX2
protein significantly (Figure 7(b)).

We then analyzed the apoptosis level of the ccRCC cells in
the OE and OE-NC groups as well as cells treated with the pro-
apoptosis drug etoposide using flow cytometry. The results
demonstrated that the overexpression of PTPRG decreased
the early and late apoptosis rates in both untreated and
etoposide-treated ccRCC cells significantly (Figure 7(c)). We
further observed elevated antiapoptosis protein Bcl2 in the OE
group and decreased expression of the antiapoptosis proteins
Bax and cleaved caspase 3 for both cells treated with and with-
out etoposide (Figure 7(d)). These discoveries indicated that
PTPRG overexpression in ccRCC cells activated the oxidative
phosphorylation activity and decreased their apoptosis.

3.9. PTPRG Overexpression Arrests the Cell Cycle Transition
from G1 to S Phase and Inhibited the EMT Process. We first
performed the CCK8 cell viability test for the function of
PTPRG overexpression in ccRCC cells. As Figure 8(a)
shows, the optical density of OE-NC exceeded that of the
OE group at 72h, indicating the depressed cell viability in
the OE group. Also, we observed inhibited EMT activity
according to the increased E-cadherin and decreased N-
cadherin and Snail protein expression (Figure 8(b)) in the
PTPRG OE group. Then, flow cytometry was used to detect
the cell cycle of the ccRCC cells.

As the results exhibited, theOE group cells presented higher
G1/G0 phase and lower S and G2/M phases (Figure 8(c)). The
level of critical proteins in regulating the cell cycle was detected,
and we noticed that CDK2, CyclinD1, and CyclinE were down-
regulated in the OE group (Figure 8(d)). The results demon-
strated that PTPRG overexpression could prevent ccRCC
progression by inhibiting EMT and G1/S cell cycle transition.

4. Discussion

Oxidative phosphorylation has double-faced roles in cancer
progression, and its effects on ccRCC remain unclear. Here,
we identified clusters and risk groups associated with oxida-
tive phosphorylation levels. We noticed that the cluster or
high-risk group with a low level of oxidative phosphoryla-
tion predicted worse survival, indicating the anticancer
property of oxidative phosphorylation in ccRCC. Also, the
ability to predict patient survival demonstrated the robust-
ness of our clusters and risk model for patient prognosis
indication. To our best knowledge, this is the first study
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revealing the association between oxidative phosphorylation
and ccRCC prognosis based on large cohort analysis.

This study also discovered the association between oxi-
dative phosphorylation and immunocyte infiltration. Nota-
bly, we noticed the highly infiltrated MDSC in the high-
risk group and cluster 1. In the mouse breast cancer model,
high oxidative phosphorylation levels in the MDSC were
found to drive the immunosuppressive function of the
myeloid-derived suppressor cell (MDSC) [16]. In human
ovarian cancer cells, the MDSC with immunosuppressive
characteristics presented energetic metabolism, and reduced
oxidative phosphorylation was observed with decreased
expression of immunosuppressive markers [17]. In contrast,
an MDSC dynamic metabolic flux analysis discovered that
the immunosuppressive MDSC exhibited cancer-related
Warburg effects, with a low oxygen consumption rate and
depressed oxidative phosphorylation level [18]. Similarly,
in the microenvironment of the three cancer type animal
model, the MDSC without immunosuppressive function
presented elevated rates of oxidative phosphorylation com-
pared to the control group [19]. The variated results in dif-
ferent cancers suggested the complex and context-
dependent role of oxidative phosphorylation in regulating
the immunosuppressive role of MDSC. In ccRCC, no study
concerning the role of oxidative phosphorylation in MDSC
has been reported so far. Interestingly, the hypoxia and gly-
colysis levels did not variate between the clusters and risk
groups, suggesting the nonglycolysis mediated MDSC infil-
tration in cluster 1 and the high-risk group, and this may
be directly attributed to the oxidative phosphorylation that
the high level of oxidative phosphorylation depressed the
infiltration of MDSC. However, the limitation is that the
underlying mechanism of the MDSC infiltration inhibition
by oxidative phosphorylation remains unknown. Anyway,
our study first reveals the highly infiltrated MDSC in ccRCC,
while the detailed mechanism of oxidative phosphorylation

in MDSC and how it trigged the MDSC-mediated immuno-
suppression deserved further investigation.

Protein tyrosine phosphatase receptor type G (PTPRG) is
a member of the tyrosine phosphatase family regulating vari-
ous biological processes in cancer [20]. Its anticancer function
has been discovered in many cancers. In nasopharyngeal car-
cinoma, PTPRG inhibited the Akt signaling pathway mediat-
ing growth and invasion of cancer cells [20]. In breast
cancer, PTPRG was found to inhibit tumor formation [21],
and miR-19b was validated to support cell migration by sup-
pressing PTPRG expression [22]. Additionally, PTPRG was
also found to suppress the progression of tumors not only
in solid tumors but also in chronic myeloid leukemia [23].
The various evidence supported that PTPRG was a tumor
suppressor gene in many cancers. However, the anticancer
effects of PTPRG on ccRCC are still undiscovered. Here,
we experimentally confirmed the anticancer role in ccRCC
cells for the first time for its overexpression depressed the
EMT processes and induced cell cycle arrest. Also, the upreg-
ulation of the oxidative phosphorylation pathway proteins in
cells with overexpressed PTPRG elucidated the association
between PTPRG and oxidative phosphorylation, though their
extract interaction still awaits discovery. Interestingly, except
for a tumor suppressor within the cancer cells, PTPRG was
also reported as a key node of the immunophenotype regu-
lation hub, indicating its potential to improve immunothera-
peutic effects [24].

Comprehensively, we identified oxidative phosphorylation-
associated clusters and risk groups with high performance to
predict patient survival accurately. The cluster and high-risk
group with a low oxidative phosphorylation rate were charac-
terized by poor prognosis and malignant clinical features, com-
plex tumor environment, and higher immunosuppressive
levels. We also confirmed that overexpression of PTPRG
increased protein expression of the oxidative phosphorylation
pathway, as well as the decreased EMT and arrested cell cycle.
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Figure 8: PTPRG overexpression depressed EMT and mediated cell cycle arrest. (a) The optical density detected in 0 h, 24 h, 48 h, and 72 h
indicates the cell viability in CCK8 assay. (b) The western blot bands of the EMT-related protein expression (left) and their statistical
comparison (right). (c) The flow cytometry results of the G0/G1, S, and G2/M phase cell cycle proportion. (d) The western blot bands of
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This indicated the protective role of oxidative phosphorylation
and PTPRG high expression in ccRCC. We think this study
clarifies the interaction between oxidative phosphorylation
and inner tumor processes and provides a promising therapeu-
tic target for ccRCC patients.

Abbreviations

ccRCC: Clear cell renal cell carcinoma
RCC: Renal cell carcinoma
TCGA: The Cancer Genome Atlas
GO: Gene Ontology
KEGG: Kyoto Encyclopedia of Genes and Genomes
OPS: Oxidative phosphorylation-related signature
CNV: Copy number variation
TMB: Tumor mutation burden
CTA: Cancer-testis antigens
HRD: Homologous recombination defects
GSVA: Gene set variation analysis
TIDE: Tumor Immune Dysfunction and Exclusion
WGCNA: Weighted gene coexpression network analysis
LASSO: Least absolute shrinkage and selection operator
OE: Overexpression group
OE-NC: Control group
MDSC: Myeloid-derived suppressor cell
PTPRG: Protein tyrosine phosphatase receptor type G.

Data Availability

TCGA expression data and clinical information can be
downloaded from https://portal.gdc.cancer.gov/. The oxida-
tive phosphorylation, GO, and KEGG gene sets can be
obtained from http://www.gsea-msigdb.org/gsea/index.jsp.
The TIDE analysis was analyzed on http://tide.dfci.harvard
.edu/. The GDSC compound data can be found on https://
www.cancerrxgene.org/. The codes can be retrieved from
the corresponding author.

Additional Points

Contribution to the Field Statement. Clear cell renal cell car-
cinoma is a common subtype of renal cell carcinoma.
Though clear cell renal cell carcinoma patients can benefit
from early diagnosis and treatment, many patients were
diagnosed with metastases and suffered poor prognoses.
The cancer marker-based treatment has improved the ther-
apeutic efficacy for many cancers, but the promising strategy
for treating late-stage clear cell renal cell carcinoma is still
lacking. In our study, we confirmed the anticancer role of
oxidative phosphorylation in clear cell renal cell carcinoma,
which has not been reported previously. We discovered that
cancers with low oxidative phosphorylation are character-
ized by poor prognosis, malignant clinical information,
genomic instability, and complex environment infiltration,
demonstrating the importance of oxidative phosphorylation
in cancer development. Also, we found that PTPRC overex-
pression activated oxidative phosphorylation, inhibited can-
cer cell epithelial-mesenchymal transition, and mediated cell
cycle arrest, resulting in cancer progression suppression.

Therefore, our study discovered the novel biological mecha-
nism involved in the cancer process and provided promising
targets for developing an effective therapeutic strategy for
patients suffering from limited treatment response.
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